Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen
|
|
- Paavo Kivelä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista Ei ole olemassa ratkaisumenetelmää, joka toimisi aina hyvin ja tehokkasti kaikille kokonaislukuoptimointitehtäville (vrt. simplex lineaarisille jatkuville tehtäville) 1
2 Yleinen ratkaisuperiaate: Muodostetaan vastaava jatkuva optimointitehtävä: x j N = x j 0 ja x j = 0 tai 1 = 0 x j 1 Ratkaistaan jatkuva tehtävä ja jatketaan sen optimoimista Lisätään tehtävään erityisrajoituksia, jotka pakottavat iteratiivisesti kokonaislukurajoitteet voimaan Erityisrajoitusten päätyypit: leikkaustaso (cutting plane) haarautuminen (branch-and-bound) 2
3 Täysin unimodulaarinen kerroinmatriisi Matriisi A on täysin unimodulaarinen, jos sen jokaisen neliöalimatriisin determinantti on 0, +1 tai 1 = Täysin unimodulaarisen matriisin alkioina voi olla vain 0, +1 tai 1 3
4 Yhtälörajoitteet matriisimuodossa: Ax = b Olkoon A = [B, N], missä B sisältää perusmuuttujien joukkoa B vastaavat sarakkeet ja N muut sarakkeet Olkoon x = [x B,x N ] = Ax = b Bx B + Nx N = b x B = B 1 b B 1 Nx N 4
5 = Perusmuoto: x B = B 1 b B 1 Nx N Vastaava perusratkaisu: x B = B 1 b x N = 0 5
6 Cramerin sääntö: B 1 = B / B, missä B on B:n liittomatriisi ja B on B:n determinatti Jos A on täysin unimodulaarinen ja kaikki b:n alkiot ovat kokonaislukuja = Kaikki B :n alkiot ovat joko 0, +1 tai 1 ja B on joko +1 tai 1 = Kaikki B 1 :n alkiot ovat joko 0, +1 tai 1 = Kaikki x B :n alkiot ovat kokonaislukuja = Kokonaislukuoptimointitehtävällä ja vastaavalla jatkuvalla tehtävällä on sama optimiratkaisu 6
7 Esimerkki: Kolmen henkilön ja kolmen työn kohdistusongelma Jokainen henkilö suorittaa yhden työn, ja jokaisen työn suorittaa yksi henkilö Kun henkilö i suorittaa työn j, siitä aiheutuu kustannus c ij Tavoite: Kohdista henkilöt töihin siten, että kokonaiskustannukset minimoituvat 7
8 x ij = 1, jos henkilö i suorittaa työn j 0, muuten min c 11 x 11 + c 12 x 12 + c 13 x 13 + c 21 x 21 + c 22 x 22 + c 23 x 23 + c 31 x 31 + c 32 x 32 + c 33 x 33 kun x 11 + x 12 + x 13 = 1 x 21 + x 22 + x 23 = 1 x 31 + x 32 + x 33 = 1 x 11 + x 21 + x 31 = 1 x 12 + x 22 + x 32 = 1 x 13 + x 23 + x 33 = 1 x 11, x 12, x 13, x 21, x 22, x 23, x 31, x 32, x 33 = 0 tai 1 8
9 = A = Induktio = Matriisi A on täysin unimodulaarinen 9
10 Ratkaisun pyöristäminen Esimerkki: Kapsäkkiongelma max 5x 1 + 3x 2 + 4x 3 kun 3x 1 + 2x 2 + 4x 3 6 x 1, x 2, x 3 = 0 tai 1 Vastaavan jatkuvan tehtävän ratkaisu: (x 1, x 2, x 3 ) = (1,1,1/4) Kokonaislukuoptimointitehtävän ratkaisu: (x 1, x 2, x 3 ) = (1,1,0) = Tässä tapauksessa pyöristäminen toimii 10
11 Sijoitusongelma Olkoon m paikkaa, joihin voidaan perustaa tuotantolaitos, ja olkoon n asiakasta Asiakas j tarvitsee tuotetta määrän d j Paikkaan i perustettavasta tuotantolaitoksesta aiheutuu kiinteä kustannus f i Tuotantolaitoksen i kapasiteetti on M i Jos paikassa i valmistettu tuote kuljetetaan asiakkaalle j, siitä aiheutuu kustannus c ij Tavoite: Määrää ne paikat, joihin laitos perustetaan sekä tuotteen kuljetusmäärät asiakkaille siten, että kokonaiskustannukset minimoituvat 11
12 x ij = laitoksesta i asiakkaalle j kuljetettava määrä x i = 1, jos paikkaan i perustetaan laitos 0, jos paikkaan i ei perusteta laitosta min kun m n i=1 j=1 m i=1 n j=1 c ij x ij + x ij = d j x ij M i x i m i=1 f i x i j = 1,..., n i = 1,..., m x ij 0 i = 1,..., m, j = 1,..., n x i = 0 tai 1 i = 1,..., m 12
13 Esimerkki: Sijoitusongelma max 93x x x x x x x x x x x x x x x x x x x x x x x x x 55 kun x 11 + x 21 + x 31 + x 41 + x 51 = 1 x 12 + x 22 + x 32 + x 42 + x 52 = 1 x 13 + x 23 + x 33 + x 43 + x 53 = 1 x 14 + x 24 + x 34 + x 44 + x 54 = 1 x 15 + x 25 + x 35 + x 45 + x 55 = 1 x 11 + x 12 + x 13 + x 14 + x 15 = 2x 1 x 21 + x 22 + x 23 + x 24 + x 25 = 3x 2 x 31 + x 32 + x 33 + x 34 + x 35 = 2x 3 x 41 + x 42 + x 43 + x 44 + x 45 = 3x 4 x 51 + x 52 + x 53 + x 54 + x 55 = 2x 5 x ij N, x i = 0 tai 1 i = 1,...,5, j = 1,...,5 13
14 Vastaavan jatkuvan tehtävän ratkaisu: (x 1, x 2, x 3, x 4, x 5 ) = (1/2,1/3,1/2,1/3,1/2) Kokonaislukuoptimointitehtävän sallitut ratkaisut: (x 1, x 2, x 3, x 4, x 5 ) = (1,1,0,0,0) (x 1, x 2, x 3, x 4, x 5 ) = (1,0,0,1,0) (x 1, x 2, x 3, x 4, x 5 ) = (0,1,1,0,0) (x 1, x 2, x 3, x 4, x 5 ) = (0,1,0,0,1) (x 1, x 2, x 3, x 4, x 5 ) = (0,0,1,1,0) (x 1, x 2, x 3, x 4, x 5 ) = (0,0,0,1,1) = Tässä tapauksessa pyöristäminen ei toimi 14
15 Leikkaustasomenetelmä Ratkaistaan vastaava jatkuva tehtävä Jos ratkaisu on kokonaislukuratkaisu, lopetetaan Muuten lisätään tehtävään leikkaustasorajoite siten, että se pienentää sallittua aluetta, mutta säilyttää siinä kokonaislukupisteet Ratkaistaan saatu uusi tehtävä Näin jatketaan kunnes saadaan kokonaislukuratkaisu (tai kunnes ratkaisu osoittautuu rajoittamattomaksi) 15
16 Oletetaan, että jatkuva tehtävä on ratkaistu simplex-algoritmilla, jolloin ratkaisu on perusmuodossa x j + a jk x k = b j j B k/ B Pyöritys alaspäin: Olkoon y suurin kokonaisluku siten, että se on y Koska x j 0 kaikilla j = x j + k/ B a jk x k b j Koska x j kokonaisluku kaikilla j = x j + a jk x k b j k/ B 16
17 Vähennetään yhtälöt toisistaan: x j + = k/ B x j + k/ B a jk x k = b j a jk x k b j ( ajk a jk ) x k b j b j k/ B Merkitään f jk = a jk a jk ja f j = b j b j, jolloin 0 f jk < 1 ja 0 f j < 1 17
18 Saadaan leikkaustasorajoite k/ B f jk x k f j Tämä lisätään tehtävään muodossa missä s on puutemuuttuja k/ B f jk x k + s = f j Koska f j 0, perusratkaisu ei ole sallittu (paitsi jos f j = 0) = tarvitaan duaali-simplex-iteraatioita 18
19 Esimerkki: max x 2 kun 3x 1 + 2x 2 6 3x 1 + 2x 2 0 x 1, x 2 N Vastaava jatkuva tehtävä: max x 2 kun 3x 1 + 2x 2 6 3x 1 + 2x 2 0 x 1, x
20 Muunnetaan minimointitehtäväksi ja lisätään puutemuuttujat: min x 2 kun 3x 1 + 2x 2 + x 3 = 6 3x 1 + 2x 2 + x 4 = 0 x 1, x 2, x 3, x 4 0 Aloitusperusmuodon simplex-taulukko: x 1 x 2 x 3 x
21 Simplex-iteraatiot: / / / / /4 1/4 3/ /6 1/ /4 1/4 3/2 21
22 Optimaalinen simplex-taulukko: x 1 x 2 x 3 x /4 1/4 3/ /6 1/ /4 1/4 3/2 Ratkaisu: (x 1, x 2, x 3, x 4 ) = (1,3/2,0,0) Objektifunktion arvo: 3/2 22
23 Ratkaisu ei ole kokonaislukuratkaisu, joten lisätään leikkaustasorajoite: Objektifunktioriviltä saadaan z x x 4 = 3 2 = 1 4 x x Lisätään tämä simplex-taulukkoon muodossa 1 4 x x 4 + s 1 =
24 = x 1 x 2 x 3 x 4 s /4 1/4 0 3/ /6 1/ /4 1/4 0 3/ /4 1/4 1 1/2 Taulukon perusratkaisu muunnetaan sallituksi duaali-simplex-algoritmilla 24
25 Yksi duaali-simplex-iteraatio: 0 0 1/4 1/4 0 3/ /6 1/ /4 1/4 0 3/ /4 1/4 1 1/ /3 2/3 2/
26 Optimaalinen simplex-taulukko: x 1 x 2 x 3 x 4 s /3 2/3 2/ Ratkaisu: (x 1, x 2, x 3, x 4, s 1 ) = (2/3,1,2,0,0) Objektifunktion arvo: 1 26
27 Ratkaisu ei ole kokonaislukuratkaisu, joten lisätään leikkaustasorajoite: Ensimmäiseltä rajoiteriviltä saadaan x x s 1 = 2 3 = 2 3 x s Lisätään tämä simplex-taulukkoon muodossa 2 3 x s 1 + s 2 =
28 = x 1 x 2 x 3 x 4 s 1 s /3 2/3 0 2/ /3 2/3 1 2/3 Taulukon perusratkaisu muunnetaan sallituksi duaali-simplex-algoritmilla 28
29 Yksi duaali-simplex-iteraatio: /3 2/3 0 2/ /3 2/3 1 2/ / / /2 1 29
30 Optimaalinen simplex-taulukko: x 1 x 2 x 3 x 4 s 1 s / / /2 1 Ratkaisu: (x 1, x 2, x 3, x 4, s 1, s 2 ) = (1,1,1,1,0,0) Objektifunktion arvo: 1 30
31 Ratkaisu on kokonaislukuratkaisu = Alkuperäisen maksimointitehtävän ratkaisu on (x 1, x 2 ) = (1,1), jossa objektifunktion arvo on 1 31
32 Haarautumismenetelmä Ratkaistaan vastaava jatkuva tehtävä Jos ratkaisu on kokonaislukuratkaisu, lopetetaan Muuten jaetaan sallittu alue uusilla rajoitteilla kahteen osaan siten, että jatkuva ratkaisu ei kuulu kumpaankaan Saadaan kaksi uutta tehtävää, jotka ratkaistaan Näin jatketaan kunnes uusia ratkaistavia tehtäviä ei enää ole 32
33 Maksimointitehtävä: Jos löydetään sallittu kokonaislukuratkaisu, saadaan alaraja kokonaislukuoptimointitehtävän objektifunktion arvolle = Niitä tehtäviä, joissa objektifunktion arvo on pienempi, ei enää tarvitse jakaa uusiksi tehtäviksi Minimointitehtävä: Jos löydetään sallittu kokonaislukuratkaisu, saadaan yläraja kokonaislukuoptimointitehtävän objektifunktion arvolle = Niitä tehtäviä, joissa objektifunktion arvo on suurempi, ei enää tarvitse jakaa uusiksi tehtäviksi 33
34 Esimerkki: max 5x 1 + 8x 2 kun x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x 2 N Vastaava jatkuva tehtävä, tehtävä 0 : max 5x 1 + 8x 2 kun x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x
35 Tehtävän 0 ratkaisu: (x 1, x 2 ) = (9/4,15/4) = (2.25,3.75) Objektifunktion arvo: 165/4 = Ratkaisu ei ole kokonaislukuratkaisu, joten jaetaan sallittu alue kahteen osaan muuttujan x 2 suhteen = x 2 3 ja x 2 4 Saadaan kaksi uutta tehtävää, tehtävät 1 ja 2 : max 5x 1 + 8x 2 max 5x 1 + 8x 2 kun x 1 + x 2 6 kun x 1 + x 2 6 5x 1 + 9x x 1 + 9x 2 45 x 2 3 x 2 4 x 1, x 2 0 x 1, x
36 Tehtävän 1 ratkaisu: (x 1, x 2 ) = (3,3) Objektifunktion arvo: 39 Ratkaisu on kokonaislukuratkaisu, joten tätä tehtävää ei enää jaeta Alaraja kokonaislukuoptimointitehtävän objektifunktion arvolle on 39 Tehtävän 2 ratkaisu: (x 1, x 2 ) = (9/5,4) = (1.8,4) Objektifunktion arvo: 41 Ratkaisu ei ole kokonaislukuratkaisu, ja objektifunktion arvo on suurempi kuin alaraja 39, joten jaetaan sallittu alue kahteen osaan muuttujan x 1 suhteen = x 1 1 ja x
37 Tehtävä 0: x 1 = 9/4 x 2 = 15/4 z = 165/4 x 2 3 x 2 4 Tehtävä 1: x 1 = 3 x 2 = 3 z = 39 Tehtävä 2: x 1 = 9/5 x 2 = 4 z = 41 x 1 1 x
38 Jaetaan tehtävä 2 tehtäviksi 3 ja 4 : max 5x 1 + 8x 2 max 5x 1 + 8x 2 kun x 1 + x 2 6 kun x 1 + x 2 6 5x 1 + 9x x 1 + 9x 2 45 x 2 4 x 2 4 x 1 1 x 1 2 x 1, x 2 0 x 1, x 2 0 Tehtävän 3 ratkaisu: (x 1, x 2 ) = (1,40/9) (1,4.44) Objektifunktion arvo: 365/ Ratkaisu ei ole kokonaislukuratkaisu, ja objektifunktion arvo on suurempi kuin alaraja 39, joten jaetaan sallittu alue kahteen osaan muuttujan x 2 suhteen = x 2 4 ja x 2 5 Tehtävällä 4 ei ole ratkaisua, joten tätä tehtävää ei enää jaeta 38
39 Tehtävä 2: x 1 = 9/5 x 2 = 4 z = 41 x 1 1 x 1 2 Tehtävä 3: x 1 = 1 x 2 = 40/9 z = 365/9 Tehtävä 4: Ei ratkaisua x 2 4 x
40 Jaetaan tehtävä 3 tehtäviksi 5 ja 6 : max 5x 1 + 8x 2 max 5x 1 + 8x 2 kun x 1 + x 2 6 kun x 1 + x 2 6 5x 1 + 9x x 1 + 9x 2 45 x 2 4 x 2 4 x 1 1 x 1 1 x 2 4 x 2 5 x 1, x 2 0 x 1, x
41 Tehtävän 5 ratkaisu: (x 1, x 2 ) = (1,4) Objektifunktion arvo: 37 Ratkaisu on kokonaislukuratkaisu, joten tätä tehtävää ei enää jaeta Objektifunktion arvo on pienempi kuin alaraja 39, joten tämä ratkaisu ei ole optimaalinen Tehtävän 6 ratkaisu: (x 1, x 2 ) = (0,5) Objektifunktion arvo: 40 Ratkaisu on kokonaislukuratkaisu, joten tätä tehtävää ei enää jaeta Uusi alaraja kokonaislukuoptimointitehtävän objektifunktion arvolle on 40 41
42 Tehtävä 3: x 1 = 1 x 2 = 40/9 z = 365/9 x 2 4 x 2 5 Tehtävä 5: x 1 = 1 x 2 = 4 z = 37 Tehtävä 6: x 1 = 0 x 2 = 5 z = 40 42
43 Ratkaistavia tehtäviä ei enää ole = lopetetaan Paras löydetty kokonaislukuratkaisu on alkuperäisen kokonaislukuoptimointitehtävän ratkaisu: Tehtävä 6 = Ratkaisu on (x 1, x 2 ) = (0,5), jossa objektifunktion arvo on 40 43
44 Huomautuksia haarautumismenetelmästä Selvästi algoritmi konvergoi: Pahimmassa tapauksessa kaikille kokonaislukumuuttujille tulee rajoitteet x j a j ja x j a j Se, missä järjestyksessä uudet tehtävät käsitellään, vaikuttaa menetelmän nopeuteen ja muistitilan tarpeeseen Seuraavaksi jaettavan tehtävän valinta: Valitaan esimerkiksi se, jossa objektifunktion arvo on paras (maksimointitehtävässä suurin, minimointitehtävässä pienin) Haaroittavan muuttujan valinta: Valitaan esimerkiksi se, jonka murto-osa on kauimpana kokonaislukuarvosta Tehtävät voidaan jakaa myös useammaksi kuin kahdeksi uudeksi tehtäväksi 44
45 Kapsäkkiongelman ratkaisu haarautumismenetelmällä Esimerkki: max 12x x 2 + 9x x x x x 7 kun 3x 1 + 4x 2 + 3x 3 + 3x x x x 7 35 x 1, x 2, x 3, x 4, x 5, x 6, x 7 = 0 tai 1 Numeroidaan muuttujat uudelleen siten, että ne ovat suhteen c j /a j mukaan laskevassa järjestyksessä: max 112y y y y 4 + 9y y y 7 kun 16y y 2 + 3y 3 + 3y 4 + 3y 5 + 4y y 7 35 y 1, y 2, y 3, y 4, y 5, y 6, y 7 = 0 tai 1 45
46 Kun muuttujat on numeroitu tällä tavoin, vastaavan jatkuvan tehtävän (missä 0 y j 1 kaikilla j) ratkaisu löytyy seuraavasti: Asetetaan järjestyksessä y 1 = = y k 1 = 1 niin pitkälle kuin rajoitteen takia on mahdollista Asetetaan seuraavan muuttujan y k arvoksi sellainen murtoluku, että rajoite toteutuu yhtäsuurudella Asetetaan loput muuttujat y k+1 = = y n = 0 46
47 Tehtävä 1: max 112y y y y 4 + 9y y y 7 kun 16y y 2 + 3y 3 + 3y 4 + 3y 5 + 4y y y j 1 j = 1,...,7 Tehtävän 1 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1,1/3,0,0,0) Objektifunktion arvo: 221 Ratkaisu ei ole kokonaislukuratkaisu, joten jaetaan sallittu alue kahteen osaan muuttujan y 4 suhteen = y 4 = 0 ja y 4 = 1 47
48 Saadaan kaksi uutta tehtävää, tehtävä 2... : max 112y y y y 4 + 9y y y 7 kun 16y y 2 + 3y 3 + 3y 4 + 3y 5 + 4y y 7 35 y 4 = 0 0 y j 1 j = 1,...,7 Tehtävän 2 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1,0,1/3,0,0) Objektifunktion arvo: 220 Ratkaisu ei ole kokonaislukuratkaisu, joten jaetaan sallittu alue kahteen osaan muuttujan y 5 suhteen = y 5 = 0 ja y 5 = 1 48
49 ... ja tehtävä 3 : max 112y y y y 4 + 9y y y 7 kun 16y y 2 + 3y 3 + 3y 4 + 3y 5 + 4y y 7 35 y 4 = 1 0 y j 1 j = 1,...,7 Tehtävän 3 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1/3,1,0,0,0) Objektifunktion arvo: 219 Ratkaisu ei ole kokonaislukuratkaisu, joten jaetaan sallittu alue kahteen osaan muuttujan y 3 suhteen = y 3 = 0 ja y 3 = 1 49
50 Tehtävä 1: y 1 = y 2 = y 3 = 1 y 4 = 1/3 z = 221 y 4 = 0 y 4 = 1 Tehtävä 2: y 1 = y 2 = y 3 = 1 y 5 = 1/3 z = 220 Tehtävä 3: y 1 = y 2 = y 4 = 1 y 3 = 1/3 z = 219 y 5 = 0 y 5 = 1 y 3 = 0 y 3 = 1 50
51 Jakamatta on tehtävät 2 ja 3, joista tehtävässä 2 on paras objektifunktion arvo = Jaetaan tehtävä 2 tehtäväksi 4 (y 5 = 0) ja tehtäväksi 5 (y 5 = 1) Tehtävän 4 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1,0,0,1/4,0) Objektifunktion arvo: 220 Ratkaisu ei ole kokonaislukuratkaisu, joten jaetaan sallittu alue kahteen osaan muuttujan y 6 suhteen = y 6 = 0 ja y 6 = 1 Tehtävän 5 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1/3,0,1,0,0) Objektifunktion arvo: 216 Ratkaisu ei ole kokonaislukuratkaisu, joten jaetaan sallittu alue kahteen osaan muuttujan y 3 suhteen = y 3 = 0 ja y 3 = 1 (myöhemmin osoittautuu, että tätä jakoa ei tarvitse tehdä) 51
52 Tehtävä 2: y 1 = y 2 = y 3 = 1 y 5 = 1/3 z = 220 y 5 = 0 y 5 = 1 Tehtävä 4: y 1 = y 2 = y 3 = 1 y 6 = 1/4 z = 220 Tehtävä 5: y 1 = y 2 = y 5 = 1 y 3 = 1/3 z = 216 y 6 = 0 y 6 = 1 52
53 Jakamatta on tehtävät 3, 4 ja 5, joista tehtävässä 4 on paras objektifunktion arvo = Jaetaan tehtävä 4 tehtäväksi 6 (y 6 = 0) ja tehtäväksi 7 (y 6 = 1) Tehtävän 6 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1,0,0,0,1/13) Objektifunktion arvo: 219 Ratkaisu ei ole kokonaislukuratkaisu, joten jaetaan sallittu alue kahteen osaan muuttujan y 7 suhteen = y 7 = 0 ja y 7 = 1 Tehtävän 7 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,0,0,0,1,0) Objektifunktion arvo: 214 Ratkaisu on kokonaislukuratkaisu, joten tätä tehtävää ei enää jaeta Alaraja kokonaislukuoptimointitehtävän objektifunktion arvolle on
54 Tehtävä 4: y 1 = y 2 = y 3 = 1 y 6 = 1/4 z = 220 y 6 = 0 y 6 = 1 Tehtävä 6: y 1 = y 2 = y 3 = 1 y 7 = 1/13 z = 219 Tehtävä 7: y 1 = y 2 = y 6 = 1 z = 214 y 7 = 0 y 7 = 1 54
55 Jakamatta on tehtävät 3, 5 ja 6, joista tehtävässä 6 on paras objektifunktion arvo = Jaetaan tehtävä 6 tehtäväksi 8 (y 7 = 0) ja tehtäväksi 9 (y 7 = 1) Tehtävän 8 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1,0,0,0,0) Objektifunktion arvo: 217 Ratkaisu on kokonaislukuratkaisu, joten tätä tehtävää ei enää jaeta Uusi alaraja kokonaislukuoptimointitehtävän objektifunktion arvolle on 217 = Tehtävää 5 ei jaeta, koska siinä objektifunktion arvo on huonompi Tehtävän 9 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,2/5,0,0,0,0,1) Objektifunktion arvo: 174 Ratkaisu ei ole kokonaislukuratkaisu, mutta objektifunktion arvo on huonompi kuin alaraja 217, joten tätä tehtävää ei enää jaeta 55
56 Tehtävä 6: y 1 = y 2 = y 3 = 1 y 7 = 1/13 z = 219 y 7 = 0 y 7 = 1 Tehtävä 8: y 1 = y 2 = y 3 = 1 z = 217 Tehtävä 9: y 1 = y 7 = 1 y 2 = 2/5 z =
57 Jakamatta on tehtävä 3 = Jaetaan tehtävä 3 tehtäväksi 10 (y 3 = 0) ja tehtäväksi 11 (y 3 = 1) Tehtävän 10 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,0,1,1/3,0,0) Objektifunktion arvo: 217 Ratkaisu ei ole kokonaislukuratkaisu, mutta objektifunktion arvo on sama kuin alaraja 217, joten tätä tehtävää ei enää jaeta Tehtävän 11 ratkaisu: (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,13/15,1,1,0,0,0) Objektifunktion arvo: 217 Ratkaisu ei ole kokonaislukuratkaisu, mutta objektifunktion arvo on sama kuin alaraja 217, joten tätä tehtävää ei enää jaeta 57
58 Tehtävä 3: y 1 = y 2 = y 4 = 1 y 3 = 1/3 z = 219 y 3 = 0 y 3 = 1 Tehtävä 10: y 1 = y 2 = y 4 = 1 y 5 = 1/3 z = 217 Tehtävä 11: y 1 = y 3 = y 4 = 1 y 2 = 13/15 z =
59 Ratkaistavia tehtäviä ei enää ole = lopetetaan Paras löydetty kokonaislukuratkaisu on alkuperäisen kokonaislukuoptimointitehtävän ratkaisu: Tehtävä 8 = Ratkaisu on (y 1, y 2, y 3, y 4, y 5, y 6, y 7 ) = (1,1,1,0,0,0,0), jossa objektifunktion arvo on
60 Huomautus rajoitteiden lukumäärästä Optimointiohjelmistoissa, jotka käyttävät haarautumismenetelmää, kannattaa yleensä rajata sallittua aluetta mahdollisimman paljon = Silloin tehtävä ratkeaa yleensä nopeammin Esimerkiksi, jos y on 0 1-kokonaislukumuuttuja, niin rajoite x x n Ty 0 missä T = T T n kannattaa kirjoittaa muodossa x 1 T 1 y 0. x n T n y 0 60
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
Lisätiedot4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
LisätiedotKokonaislukuoptimointi
Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:
LisätiedotJälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun
Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko
LisätiedotEsimerkkejä kokonaislukuoptimointiongelmista
Esimerkkejä kokonaislukuoptimointiongelmista (eli mitä kaikkea kokonaisluvuilla voi mallintaa) 27. marraskuuta 2013 Pääoman budjetointiongelma Kulut Projekti Vuosi 1 Vuosi 2 Vuosi 3 Tuotto 1 5 1 8 20 2
Lisätiedot6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa
JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat
LisätiedotKuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij
Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0
LisätiedotJYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö
JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän
LisätiedotLineaarinen optimointitehtävä
Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotKokonaislukuoptiomointi Leikkaustasomenetelmät
Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat
Lisätiedot8. Ensimmäisen käyvän kantaratkaisun haku
38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:
Lisätiedot4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus
LisätiedotOptimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
LisätiedotMat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä
LisätiedotLineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu
LisätiedotOvatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.
5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan
LisätiedotLuento 7: Kokonaislukuoptimointi
Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x
LisätiedotHarjoitus 6 ( )
Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,
LisätiedotLuento 7: Kokonaislukuoptimointi
Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus
LisätiedotDemo 1: Branch & Bound
MS-C05 Optimoinnin perusteet Malliratkaisut 7 Ehtamo Demo : Branch & Bound Ratkaise lineaarinen kokonaislukuoptimointitehtävä käyttämällä Branch & Boundalgoritmia. max x + x s.e. x + 4x 9 5x + x 9 x Z
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan
LisätiedotHarjoitus 5 ( )
Harjoitus 5 (14.4.2015) Tehtävä 1 Figure 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan
Lisätiedot3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että
3 Simplex-menetelmä Lähdetään jostakin annettuun LP-tehtävään liittyvästä käyvästä perusratkaisusta x (0) ja pyritään muodostamaan jono x (1), x (2),... käypiä perusratkaisuja siten, että eräässä vaiheessa
LisätiedotHarjoitus 6 ( )
Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.
LisätiedotOsakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
LisätiedotHarjoitus 5 ( )
Harjoitus 5 (24.4.2014) Tehtävä 1 Kuva 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)
LisätiedotHarjoitus 3 (3.4.2014)
Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
Lisätiedot4. Kokonaislukutehtävän ja LP:n yhteyksiä
8 4. Kokonaislukutehtävän ja LP:n yhteyksiä Minkowskin esityslauseen avulla voidaan osoittaa, että jos P on rationaalinen monitahokas ja S sen sisällä olevien kokonaislukupisteiden joukko, niin co(s) on
LisätiedotHarjoitus 3 (31.3.2015)
Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
LisätiedotLuetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotTrimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä
Trimmitysongelman LP-relaksaation ratkaiseminen sarakkeita generoivalla algoritmilla ja brute-force-menetelmällä Vesa Husgafvel 19.11.2012 Ohjaaja: DI Mirko Ruokokoski Valvoja: Prof. Harri Ehtamo Työn
LisätiedotDemo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
LisätiedotPiiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotNumeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44
Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan
LisätiedotEllipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio
Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotSimplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala
Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
LisätiedotMalliratkaisut Demot 6,
Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös
LisätiedotMat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi
LisätiedotJohdatus verkkoteoriaan 4. luento
Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,
LisätiedotJohdatus verkkoteoriaan luento Netspace
Johdatus verkkoteoriaan luento 3.4.18 Netspace Matriisioperaatio suunnatuissa verkoissa Taustoitusta verkkoteorian ulkopuolelta ennen kuljetusalgoritmia LP-ongelma yleisesti LP = linear programming =
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotMatriisilaskenta Luento 8: LU-hajotelma
Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotTotaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista
8. Verkkomallit Totaalisesti unimodulaariset matriisit voidaan osoittaa olevan rakennettavissa oleellisesti verkkomalleihin liittyvistä matriiseista (P. D. Seymour, Journal of Combinatorial Theory (B),
LisätiedotGraafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
LisätiedotLineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!
Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotTalousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta
Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
LisätiedotLuento 4: Lineaarisen tehtävän duaali
Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea
LisätiedotUolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2
Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
Lisätiedotax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
LisätiedotAlgoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotIteratiiviset ratkaisumenetelmät
Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LisätiedotKimppu-suodatus-menetelmä
Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotTIEA382 Lineaarinen ja diskreetti optimointi
TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys
LisätiedotHarjoitus 1 (17.3.2015)
Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman
LisätiedotLU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24
LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua
LisätiedotLuento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
Lisätiedot2 Konveksisuus ja ratkaisun olemassaolo
2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan
Lisätiedot2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen
LisätiedotTEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS
1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan
LisätiedotOminaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
LisätiedotTehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.
JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 12.3.2018 Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 297 4 2 4 163 3 454 6 179 2 136 2 169 2 390 4 3 436 7 5 Kuva 1: Tehtävän 1
LisätiedotSekalukuoptimointi. Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, Tietojenkäsittelytieteen laitos Helsingin Yliopisto
Sekalukuoptimointi Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, 2000-10-11 Tietojenkäsittelytieteen laitos Helsingin Yliopisto 1 Tiivistelmä Seminaarin aihe käsittelee globaalin optimoinnin erästä
Lisätiedot1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
Lisätiedot