Kertausta: Hamiltonin periaate
|
|
- Maija-Liisa Lehtilä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Maanantai /19 Kertausta: Hamiltonin periaate Hamilton: Kaikkien pisteiden {q 1 } ja {q 2 } välisten mahdollisten ratojen joukosta valikoituu se, jolle (Hamiltonin) vaikutusintegraali I = t2 saa ääriarvon, joko minimin tai maksimin. t 1 L({q i }, { q i }, t)dt Hamiltonin periaatetta kutsutaan joskus nimellä pienimmän vaikutuksen periaatteeksi, mutta tarkempi termi olisi stationaarisen vaikutuksen periaate.
2 Kertausta: Lagrangen yhtälöt Hamiltonin periaatteesta t2 I = L({q(t)}, { q(t)}, t)dt t 1 Varioidaan rataa hieman, s.e. δq j (t 1 ) = δq j (t 2 ) = 0 ja { q j (t) = q j (t) + δq j (t) q j (t) = q j (t) + δ q j (t) Lasketaan sitten variaatio δi = I I t2 δi = t 1 t2 = t 1 j = j t2 L({q(t) + δq(t)}, { q(t) + δ q(t)}, t) [ L q j δq j ( L δq j + L ) δ q j dt q j q j ] t2 t 1 j t2 t 1 ( L q j d dt L q j t 1 L({q(t)}, { q(t)}, t) ) δq j dt Ensimmäinen termi häviää sillä δq j (t 1 ) = δq j (t 2 ) = 0. Etsitään I :n ääriarvoa, eli δi = 0. Koska δq j mv, niin saadaan d L L = 0 j dt q j q j Maanantai /19
3 aanantai /19 Kertausta: Sidosvoimat Lagrangen formalismissa Lagrangen formalismissa sidokset katoavat muunnosyhtälöihin x i = x i ({q j }, t), i = 1,..., n, j = 1,..., n k. Joskus sidosvoimat on tärkeää tuntea. Määritellään k kpl λ α muuttujaa, joita kutsutaan Lagrangen kertoimiksi ja määritellään uusi Lagrangen funktio k L = L({x i }, {ẋ i }, t) + λ αf α({x i }, t) α=1 Käsitellään λ α kuten uusia koordinaatteja. Koska L ei riipu λ α:stä, Lagrangen yhtälöt λ α:lle ovat: L λ α = f α({x i }, t) = 0 (sidosehdot) Toisaalta liikeyhtälöt x i :lle ovat d dt ( L ẋ i ) L x i = k α=1 λ α f α x i Voimme nyt ratkaista nämä yhtälöt kuten teimme Newtonilaisittainkin.
4 aanantai /19 Esimerkki: Massapiste tasaisesti pyörivällä langalla lanka pyörii ω z-akselin ympäri m liikkuu ulospäin ei muita voimia Reonominen sidosehto f (ϕ, t) = ϕ ωt = 0. { x = r cos ϕt y = r sin ϕt L = T = 1 2 m ( ẋ 2 + ẏ 2) + λ (ϕ ωt) = 1 2 m ( ṙ 2 + r 2 ϕ 2) + λ (ϕ ωt) Lagrangen liikeyhtälöiksi tulee (+sidosehto λ:n liikeyhtälöstä): { m r mr ϕ 2 = 0 ( d dt mr 2 ϕ ) = λ Sij. ϕ = ω: { r = rω 2 liikeyhtälö λ = d dt ( mr 2 ω ) sidosvoiman momentti (= Q (s) ϕ )
5 λ = 2mrω 2 r 2 r 2 0 aanantai /19 Esimerkki: Massapiste tasaisesti pyörivällä langalla Ratkaistaan nyt täydellisyyden vuoksi liikeyhtälö sekä sidosvoima siinä tapauksessa, että liike lähtee levosta. Alkuehdot r(t = 0) = r 0 ja ṙ(t = 0) = 0. { r = rω 2 liikeyhtälö λ = d dt ( mr 2 ω ) sidosvoiman momentti (= Q (s) ϕ ) ṙ r = 1 d 2 dt ṙ 2 = rṙω 2 = 1 d r 2 dt r 2 ω 2 ṙ 2 = ω 2 (r 2 r0 2 ) ωt = r 0 λ = 2mrṙω dr r 2 r0 2 ( ) r = arcosh r 0 Lopullinen ratkaisu on siis: { r = r0 cosh ωt
6 aanantai /19 Esimerkki: Pyykkinaru Ratkaistaan seuraava ongelma. Mikä on riippuvan pyykkinarun muoto? Narun pituus D on vakio (δd = 0) ja ripustuspisteiden etäisyys on 2a D. Stationaarinen tilanne, joten Lagrangen funktio on L = U λρg δd = E λρg δd Narunpätkälle de = du = gydm = gyρds = gyρ 1 + y (x) 2 dx, missä narun massatiheys ρ (kg/m). (a,y1 ) a E = gyρds = gρ y (a,y1 ) a 1 + y 2 dx, D = ds = 1 + y 2 dx = vakio ( a,y 1 ) a ( a,y 1 ) a Etsitään siis integraalin ääriarvo. Euler: a I = ρg (y + λ) 1 + y 2 dx a ( ) d f dx y f x = 0, f = (y + λ) 1 + y 2 (y + λ) y = 1 + y 2
7 Maanantai /19 Esimerkki: Pyykkinaru Pyöritellään vähän tätä differentiaaliyhtälöä: Eli saamme suoraan integroitua: (y + λ) y = 1 + y 2 2y y 1 + y 2 = 2y y + λ d dx log(1 + y 2 ) = 2y y 2y = 1 + y 2 y + λ = d log(y + λ)2 dx log(1 + y 2 ) = log(y + λ) 2 + log C dy dx = C(y + λ) 2 1 Reunaehdot, valitaan y(0) = 0 ja symmetrian vuoksi dy(0)/dx = 0 Cλ 2 = 1. a x = 0 dy 1+a/λ (1 + y/λ) 2 1 = λ 1 du = λ arcosh(1 + y/λ) u 2 1
8 Maanantai /19 Esimerkki: Pyykkinaru Ratkaisu siis on entuudestaan tuttu: y ( x ) λ = cosh 1 λ Mutta mikä olikaan λ? Derivoidaan ensin ratkaisua: Ja narun pituus on siis: dy ( x ) dx = sinh λ ds dx = ketjukäyrä 1 + sinh 2 x λ = cosh x λ a/λ D = cosh u du = 2λ sinh a a/λ λ = 2a + λ ( a ) 3 ( a ) 4 + O 3 λ λ josta voidaan (periaatteessa) ratkaista λ = λ(a, D). Muistetaan vielä lähtökohta δe + λρgδd = 0: Jännitys = λρg Huomaa, että kun λ, niin 2a D.
9 Maanantai /19 Kanoniset impulssit Aluksi hieman terminologiaa liikemäärä (momentum) liikemäärämomentti (myös impulssimomentti, angular momentum) kanoninen impulssi (canonical momentum) Määritellään kanoniset impulssit Lagrangen yhtälöissä siis d dt p i = L q i ( L q i ) = ṗ i, joten ṗ i = L q i Esim. massapiste konservatiivisessa kentässä karteesisille koordinaateille L = 1 2 m(ẋ2 + ẏ 2 + ż 2 ) U(x, y, z): p x = L L L = mẋ ; py = = mẏ ; pz = ẋ ẏ ż = mż keskeisliike ratatason napakoordinaateissa L = 1 2 m(ṙ 2 + r 2 ϕ 2 ) U(r): p r = L ṙ = mṙ ; pϕ = L ϕ = mr 2 ϕ = ( r m v) z = l z
10 Maanantai /19 Kanoniset impulssit SM-kentässä Muista, SM-kenttä annetaan potentiaaliensa avulla: { E = Φ A t B = A ( Hitun potentiaalifunktio on tällöin U( r, v) = q Φ v A ) ja L = 1 2 m(ẋ2 + ẏ 2 + ż 2 ) + q (ẋa x + ẏa y + ża z ) qφ Kanoniset impulssit ovat siis ( A ja Φ eivät riipu nopeudesta) p x = L = mẋ + qax, py = mẏ + qay, pz = mż + qaz ẋ Tärkeä tulos! Sähkömagneettisella kentällä on itsessään liikemäärää, joka pitää ottaa huomioon Newtonin lakeja sovellettaessa.
11 aanantai /19 Muistutus: Sykliset koordinaatit Jos yleisessä tilanteessa tilanne on se, että L = L(q 1, q 2,..., q i 1, q i+1,..., q n k, { q j }, t) toisin sanoen Lagrangen funktio ei riipu yleistetystä koordinaatista q i, kutsutaan puuttuvaa koordinaattia sykliseksi. L = 0 LY : ṗ i = L = 0 q i q i Syklisen koordinaatin kanoninen impulssi on liikevakio (säilyvä suure). Muista Noetherin teoreemasta: systeemin invarianssi muunnoksessa tai systeemissä vallitseva symmetria johtaa säilymislakiin.
12 Maanantai /19 Esimerkki: vapaa hitu Tarkastellaan vapaata hiukkasta L = 1 2 m v 2 = 1 2 m(ẋ2 + ẏ 2 + ż 2 ). Lagrangen funktiolla on translaatioinvarianssi: L säilyy siirroksissa r r + a, missä a on vakio. Kaikki karteesiset koordinaatit syklisiä: L x = L y = L = 0. Vastaavat z kanoniset impulssit p i = mẋ i ovat liikevakioita. Huom. sylinterikoordinaateissa L = 1 2 m(ṙ 2 + r 2 ϕ 2 + ż 2 ) vain ϕ ja z syklisiä. p ϕ = mr 2 ϕ ja p z = mż liikevakioita, mutta p r = mṙ noudataa yhtälöä ṗ r = L r = mr ϕ2 = p2 ϕ mr 3 Syklisten koordinaattien määrä riippuu siis valitusta koordinaatistosta! Kannattaa etsiä semmoista koordinaatistoa, jossa on mahdollisimman monta syklistä koordinaattia. SYMMETRIAT!
13 aanantai /19 Esimerkki: hitu keskeisvoimakentässä Tarkastellaan seuraavaksi hitua keskeispotentiaalissa. Karteesissa koordinaateissa L = 1 2 m(ẋ2 + ẏ 2 + ż 2 ) U( x 2 + y 2 + z 2 ) on siis varsinaisen huono valinta koordinaattijärjestelmäksi, sillä syklisiä koordinaatteja ei ole! Pallokoordinaateissa (r, ϕ, θ): Tässä siis ϕ on syklinen L = 1 2 m(ṙ 2 + r 2 θ2 + r 2 sin 2 θ ϕ 2 ) U(r) p ϕ = L ϕ = mr 2 sin 2 θ ϕ = L z on liikevakio Voidaan valita ratatasoksi vaikka θ = π/2, niin p ϕ = mr 2 ϕ = l, eli liikemäärämomentin säilymislaki tutummassa muodossa.
14 Maanantai /19 Mekaaninen similariteetti L = L(q, q, t) d dt L q L q = 0 antaa radan Muunnos L = αl antaa saman radan, kun α on vakio. Saamme kuitenkin tietoa liikkeestä rataa integroimatta! Oletetaan, että L = T U, missä U on k:nnen asteen homogeeninen funktio: U(ax 1,..., ax n) = a k U(x 1,..., x n), a vakio Skaalataan koordinaatit ja aika: { x i x i = ax i t t = bt v i ṽ i = a b v i T T ( a ) 2 = T, U Ũ = a k U b Vaaditaan T /Ũ = T /U, jolloin { a k = ( ) a 2 b = a b 1 k/2 L L = a k L
15 Maanantai /19 Esimerkkejä Pienoismalliesimerkki: skaalataan systeemiä pienemmäksi, eli parametrilla joka on a < 1: { l = al t = bt = a 1 k/2 t t t = ) 1 k/2 ( l ja ṽ l v = ) k/2 ( l l Ideana tässä on se, että nähdään millainen vaikutus potentiaalilla U on systeemiin. Potentiaali U = Cx 2 (harmoninen oskillaattori) U(ax) = Ca 2 x 2 = a 2 U(x) k = 2 ) 1 k/2 t ( l = t l = 1 värähdysaika ei riipu amplitudista ) k ) 2 Ẽ ( l = E l = ( l energia verrannollinen amplitudin neliöön l
16 Maanantai /19 Esimerkkejä Potentiaali U = Cr 1 (Keplerin liike) U(ar) = a 1 C/r = a 1 U(r) k = 1 t t = ) 1 k/2 ( l = l ) 3/2 ( l l ) ( t 2 = t ) 3 ( l l Tämä on Keplerin 3. laki, jos t, t ovat kiertoaikoja sekä l, l isoakselien puolikkaita! Klassinen esimerkki Lagrangen formalismin vahvuudesta: ei edes vaadittu mitään (kunnon) laskuja. Potentiaali U = Cz (hitu homogeenisessa painovoimakentässä) U(az) = au(z) k = 1 t t = ) 1 k/2 ( l l = l l Eli heilurin periodi on verrannollinen varren pituuden neliöjuureen.
17 aanantai /19 Dimensioanalyysiä Edellä olevissa esimerkeissä saatiin selville muuttujien väliset riippuvuussuhteet. Voimme menetellä myös toiseen suuntaan. Jos keksimme oikeat muuttujat, joilla saisimme selville selvitettävän suureen, jäisi jäljelle vain skaalausvakion a selvittäminen (kokeellisesti). Tätä menetelmää kutsutaan dimensioanalyysiksi ja tarkastellaan muutamia esimerkkejä. Esimerkkinä arvioidaan ilmakehässä räjähtävän ydinpommin energiaa. Oletetaan, että räjähdys on pistemäinen ja, että paineaallon säteeseen vaikuttavat muuttujat E, ρ, t. Oletetaan similaarisuus, eli r = C E a t b ρ c (C dimensioton luku) Valitaan perusyksiköt [r] = L ; [t] = T ; [m] = M [E] = ML2 T 2 ; [ρ] = M L 3 L = [r] = [E] a [t] b [ρ] c = M a+b L 2a 3c T 2a+b a + b = 0 a = 1/5 2a 3c = 1 b = 2/5 2a + b = 0 c = 1/5 r = C E 1/5 t 2/5 ρ 1/5
18 Dimensioanalyysiä Kuuluisa esimerkki, kun G.I.Taylor dimensioanalyysillä selvitti Yhdysvaltojen suurimman atomisalaisuuden vuonna Taylor arvioi shokkifysiikasta C 1. Ilman tiheys korkeudella 1, 4km (Alamogordo, New Mexico) on n. ρ 1, 3kg/m 3. Kuvasta säde r = 39m ajan hetkellä t = 1.22ms, jolloin saamme E = r 5 ρ/t 2 7, J, oikein! (Vrt. Trinity test, esim. wikipedia: 84 TJ) Maanantai /19
19 Maanantai /19 Soutuveneen nopeus soutajien funktiona Seuraava esimerkki on myöskin klassinen: kuinka soutuveneen nopeus muuttuu soutajien lukumäärän mukaan? Soutuveneeseen kohdistuu neliöllinen kitkavoima, joka on verrannollinen vedessä olevan veneen keulan poikkipinta-alaan F kitka v 2 A Teho, joka tarvitaan tämän voittamiseen skaalautuu kuten P F kitka v v 3 A Arkhimedeen lain mukaan syrjäytetyn veden tilavuus on lineaarisesti verrannollinen soutajien lukumäärään V N. Eli vedenpinnan alla oleva tilavuus V N ja siis pinta-ala A N 2/3. Oletetaan lisäksi, että jokaisen soutajan tuoma lisäteho on sama: P N. P N N 2/3 v 3 v N 1/9 Hienosti sopusoinnussa esim. olympiasoutujen kanssa.
Kertausta: Vapausasteet
Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti
Hamiltonin formalismia
Perjantai 3.10.2014 1/20 Hamiltonin formalismia Olemme valmiit siirtymään seuraavalle tasolle klassisen mekaniikan formalismissa, jonka aloitti Hamilton n. 1830. Emme käytä tätä formalismia minkään vaikeamman
Kitkavoimat. Ol. N massapisteen systeemi ja suoraan nopeuteen verrannollinen kitkavoima: k x v 2. i,x + ky v 2. i,y + kz v 2. vi F = i. r i.
Kitkavoimat Ol. N massapisteen systeemi ja suoraan nopeuteen verrannollinen kitkavoima: F (f ) i = k x v i,x ê x k y v i,y ê y k z v i,z ê z Otetaan käyttöön Rayleigh n dissipaatiofunktio N F = 1 2 i=1
Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
Useita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
Analyyttinen mekaniikka
Maanantai 1.9.2014 1/17 Analyyttinen mekaniikka Luennoitsija: Niko Jokela Syyslukukausi 2014 4h/vko luentoja+2h/vko harjoituksia Maanantai 1.9.2014 2/17 Yleistä Luennot ma & to klo 10-12 (E204) sekä viikoilla
Klassisen mekaniikan historiasta
Torstai 4.9.2014 1/18 Klassisen mekaniikan historiasta Nikolaus Kopernikus (puolalainen pappi 1473-1543): aurinkokeskeinen maailmankuva Johannes Kepler (saksalainen tähtitieteilijä 1571-1630): planeettojen
5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
Ei-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
Varatun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
Varatun hiukkasen liike
Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
53714 Klassinen mekaniikka syyslukukausi 2010
53714 Klassinen mekaniikka syyslukukausi 2010 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset:
Hamiltonin-Jacobin teoriaa
Perjantai 10.10.2014 1/21 Hamiltonin-Jacobin teoriaa Tällä viimeisellä luennolla käsittelemme vielä uuden näkökulman klassiseen mekaniikkaan, joka kulkee nimellä Hamiltonin-Jacobin teoria. Aloitetaan Hamiltonin
Esimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
Varatun hiukkasen liike
Luku 17 Varatun hiukkasen liike SM-kentässä Tarkastellaan tässä luvussa varatun hiukkasen liikettä sähkömagneettisessa kentässä. Asiaa on käsitelty RMC:n luvussa 14 ja CL käsittelee Hamiltonin formalismia
Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
ANALYYTTINEN MEKANIIKKA
ANALYYTTINEN MEKANIIKKA 763310A Erkki Thuneberg Fysiikan laitos Oulun yliopisto 2016 Järjestelyjä Kurssin verkkosivu on https://noppa.oulu.fi/noppa/kurssi/763310a Verkkosivulta löytyy luentomateriaali
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!
Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /
Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Tampere University of Technology
Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö
a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0
6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun
Luento 4: kertaus edelliseltä luennolta
Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ
2.7.4 Numeerinen esimerkki
2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot
BM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.
Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,
Liikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Epähomogeenisen yhtälön ratkaisu
Epähomogeenisen yhtälön ratkaisu Lause Olkoot a = a(x), b = b(x) ja f = f(x) jatkuvia funktioita välillä I R ja olkoot y 1 = y 1 (x) ja y 2 = y 2 (x) eräs homogeeniyhtälön y + a(x)y + b(x)y = 0 ratkaisujen
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:
7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1
BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 7 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Liikemäärän ja liikemäärän momentin tase. Hyrräyhtälöt. Liikeyhtälöiden muodostaminen. Lagrangen formalismi:
6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Suhteellisuusteorian perusteet, harjoitus 6
Suhteellisuusteorian perusteet, harjoitus 6 May 5, 7 Tehtävä a) Valo kulkee nollageodeettia pitkin eli valolle pätee ds. Lisäksi oletetaan valon kulkevan radiaalisesti, jolloin dω. Näin ollen, kun K, saadaan
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä
Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen
1.4. VIRIAALITEOREEMA
1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen
Luento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
Luento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 8 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Määritelmiä: yleistetyt koordinaatit, virtuaaliset siirtymät Liike-energian lausekkeita erilaisille
y + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
Keskeisliikkeen liikeyhtälö
Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+
9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit
9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
Luento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta
Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).
(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.
Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L
Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin
l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
k = 1,...,r. L(x 1 (t), x
Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa