TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
|
|
- Tapio Haavisto
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen syksy 2010
2 Monitavoiteoptimointi
3 Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa useita tavoitteita samanaikaisesti Tavoitteet voivat olla ristiriitaisia (esim. yleensä hyvää ei saa halvalla) kaikkia tavoitteita ei voi saavuttaa samanaikaisesti Joudutaan tyytymään kompromisseihin
4 Monitavoitteinen päätöksentekoprosessi tarpeen tunnistaminen optimointehtävän muotoilu tehtävän (matemaattinen) mallinnus päätöksenteko parhaan ratkaisun implementointi & testaus
5 Optimointitehtävän muotoilu Optimoimalla vain yhtä tavoitetta muut jäävät huomiotta Tavoite vs. rajoite Tavoitteiden summaus Lasketaan yhteen appelsiineja ja omenoita Tavoitteiden muuntaminen Sisältää epävarmuuksia Monitavoitteinen muotoilu tuo esille tavoitteiden keskinäiset riippuvuudet
6 Esimerkki 1: Teräksen jatkuvavalu Teräksen jatkuvavalun toisiojäähdytysprosessin optimisäätö Tutkittu tietotekniikan laitoksella intensiivisesti mallinnus (1988) yksitavoiteoptimointi ( ) monitavoiteoptimointi ( )
7 Teräksen jatkuvavalu sula teräs sisään (tundish) 1. vesijäähdytteinen muotti ohut kuori etenemistä tuetaan rullilla 2. jäähdytys vesisuihkuilla loppu jäähtyminen lämpösäteilynä
8 Teräksen jatkuvavalu Lämpötilan mittaaminen valussa hankalaa lämpötilajakauma numeerisesti Prosessi mallinnettu monifaasilämpöyhtälöä kuvaavilla osittaisdifferentiaaliyhtälöillä (kiinteä ja neste faasi) lämpötilajakauma Numeerinen malli käyttäen elementtimenetelmää (Finite Element method, FEM) Dynaaminen prosessi, riippuu siis ajasta
9 Teräksen jatkuvavalu Toisiojäähdytys merkittävä: vesisuihkujen intensiteetti (helppo säädellä) vaikuttaa merkittävästi teräksen jähmettymiseen Tavoite: minimoida virheiden määrä teräksessä Laatu riippuu mm. lämpötilan käyttäytymisestä teräksen pinnalla liian pieni jäähdytys liian pitkä nestemäinen osa liian suuri jäähdytys teräkseen muodostuu vikoja Objektifunktio: pitää pintalämpötila lähellä haluttua profiilia Rajoitteita mm. lämpötilan muutokselle teräksen pinnalla sekä itse lämpötilalle kriittisissä kohdissa
10 Teräksen jatkuvavalu Yksitavoitteisen optimointitehtävän tarkastelu: rajoitteet tiukkoja ei sallittuja ratkaisuita mistä antaa periksi? Muutetaan rajoitteet objektifunktioiksi (yht 5) mahdollistaa eri rajoitteiden samanaikaisen relaksoinnin tietoa eri rajoitteiden toteutumisesta ja niiden vuorovaikutuksista
11 Esimerkki 2: Vesikiertojen optimointi
12 Vesikiertojen optimointi Paperinvalmistusprosessi käyttää paljon vettä (nykyään n m 3 /paperitonni) Vettä voi kierrättää eri puolilla prosessia, kunhan se pysyy riittävän puhtaana liuennut orgaaninen aine kasaantuu Puhdas vesi maksaa Prosessi mallinnettu käyttäen VTT:n Balasprosessisimulaattoria ( Miten muotoilla optimointitehtävä?
13 Vesikiertojen optimointi Tavoitteena minimoida prosessiin tarvittava puhdas vesi Objektifunktio: minimoidaan puhtaan veden määrä Rajoitteet liuenneen orgaanisen aineen määrä paperikoneen viiravedessä liuenneen orgaanisen aineen määrä valkaisuun menevässä massassa Muuttujat: 5 splitteriä ja 3 venttiiliä
14 Vesikiertojen optimointi Käytännössä siis annetaan orgaanisen aineen pitoisuuksille ylärajat minimoidaan veden kulutus (yksi objektifunktio) Miten määrittää ylärajat? perustuen insinööritietoon ja nykytekniikkaan entäpä, jos rajoja relaksoitaisiin hieman? Monitavoitteinen muotoilu, jossa pitoisuusrajoitteet myös objektifunktioina (3)
15 Esimerkki 3: Kemiallinen erotusprosessi Tarkastellaan kromatografiaan perustuvaa kemiallista erotusprosessia Käytetään moniin tärkeisiin erotusprosesseihin (mm. sokeri-, petrokemian- ja lääketeollisuudessa) Perustuu eri kemiallisten komponenttien nopeuseroon nesteessä *
16 Adapted from Y. Kawajiri, Carnegie Mellon University Kromatografia (yksi kolumni) Liuotin Syöte (2 komponentin sekoitus) Uutto Syöttö 1. Alkutila tuotteen poisto kolumni täytetään liuottimella Pumppu Kromatografinen kolumni (astia täynnä adsorboivan aineen partikkeleita)
17 Desorbent Adapted from Y. Kawajiri, Carnegie Mellon University Prosessin simulointi Feed Askel Kierros Desorbent Feed Desorbent Desorbent Desorbent Feed Desorbent Feed Desorbent Feed Feed Feed Feed Desorbent Feed Desorbent 16 Liquid Flow 17 Liquid Flow Extract Raffinate Raffinate Extract Raffinate Extract Extract Raffinate Extract Raffinate Extract Raffinate Raffinate Extract Raffinate Extract Raffinate Extract November 11, 2009 Bergische Universität Wuppertal
18 Kemiallinen erotusprosessi Syöte- ja poistovirtojen paikkaa vaihdetaan säännöllisin väliajoin (askelaika) Säätö muuttujat askelaika virtausnopeudet
19 Kemiallinen erotusprosessi Tyypillisesti prosessi optimoidaan maksimoimalla tuottofunktio Tuottofunktion muodostaminen ei ole helppoa Monitavoitteinen muotoilu maksimoi prosessin läpi menevä ainemäärä minimoi käytetyn liuottimen määrä maksimoi tuotteen puhtaus maksimoi erotetun tuotteen määrä Mahdollistaa joustavamman tarkastelun ja paljastaa eri tavoitteiden vaikutukset ratkaisuun
20 Mitä tarkoittaa tehtävän ratkaiseminen? Tavoitteena löytää paras kompromissi Mahdollisia kompromisseja paljon, jopa ääretön määrä Perusidea: jos halutaan parantaa jotain tavoitetta, niin jostain joudutaan tinkimään
21 Optimaalisuus usealle tavoitteelle Optimoitavat tavoitteet ristiriitaisia ei yhtä optimaalista ratkaisua vrt. yhden objektifunktion optimointiin Kompromissi Optimaalisia ratkaisuita potentiaalisesti äärettömän paljon
22 Monitavoiteoptimointitehtävä Objektifunktiot, k kappaletta ( k > 1) erikoistapaus: kaksi objektifunktiota pystytään havainnollistamaan vektoreita objektiavaruudessa kun dimensio on 2 tai 3 Muuttujat: kontrolloidaan ratkaisua Rajoitteet: kuten yksitavoitteisissa optimointitehtävissä Sallittu alue S: koostuu pisteistä, jotka toteuttavat kaikki rajoitteet
23 Matemaattinen muotoilu Vektoriarvoinen objektifunktio Objektivektori Sallitun alueen kuva-avaruus
24 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla f 1 min
25 Optimaalisuus Mitkä pisteet ovat optimaalisia? Miten ne löydetään?
26 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla f 1 min
27 Pareto-optimaalisuus (PO) Matemaattinen määritelmä: Toisin sanoen: piste on Pareto-optimaalinen, jos ei ole toista sallittua pistettä, joka antaa vähintään yhtä hyvät arvot kaikille objektifunktioille ja ainakin yhdelle paremman Huomaa: Kaikki Pareto-optimaaliset pisteet ovat matemaattisesti yhtä hyviä
28 Miten valita paras PO-ratkaisu? Kaikki PO-ratkaisut matemaattisesti yhtä hyviä vrt. esim. tason vektorien järjestäminen PO-ratkaisuja mahdollisesti äärettömän monta Tarvitaan lisätietoa liittyen tehtävään, jota ollaan ratkaisemassa
29 Päätöksentekijä Decision maker (DM) Henkilö (tai henkilöt), joka on asiantuntija ratkaistavan tehtävän alalla Kykenee antamaan tietoa tavoitteisiin liittyvistä paremmuussuhteista kykenee esim. vertailemaan PO-ratkaisuja Ei tarvitse olla ammattilainen optimoinnin alalla Auttaa parhaan PO-ratkaisun (kompromissin) löytämisessä
TIES483 Epälineaarinen optimointi
TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Tasaväliset PO pisteet? Painokerroinmenetelmä: muutetaan painoja systemaattisesti
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen
TIES483 Epälineaarinen optimointi. Monitavoiteoptimointi Syksy 2012
TIES483 Epälineaarinen optimointi Monitavoiteoptimointi jussi.hakanen@jyu.fi Syksy 2012 Sisältö Johdanto monitavoiteoptimointiin Monitavoiteoptimoinnin käsitteitä Menetelmätyypit Käytännön sovellusesimerkkejä
TIEA382 Lineaarinen ja diskreetti optimointi
TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu
Monitavoiteoptimointi
Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa
TIES483 Epälineaarinen optimointi
TIES483 Epälineaarinen optimointi Käytännön optimointiongelmien ratkaiseminen jussi.hakanen@jyu.fi Syksy 2012 Käytännön optimointiongelmien ratkaiseminen Käytännössä tulee kiinnittää huomiota ainakin seuraaviin
Luento 6: Monitavoiteoptimointi
Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman
Matemaattinen optimointi I -kurssin johdantoluento Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos
Matemaattinen optimointi I -kurssin johdantoluento 10.1.2017 Prof. Marko M. Mäkelä Turun yliopisto Matematiikan ja tilastotieteen laitos Optimointi: Parhaan mahdollisen ratkaisun etsimistä sallituissa
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen
Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon
Miksi kompromissi on parempi kuin optimi? Uusia monitavoiteoptimoinnin menetelmiä päätöksentekoon Kaisa Miettinen Johdantoa optimointiin Optimointi tarkoittaa systemaattisia tapoja taata parhaan mahdollisen
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
TIES483 Epälineaarinen optimointi. Syksy 2012
TIES483 Epälineaarinen optimointi jussi.hakanen@jyu.fi Syksy 2012 Yleistä Tietotekniikan syventävä kurssi, 5 op Pakollinen laskennallisten tieteiden FMopinnoissa (ent. simulointi ja optimointi) https://korppi.jyu.fi/kotka/r.jsp?course=134562
Luento 6: Monitavoitteinen optimointi
Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
Harjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
TTY Porin laitoksen optimointipalvelut yrityksille
TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa
Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla
Parempaa äänenvaimennusta simuloinnilla ja optimoinnilla Erkki Heikkola Numerola Oy, Jyväskylä Laskennallisten tieteiden päivä 29.9.2010, Itä-Suomen yliopisto, Kuopio Putkistojen äänenvaimentimien suunnittelu
6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa
JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat
Kimppu-suodatus-menetelmä
Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.
1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
Optimoinnin sovellukset
Optimoinnin sovellukset Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.12.2014 Mitä optimointi on? Parhaan ratkaisun systemaattinen etsintä kaikkien mahdollisten ratkaisujen joukosta Tieteellinen
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana
JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista
1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta
Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista
Seosten erotusmenetelmiä
Seosten erotusmenetelmiä KEMIAA KAIKKIALLA, KE1 Kemiassa on usein tarve erottaa niin puhtaita aineita kuin myös seoksia toisistaan. Seoksesta erotetaan sen komponentteja (eli seoksen muodostavia aineita)
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Seoksen pitoisuuslaskuja
Seoksen pitoisuuslaskuja KEMIAA KAIKKIALLA, KE1 Analyyttinen kemia tutkii aineiden määriä ja pitoisuuksia näytteissä. Pitoisuudet voidaan ilmoittaa: - massa- tai tilavuusprosentteina - promilleina tai
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
Teollinen optimointi: avain yritysten kilpailukykyyn
Teollinen optimointi: avain yritysten kilpailukykyyn Professori Kaisa Miettinen, JY, virkaanastujaisesitelmä 14.5.2008 Johdattelu optimointiin Teollinen optimointi viittaa optimoinnin soveltamiseen erityisesti
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Käytännön optimointiongelmien ratkaiseminen Käytännön optimointiongelmien ratkaiseminen
Harjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
Orgaanisten epäpuhtauksien määrittäminen jauhemaisista näytteistä. FT Satu Ikonen, Teknologiakeskus KETEK Oy Analytiikkapäivät 2012, Kokkola
Orgaanisten epäpuhtauksien määrittäminen jauhemaisista näytteistä FT, Teknologiakeskus KETEK Oy Analytiikkapäivät 2012, Kokkola TEKNOLOGIAKESKUS KETEK OY Kokkolassa sijaitseva yritysten osaamisen kehittämiseen
Tuotannon jatkuva optimointi muutostilanteissa
Tuotannon jatkuva optimointi muutostilanteissa 19.4.2012 Henri Tokola Henri Tokola Esityksen pitäjä 2009 Tohtorikoulutettava Aalto-yliopisto koneenrakennustekniikka Tutkimusaihe: Online-optimointi ja tuotannonohjaus
Jäteveden ravinteet ja kiintoaine kiertoon viirasuodattimella. Asst.Prof. (tenure track) Marika Kokko
Jäteveden ravinteet ja kiintoaine kiertoon viirasuodattimella Asst.Prof. (tenure track) Marika Kokko marika.kokko@tuni.fi ProRavinne -hanke Projektin tavoite: Kehitetään jäteveden ja biojätteen käsittelyprosesseja
Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi
Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,
Aki Taanila LINEAARINEN OPTIMOINTI
Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen
4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1
ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2
ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi
SOVELLETUN MATEMATIIKAN MAISTERIKOULUTUS
SOVELLETUN MATEMATIIKAN MAISTERIKOULUTUS 18.3.2013 JYVÄSKYLÄN YLIOPISTO INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 2014 1. AJANKOHTAISUUS Tieto- ja viestintäteknologia ovat muuttaneet ratkaisevasti tapaa, jolla
19. Muotin syöttöjärjestelmä
19. Muotin syöttöjärjestelmä Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Kun muotin täyttänyt sula metalli alkaa jähmettyä, kutistuu se samanaikaisesti. Valukappaleen ohuet kohdat jähmettyvät aikaisemmin
Teknologia jalostusasteen työkaluna. FENOLA OY Harri Latva-Mäenpää Toimitusjohtaja 14.5.2014 Seinäjoki
Teknologia jalostusasteen työkaluna FENOLA OY Harri Latva-Mäenpää Toimitusjohtaja 14.5.2014 Seinäjoki Fenola Oy Fenola Oy on suomalainen yritys, jonka liikeideana on valmistaa ainutlaatuisia ja aitoja
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization
Aircraft Maintenance Scheduling with Multi- Objective Simulation- Optimization 7.5.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Tausta Ilmavoimilla tärkeä rooli maanpuolustuksessa Rauhan aikana
Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen
5. Sähköuunit. 5.1 Sähköuunien panostus Tyypillisiä panosraaka-aineita. Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto
5. Sähköuunit Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto 5.1 Sähköuunien panostus 5.1.1 Tyypillisiä panosraaka-aineita Kuva. Kiertoromua Kuva. Ostoromua 9.11.2011 Raimo Keskinen, Pekka Niemi
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2013-2014 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2013-2014 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia
Optimoimalla Kilpailukykyä. Image courtesy of Altair
Optimoimalla Kilpailukykyä Image courtesy of Altair Optimoimalla kilpailukykyä KEITÄ ME OLEMME Dtream Oy on high-tech-insinööritoimisto, joka on erikoistunut rakenneja systeemioptimointiin. MITÄ ME TARJOAMME
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2012-2013 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2012-2013 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia
Malliratkaisut Demot
Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu
KEMS448 Fysikaalisen kemian syventävät harjoitustyöt
KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Jakaantumislaki 1 Teoriaa 1.1 Jakaantumiskerroin ja assosioituminen Kaksi toisiinsa sekoittumatonta nestettä ovat rajapintansa välityksellä kosketuksissa
Reaktiosarjat
Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine
Harjoitus 3 (31.3.2015)
Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
OPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI)
OPTIMOINNIN JA PÄÄTÖKSENTEON MAISTERI- KOULUTUS (OPTI) 24.10.2013 JYVÄSKYLÄN YLIOPISTO INFORMAATIOTEKNOLOGIAN TIEDEKUNTA 2013 1. AJANKOHTAISUUS Kilpailu kiristyy kaikilla elämänalueilla koko ajan asiat
A W F P. A W F P Hellävarainen kemiallinen pesu. Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa.
30 40 50 60 70 95 Konepesu enintään ilmoitetussa lämpötilassa. 30 40 50 60 70 95 Erittäin hellävarainen konepesu enintään ilmoitetussa lämpötilassa. 30 40 Erittäin hellävarainen konepesu enintään ilmoitetussa
Luento 3: 3D katselu. Sisältö
Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran
Taloustieteen mat.menetelmät 2017 materiaali 1
Taloustieteen mat.menetelmät 2017 materiaali 1 1 Taloustiede tutkii niukkojen resurssien kohdentamista kilpaileviin tarkoituksiin mikä on hyvä tapa kohdentaa? miten arvioida tuloksia? mitä niukkuus tarkoittaa?
Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan?
2.1 Kolme olomuotoa Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan? pieni energia suuri energia lämpöä sitoutuu = endoterminen lämpöä vapautuu = eksoterminen (endothermic/exothermic)
Vektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
Harjoitus 3 (3.4.2014)
Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
Konesalin jäähdytysjärjestelmän mallinnus, simulointi ja optimointi. To 4.6.2015 Merja Keski-Pere
Konesalin jäähdytysjärjestelmän mallinnus, simulointi ja optimointi To 4.6.2015 Merja Keski-Pere Konesaleista Digitalisaation lisääntyminen palvelinkapasiteettia lisää Eurooppaan arviolta jopa 60 uutta
Harjoitus 5 ( )
Harjoitus 5 (14.4.2015) Tehtävä 1 Figure 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan
MS-C2105 Optimoinnin perusteet Malliratkaisut 4
MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta
Malliratkaisut Demot
Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x
Monitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa.
Monitavoiteoptimoinnin ja erityisesti NIMBUS-menetelmän hyödyntäminen monitavoitteisessa päätöksenteossa. Ellemari Teinilä Pro gradu -tutkielma Heinäkuu 2019 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN
Yhden muuttujan funktion minimointi
Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai
Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu
Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee
Korkealämpötilakemia
1.11.217 Korkealämpötilakemia Standarditilat Ti 1.11.217 klo 8-1 SÄ11 Tavoite Tutustua standarditiloihin liuosten termodynaamisessa mallinnuksessa Miksi? Millaisia? Miten huomioidaan tasapainotarkasteluissa?
Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
KUMPI OHJAA, STRATEGIA VAI BUDJETTI?
KUMPI OHJAA, STRATEGIA VAI BUDJETTI? Aalto University Executive Education Teemu Malmi Professori, AUSB WORKSHOP Alustus: Budjetti ohjaa, kaikki hyvin? Keskustelu pöydissä Yhteenveto Alustus: Miten varmistan,
1 Komparatiivinen statiikka ja implisiittifunktiolause
Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla
Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:
Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään
1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
Lentotuhkan hyödyntämisen mahdollisuudet metsäteollisuuden jätevesien käsittelyssä
Lentotuhkan hyödyntämisen mahdollisuudet metsäteollisuuden jätevesien käsittelyssä Sakari Toivakainen RAE-projekti, RAKEISTAMINEN AVARTAA EKOLOGISUUTTA MINISEMINAARI 16.10.2014, Oulu. Clean Technologies
Piiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
TOISINAJATTELUA STRATEGISESTA
TOISINAJATTELUA STRATEGISESTA JOHTAMISESTA Saku Mantere, Eero Vaara, Hanken Kimmo Suominen, Perfecto Oy (Aalto/Tuotantotalous) 18.11.2011 STRATEGIA JA IHMISET Strategian eriskummallisuuksia 1. Strategia
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
SIMO-pilotointi Metsähallituksessa. SIMO-seminaari
SIMO-pilotointi Metsähallituksessa SIMO-seminaari Hakkuiden optimointi tiimitasolla Metsähallituksen metsissä Heli Virtasen Pro gradu -tutkielma Tutkimusalue ja aineisto Metsätalouden Kainuun alue Kuhmon
Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia
FORS-seminaari 2005 - Infrastruktuuri ja logistiikka Logistiikkajärjestelmien mallintaminen - käytännön sovelluksia Ville Hyvönen EP-Logistics Oy Taustaa Ville Hyvönen DI (TKK, teollisuustalous, tuotannon
MAT -2.3134 PÄÄTÖKSENTEKO JA ONGELMANRATKAISU
MAT -2.3134 PÄÄTÖKSENTEKO JA ONGELMANRATKAISU Syksy 2007 Ahti Salo / Juuso Liesiö 1 Miksi kurssi päätöksenteosta? Välitön oppimistavoite päätösongelmien jäsentäminen moniulotteisuuden hahmottaminen monenlaisiin
Standarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin
Standarditilat Ilmiömallinnus prosessimetallurgiassa Syksy 216 Teema 2 - Luento 2 Tavoite Tutustua standarditiloihin Miksi käytössä? Millaisia käytössä? Miten huomioitava tasapainotarkasteluissa? 1 Miten
Puun termiset aineominaisuudet pyrolyysissa
1 Puun termiset aineominaisuudet pyrolyysissa V Liekkipäivä Otaniemi, Espoo 14.1.2010 Ville Hankalin TTY / EPR 14.1.2010 2 Esityksen sisältö TTY:n projekti Biomassan pyrolyysin reaktiokinetiikan tutkimus
Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun
Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko
Malliratkaisut Demo 4
Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku
Harjoitus 9: Optimointi I (Matlab)
Harjoitus 9: Optimointi I (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen Optimointitehtävien
Metallien 3D-tulostus uudet liiketoimintamahdollisuudet
Metallien 3D-tulostus uudet liiketoimintamahdollisuudet Alihankintamessut 17.9.2015 Pasi Puukko, Petri Laakso, Pentti Eklund, Magnus Simons, Erin Komi VTT 3D-tulostus ja materiaalia lisäävä valmistus (AM)
Projektiportfolion valinta
Projektiportfolion valinta Mat-2.4142 Optimointiopin seminaari kevät 2011 Portfolion valinta Käytettävissä on rajallinen määrä resursseja, joten ne on allokoitava mahdollisimman hyvin eri projekteille
Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat
1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden
Mat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä
Mat Lineaarinen ohjelmointi
Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi
Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.