Kertausta: Hamiltonin periaate

Koko: px
Aloita esitys sivulta:

Download "Kertausta: Hamiltonin periaate"

Transkriptio

1 Maanantai /19 Kertausta: Hamiltonin periaate Hamilton: Kaikkien pisteiden {q 1 } ja {q 2 } välisten mahdollisten ratojen joukosta valikoituu se, jolle (Hamiltonin) vaikutusintegraali I = t2 saa ääriarvon, joko minimin tai maksimin. t 1 L({q i }, { q i }, t)dt Hamiltonin periaatetta kutsutaan joskus nimellä pienimmän vaikutuksen periaatteeksi, mutta tarkempi termi olisi stationaarisen vaikutuksen periaate.

2 Kertausta: Lagrangen yhtälöt Hamiltonin periaatteesta t2 I = L({q(t)}, { q(t)}, t)dt t 1 Varioidaan rataa hieman, s.e. δq j (t 1 ) = δq j (t 2 ) = 0 ja { q j (t) = q j (t) + δq j (t) q j (t) = q j (t) + δ q j (t) Lasketaan sitten variaatio δi = I I t2 δi = t 1 t2 = t 1 j = j t2 L({q(t) + δq(t)}, { q(t) + δ q(t)}, t) [ L q j δq j ( L δq j + L ) δ q j dt q j q j ] t2 t 1 j t2 t 1 ( L q j d dt L q j t 1 L({q(t)}, { q(t)}, t) ) δq j dt Ensimmäinen termi häviää sillä δq j (t 1 ) = δq j (t 2 ) = 0. Etsitään I :n ääriarvoa, eli δi = 0. Koska δq j mv, niin saadaan d L L = 0 j dt q j q j Maanantai /19

3 aanantai /19 Kertausta: Sidosvoimat Lagrangen formalismissa Lagrangen formalismissa sidokset katoavat muunnosyhtälöihin x i = x i ({q j }, t), i = 1,..., n, j = 1,..., n k. Joskus sidosvoimat on tärkeää tuntea. Määritellään k kpl λ α muuttujaa, joita kutsutaan Lagrangen kertoimiksi ja määritellään uusi Lagrangen funktio k L = L({x i }, {ẋ i }, t) + λ αf α({x i }, t) α=1 Käsitellään λ α kuten uusia koordinaatteja. Koska L ei riipu λ α:stä, Lagrangen yhtälöt λ α:lle ovat: L λ α = f α({x i }, t) = 0 (sidosehdot) Toisaalta liikeyhtälöt x i :lle ovat d dt ( L ẋ i ) L x i = k α=1 λ α f α x i Voimme nyt ratkaista nämä yhtälöt kuten teimme Newtonilaisittainkin.

4 aanantai /19 Esimerkki: Massapiste tasaisesti pyörivällä langalla lanka pyörii ω z-akselin ympäri m liikkuu ulospäin ei muita voimia Reonominen sidosehto f (ϕ, t) = ϕ ωt = 0. { x = r cos ϕt y = r sin ϕt L = T = 1 2 m ( ẋ 2 + ẏ 2) + λ (ϕ ωt) = 1 2 m ( ṙ 2 + r 2 ϕ 2) + λ (ϕ ωt) Lagrangen liikeyhtälöiksi tulee (+sidosehto λ:n liikeyhtälöstä): { m r mr ϕ 2 = 0 ( d dt mr 2 ϕ ) = λ Sij. ϕ = ω: { r = rω 2 liikeyhtälö λ = d dt ( mr 2 ω ) sidosvoiman momentti (= Q (s) ϕ )

5 λ = 2mrω 2 r 2 r 2 0 aanantai /19 Esimerkki: Massapiste tasaisesti pyörivällä langalla Ratkaistaan nyt täydellisyyden vuoksi liikeyhtälö sekä sidosvoima siinä tapauksessa, että liike lähtee levosta. Alkuehdot r(t = 0) = r 0 ja ṙ(t = 0) = 0. { r = rω 2 liikeyhtälö λ = d dt ( mr 2 ω ) sidosvoiman momentti (= Q (s) ϕ ) ṙ r = 1 d 2 dt ṙ 2 = rṙω 2 = 1 d r 2 dt r 2 ω 2 ṙ 2 = ω 2 (r 2 r0 2 ) ωt = r 0 λ = 2mrṙω dr r 2 r0 2 ( ) r = arcosh r 0 Lopullinen ratkaisu on siis: { r = r0 cosh ωt

6 aanantai /19 Esimerkki: Pyykkinaru Ratkaistaan seuraava ongelma. Mikä on riippuvan pyykkinarun muoto? Narun pituus D on vakio (δd = 0) ja ripustuspisteiden etäisyys on 2a D. Stationaarinen tilanne, joten Lagrangen funktio on L = U λρg δd = E λρg δd Narunpätkälle de = du = gydm = gyρds = gyρ 1 + y (x) 2 dx, missä narun massatiheys ρ (kg/m). (a,y1 ) a E = gyρds = gρ y (a,y1 ) a 1 + y 2 dx, D = ds = 1 + y 2 dx = vakio ( a,y 1 ) a ( a,y 1 ) a Etsitään siis integraalin ääriarvo. Euler: a I = ρg (y + λ) 1 + y 2 dx a ( ) d f dx y f x = 0, f = (y + λ) 1 + y 2 (y + λ) y = 1 + y 2

7 Maanantai /19 Esimerkki: Pyykkinaru Pyöritellään vähän tätä differentiaaliyhtälöä: Eli saamme suoraan integroitua: (y + λ) y = 1 + y 2 2y y 1 + y 2 = 2y y + λ d dx log(1 + y 2 ) = 2y y 2y = 1 + y 2 y + λ = d log(y + λ)2 dx log(1 + y 2 ) = log(y + λ) 2 + log C dy dx = C(y + λ) 2 1 Reunaehdot, valitaan y(0) = 0 ja symmetrian vuoksi dy(0)/dx = 0 Cλ 2 = 1. a x = 0 dy 1+a/λ (1 + y/λ) 2 1 = λ 1 du = λ arcosh(1 + y/λ) u 2 1

8 Maanantai /19 Esimerkki: Pyykkinaru Ratkaisu siis on entuudestaan tuttu: y ( x ) λ = cosh 1 λ Mutta mikä olikaan λ? Derivoidaan ensin ratkaisua: Ja narun pituus on siis: dy ( x ) dx = sinh λ ds dx = ketjukäyrä 1 + sinh 2 x λ = cosh x λ a/λ D = cosh u du = 2λ sinh a a/λ λ = 2a + λ ( a ) 3 ( a ) 4 + O 3 λ λ josta voidaan (periaatteessa) ratkaista λ = λ(a, D). Muistetaan vielä lähtökohta δe + λρgδd = 0: Jännitys = λρg Huomaa, että kun λ, niin 2a D.

9 Maanantai /19 Kanoniset impulssit Aluksi hieman terminologiaa liikemäärä (momentum) liikemäärämomentti (myös impulssimomentti, angular momentum) kanoninen impulssi (canonical momentum) Määritellään kanoniset impulssit Lagrangen yhtälöissä siis d dt p i = L q i ( L q i ) = ṗ i, joten ṗ i = L q i Esim. massapiste konservatiivisessa kentässä karteesisille koordinaateille L = 1 2 m(ẋ2 + ẏ 2 + ż 2 ) U(x, y, z): p x = L L L = mẋ ; py = = mẏ ; pz = ẋ ẏ ż = mż keskeisliike ratatason napakoordinaateissa L = 1 2 m(ṙ 2 + r 2 ϕ 2 ) U(r): p r = L ṙ = mṙ ; pϕ = L ϕ = mr 2 ϕ = ( r m v) z = l z

10 Maanantai /19 Kanoniset impulssit SM-kentässä Muista, SM-kenttä annetaan potentiaaliensa avulla: { E = Φ A t B = A ( Hitun potentiaalifunktio on tällöin U( r, v) = q Φ v A ) ja L = 1 2 m(ẋ2 + ẏ 2 + ż 2 ) + q (ẋa x + ẏa y + ża z ) qφ Kanoniset impulssit ovat siis ( A ja Φ eivät riipu nopeudesta) p x = L = mẋ + qax, py = mẏ + qay, pz = mż + qaz ẋ Tärkeä tulos! Sähkömagneettisella kentällä on itsessään liikemäärää, joka pitää ottaa huomioon Newtonin lakeja sovellettaessa.

11 aanantai /19 Muistutus: Sykliset koordinaatit Jos yleisessä tilanteessa tilanne on se, että L = L(q 1, q 2,..., q i 1, q i+1,..., q n k, { q j }, t) toisin sanoen Lagrangen funktio ei riipu yleistetystä koordinaatista q i, kutsutaan puuttuvaa koordinaattia sykliseksi. L = 0 LY : ṗ i = L = 0 q i q i Syklisen koordinaatin kanoninen impulssi on liikevakio (säilyvä suure). Muista Noetherin teoreemasta: systeemin invarianssi muunnoksessa tai systeemissä vallitseva symmetria johtaa säilymislakiin.

12 Maanantai /19 Esimerkki: vapaa hitu Tarkastellaan vapaata hiukkasta L = 1 2 m v 2 = 1 2 m(ẋ2 + ẏ 2 + ż 2 ). Lagrangen funktiolla on translaatioinvarianssi: L säilyy siirroksissa r r + a, missä a on vakio. Kaikki karteesiset koordinaatit syklisiä: L x = L y = L = 0. Vastaavat z kanoniset impulssit p i = mẋ i ovat liikevakioita. Huom. sylinterikoordinaateissa L = 1 2 m(ṙ 2 + r 2 ϕ 2 + ż 2 ) vain ϕ ja z syklisiä. p ϕ = mr 2 ϕ ja p z = mż liikevakioita, mutta p r = mṙ noudataa yhtälöä ṗ r = L r = mr ϕ2 = p2 ϕ mr 3 Syklisten koordinaattien määrä riippuu siis valitusta koordinaatistosta! Kannattaa etsiä semmoista koordinaatistoa, jossa on mahdollisimman monta syklistä koordinaattia. SYMMETRIAT!

13 aanantai /19 Esimerkki: hitu keskeisvoimakentässä Tarkastellaan seuraavaksi hitua keskeispotentiaalissa. Karteesissa koordinaateissa L = 1 2 m(ẋ2 + ẏ 2 + ż 2 ) U( x 2 + y 2 + z 2 ) on siis varsinaisen huono valinta koordinaattijärjestelmäksi, sillä syklisiä koordinaatteja ei ole! Pallokoordinaateissa (r, ϕ, θ): Tässä siis ϕ on syklinen L = 1 2 m(ṙ 2 + r 2 θ2 + r 2 sin 2 θ ϕ 2 ) U(r) p ϕ = L ϕ = mr 2 sin 2 θ ϕ = L z on liikevakio Voidaan valita ratatasoksi vaikka θ = π/2, niin p ϕ = mr 2 ϕ = l, eli liikemäärämomentin säilymislaki tutummassa muodossa.

14 Maanantai /19 Mekaaninen similariteetti L = L(q, q, t) d dt L q L q = 0 antaa radan Muunnos L = αl antaa saman radan, kun α on vakio. Saamme kuitenkin tietoa liikkeestä rataa integroimatta! Oletetaan, että L = T U, missä U on k:nnen asteen homogeeninen funktio: U(ax 1,..., ax n) = a k U(x 1,..., x n), a vakio Skaalataan koordinaatit ja aika: { x i x i = ax i t t = bt v i ṽ i = a b v i T T ( a ) 2 = T, U Ũ = a k U b Vaaditaan T /Ũ = T /U, jolloin { a k = ( ) a 2 b = a b 1 k/2 L L = a k L

15 Maanantai /19 Esimerkkejä Pienoismalliesimerkki: skaalataan systeemiä pienemmäksi, eli parametrilla joka on a < 1: { l = al t = bt = a 1 k/2 t t t = ) 1 k/2 ( l ja ṽ l v = ) k/2 ( l l Ideana tässä on se, että nähdään millainen vaikutus potentiaalilla U on systeemiin. Potentiaali U = Cx 2 (harmoninen oskillaattori) U(ax) = Ca 2 x 2 = a 2 U(x) k = 2 ) 1 k/2 t ( l = t l = 1 värähdysaika ei riipu amplitudista ) k ) 2 Ẽ ( l = E l = ( l energia verrannollinen amplitudin neliöön l

16 Maanantai /19 Esimerkkejä Potentiaali U = Cr 1 (Keplerin liike) U(ar) = a 1 C/r = a 1 U(r) k = 1 t t = ) 1 k/2 ( l = l ) 3/2 ( l l ) ( t 2 = t ) 3 ( l l Tämä on Keplerin 3. laki, jos t, t ovat kiertoaikoja sekä l, l isoakselien puolikkaita! Klassinen esimerkki Lagrangen formalismin vahvuudesta: ei edes vaadittu mitään (kunnon) laskuja. Potentiaali U = Cz (hitu homogeenisessa painovoimakentässä) U(az) = au(z) k = 1 t t = ) 1 k/2 ( l l = l l Eli heilurin periodi on verrannollinen varren pituuden neliöjuureen.

17 aanantai /19 Dimensioanalyysiä Edellä olevissa esimerkeissä saatiin selville muuttujien väliset riippuvuussuhteet. Voimme menetellä myös toiseen suuntaan. Jos keksimme oikeat muuttujat, joilla saisimme selville selvitettävän suureen, jäisi jäljelle vain skaalausvakion a selvittäminen (kokeellisesti). Tätä menetelmää kutsutaan dimensioanalyysiksi ja tarkastellaan muutamia esimerkkejä. Esimerkkinä arvioidaan ilmakehässä räjähtävän ydinpommin energiaa. Oletetaan, että räjähdys on pistemäinen ja, että paineaallon säteeseen vaikuttavat muuttujat E, ρ, t. Oletetaan similaarisuus, eli r = C E a t b ρ c (C dimensioton luku) Valitaan perusyksiköt [r] = L ; [t] = T ; [m] = M [E] = ML2 T 2 ; [ρ] = M L 3 L = [r] = [E] a [t] b [ρ] c = M a+b L 2a 3c T 2a+b a + b = 0 a = 1/5 2a 3c = 1 b = 2/5 2a + b = 0 c = 1/5 r = C E 1/5 t 2/5 ρ 1/5

18 Dimensioanalyysiä Kuuluisa esimerkki, kun G.I.Taylor dimensioanalyysillä selvitti Yhdysvaltojen suurimman atomisalaisuuden vuonna Taylor arvioi shokkifysiikasta C 1. Ilman tiheys korkeudella 1, 4km (Alamogordo, New Mexico) on n. ρ 1, 3kg/m 3. Kuvasta säde r = 39m ajan hetkellä t = 1.22ms, jolloin saamme E = r 5 ρ/t 2 7, J, oikein! (Vrt. Trinity test, esim. wikipedia: 84 TJ) Maanantai /19

19 Maanantai /19 Soutuveneen nopeus soutajien funktiona Seuraava esimerkki on myöskin klassinen: kuinka soutuveneen nopeus muuttuu soutajien lukumäärän mukaan? Soutuveneeseen kohdistuu neliöllinen kitkavoima, joka on verrannollinen vedessä olevan veneen keulan poikkipinta-alaan F kitka v 2 A Teho, joka tarvitaan tämän voittamiseen skaalautuu kuten P F kitka v v 3 A Arkhimedeen lain mukaan syrjäytetyn veden tilavuus on lineaarisesti verrannollinen soutajien lukumäärään V N. Eli vedenpinnan alla oleva tilavuus V N ja siis pinta-ala A N 2/3. Oletetaan lisäksi, että jokaisen soutajan tuoma lisäteho on sama: P N. P N N 2/3 v 3 v N 1/9 Hienosti sopusoinnussa esim. olympiasoutujen kanssa.

Kertausta: Vapausasteet

Kertausta: Vapausasteet Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti

Lisätiedot

Hamiltonin formalismia

Hamiltonin formalismia Perjantai 3.10.2014 1/20 Hamiltonin formalismia Olemme valmiit siirtymään seuraavalle tasolle klassisen mekaniikan formalismissa, jonka aloitti Hamilton n. 1830. Emme käytä tätä formalismia minkään vaikeamman

Lisätiedot

Kitkavoimat. Ol. N massapisteen systeemi ja suoraan nopeuteen verrannollinen kitkavoima: k x v 2. i,x + ky v 2. i,y + kz v 2. vi F = i. r i.

Kitkavoimat. Ol. N massapisteen systeemi ja suoraan nopeuteen verrannollinen kitkavoima: k x v 2. i,x + ky v 2. i,y + kz v 2. vi F = i. r i. Kitkavoimat Ol. N massapisteen systeemi ja suoraan nopeuteen verrannollinen kitkavoima: F (f ) i = k x v i,x ê x k y v i,y ê y k z v i,z ê z Otetaan käyttöön Rayleigh n dissipaatiofunktio N F = 1 2 i=1

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

Useita oskillaattoreita yleinen tarkastelu

Useita oskillaattoreita yleinen tarkastelu Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää

Lisätiedot

Analyyttinen mekaniikka

Analyyttinen mekaniikka Maanantai 1.9.2014 1/17 Analyyttinen mekaniikka Luennoitsija: Niko Jokela Syyslukukausi 2014 4h/vko luentoja+2h/vko harjoituksia Maanantai 1.9.2014 2/17 Yleistä Luennot ma & to klo 10-12 (E204) sekä viikoilla

Lisätiedot

Klassisen mekaniikan historiasta

Klassisen mekaniikan historiasta Torstai 4.9.2014 1/18 Klassisen mekaniikan historiasta Nikolaus Kopernikus (puolalainen pappi 1473-1543): aurinkokeskeinen maailmankuva Johannes Kepler (saksalainen tähtitieteilijä 1571-1630): planeettojen

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

53714 Klassinen mekaniikka syyslukukausi 2010

53714 Klassinen mekaniikka syyslukukausi 2010 53714 Klassinen mekaniikka syyslukukausi 2010 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset:

Lisätiedot

Hamiltonin-Jacobin teoriaa

Hamiltonin-Jacobin teoriaa Perjantai 10.10.2014 1/21 Hamiltonin-Jacobin teoriaa Tällä viimeisellä luennolla käsittelemme vielä uuden näkökulman klassiseen mekaniikkaan, joka kulkee nimellä Hamiltonin-Jacobin teoria. Aloitetaan Hamiltonin

Lisätiedot

Esimerkki 1 Ratkaise differentiaaliyhtälö

Esimerkki 1 Ratkaise differentiaaliyhtälö Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 17 Varatun hiukkasen liike SM-kentässä Tarkastellaan tässä luvussa varatun hiukkasen liikettä sähkömagneettisessa kentässä. Asiaa on käsitelty RMC:n luvussa 14 ja CL käsittelee Hamiltonin formalismia

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

ANALYYTTINEN MEKANIIKKA

ANALYYTTINEN MEKANIIKKA ANALYYTTINEN MEKANIIKKA 763310A Erkki Thuneberg Fysiikan laitos Oulun yliopisto 2016 Järjestelyjä Kurssin verkkosivu on https://noppa.oulu.fi/noppa/kurssi/763310a Verkkosivulta löytyy luentomateriaali

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0 6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun

Lisätiedot

Luento 4: kertaus edelliseltä luennolta

Luento 4: kertaus edelliseltä luennolta Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Epähomogeenisen yhtälön ratkaisu

Epähomogeenisen yhtälön ratkaisu Epähomogeenisen yhtälön ratkaisu Lause Olkoot a = a(x), b = b(x) ja f = f(x) jatkuvia funktioita välillä I R ja olkoot y 1 = y 1 (x) ja y 2 = y 2 (x) eräs homogeeniyhtälön y + a(x)y + b(x)y = 0 ratkaisujen

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =

Lisätiedot

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G: 7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Liikemäärän ja liikemäärän momentin tase. Hyrräyhtälöt. Liikeyhtälöiden muodostaminen. Lagrangen formalismi:

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Suhteellisuusteorian perusteet, harjoitus 6

Suhteellisuusteorian perusteet, harjoitus 6 Suhteellisuusteorian perusteet, harjoitus 6 May 5, 7 Tehtävä a) Valo kulkee nollageodeettia pitkin eli valolle pätee ds. Lisäksi oletetaan valon kulkevan radiaalisesti, jolloin dω. Näin ollen, kun K, saadaan

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

8. Klassinen ideaalikaasu

8. Klassinen ideaalikaasu Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Määritelmiä: yleistetyt koordinaatit, virtuaaliset siirtymät Liike-energian lausekkeita erilaisille

Lisätiedot

y + 4y = 0 (1) λ = 0

y + 4y = 0 (1) λ = 0 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Keskeisliikkeen liikeyhtälö

Keskeisliikkeen liikeyhtälö Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+

Lisätiedot

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit 9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).

Lisätiedot

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R. Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

k = 1,...,r. L(x 1 (t), x

k = 1,...,r. L(x 1 (t), x Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot