k = 1,...,r. L(x 1 (t), x
|
|
- Iivari Korhonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mat Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun t ja t f ovat kiinteitä ja tiedetään reunaehdot y (k) (t ) = y k,, y (k) (t f ) = y k,f, k =,..., r 1 eli yhteensä 2r reunaehtoa. Määritellään uusi r 1 tilamuuttuja x k (t) = y (k 1) (t), k = 1,...,r, jolloin funktionaali on muotoa rajoitusehdolla J(x) = t g(x 1 (t), x 1 (t),...,ẋ r (t), t) dt ẋ k (t) = x k+1 (t), k = 1,...r 1. Ottamalla käyttöön Lagrangen kerroinfunktiot λ k (t) saadaan kirjoitettua täydennetty funktionaali missä J a = t L(x 1 (t), x 1 (t),...,ẋ r (t), λ 1 (t),..., λ r 1 (t), t) dt, r 1 L = g + λ 1 (ẋ 1 x 2 ) λ r 1 (ẋ r 1 x r ) = g + λ k (ẋ k x k+1 ), ja silloin tehtävän Eulerin yhtälöt ovat k=1 L d L =, x k dt ẋ k k = 1,...,r. Kun nyt k {1,...,r 2}, niin silloin L d L = x k+1 dt ẋ k+1 g x k+1 }{{} = λ k d dt [ g ẋ k+1 + λ k+1 = eli Lisäksi pätee eli λ k = d dt [ g ẋ k+1 + λ k+1. (1) L d L = g λ r 1 d g = x r dt ẋ r x r dt ẋ r λ r 1 = d g. (2) dt ẋ r
2 Lähtemällä liikkeelle ensimmäisestä Eulerin yhtälöstä ja käyttämällä kaavoja (1) ja (2) saadaan = L d L x 1 dt ẋ 1 = g d [ g + λ 1 x 1 dt ẋ 1 = g d g + d2 [ g + λ x 1 dt ẋ 1 dt 2 2 ẋ 2 = g d g + d2 g d3 [ g x 1 dt ẋ 1 dt 2 ẋ 2 dt 3 ẋ3 + λ 3 =... = g r + ( 1) k dk g =. x 1 dt k ẋ k k=1 Sijoittamalla y(t):n derivaatat x k (t):den paikalle saadaan r k= ( 1) k dk dt k [ g y (k) ( y (t), ẏ (t),..., dr y (t) dt r, t ) =. 2. Ihmisen hengitysjärjestelmän malli: P(t) V (t) V (t) Keuhkojen ja ilmakehän välinen paine-ero Keuhkojen tilavuuden lisäys tasapainotilasta Ilmavirtaus keuhkoihin Keuhkojen tilayhtälö: P(t) = KV (t) + R V (t), (3) missä KV (t) on rintakehän laajentumista vastustava mekaaninen jousivoima ja R V (t) sisäänulosvirtauksen vastus. Ihmisen hengityselimet toimivat siten, että sisään hengitettäessä kriteeri min J = minimoituu. Reunaehdot ovat ja loppuaika T kiinteä. T { [ V (t) 2 + αp(t) V (t) } dt, α > V () =, V () =, V (T) = VT, V (T) = a) Miten kriteeri J tulee tulkita? Termi [ V (t) 2 pyrkii minimoimaan ilmavirtauksen kiihtyvyyden, jolloin saadaan mahdollisimman tasainen hengitysliike. Termi P(t) V (t) vastaa virtauksen ulkoista tehonkulutusta. Minimoimalla tätä minimoidaan samalla hengitykseen käytetty ulkoinen työ.
3 b) Muodostetaan Eulerin yhtälö: F(t) = V 2 (t) + αp(t) V (t) = V 2 (t) + α[kv (t) + R V (t) V (t) = V 2 (t) + αr V 2 (t) + αkv (t) V (t) F V = αk V, F V = 2αR V + αkv, F V = 2 V. Käyttämällä tehtävän 1 tulosta saadaan Eulerin yhtälö: F V d [ F [ dt V + d2 F dt 2 V =. αk V [ [ d dt 2αR V + αkv + d 2 dt 2 V [ 2 d αkv 2αR V αkv + d [2 V dt dt [ d 2 αrv + V dt 2 = = = V αrv = c1 t + c 2. c) Ratkaistaan Eulerin yhtälö. Olkoon ω = αr. Homogeenisen yhtälön V αrv = ratkaisu on V (t) = c 3 e ωt + c 4 e ωt. Täydelliseen yhtälöön saadaan erikoisratkaisu yritteellä V (t) = At + B, jolloin eli Yhtälön koko ratkaisu on siis αrat αrb = c 1 t + c 2 A = c 1 αr, B = c 2 αr. V (t) = c 1 αr t c 2 αr + c 3e ωt + c 4 e ωt. Miltä ratkaisu näyttää, jos ulkoisen työn tekijä jätetään pois? Olkoon α = ja K = R = V T = T = 1. Tällöin yhtälö on yksinkertaisesti ja sen ratkaisu on V (t) = c 1 t + c 2 V (t) = c 1 t 3 + c 2 t 2 + c 3 t + c 4, eli ratkaisu on kolmannen asteen Hermiten interpolaatiopolynomi, missä vakiot määräytyvät reunaehdoista. Annetuilla lukuarvoilla ja ratkaisukäyrä on esitetty kuvassa 1. V (t) = 2t 3 + 3t 2
4 1.9.8 Keuhkojen tilavuuden lisäys V(t) Aika t Kuva 1: Optimaalinen sisäänhengitys, kun α = ja K = R = V T = T = Etsittävä ekstremaalit funktionaalille min J = 4 [ẋ(t) 1 2 [ẋ(t) dt = 4 F(x, ẋ, t) dt reunaehdoilla x() = ja x(4) = 2. Olkoon mahdollinen taitekohta t 1. Weierstrass-Erdmannin kulmaehtojen mukaan funktioiden Fẋ, F Fẋẋ on oltavia jatkuvia taitekohdassa. Nyt siis funktiot Fẋ = 2 [ ẋ(t) 1 [ ẋ(t) [ẋ(t) 1 2 [ẋ(t) + 1 = 2 [ ẋ(t) 1 [ ẋ(t) + 1 [ ẋ(t) 1 + ẋ(t) + 1 = 4 [ ẋ(t) 1 [ ẋ(t) + 1 ẋ(t) F Fẋẋ = [ ẋ(t) 1 2[ẋ(t) [ẋ(t) 1 [ẋ(t) + 1 ẋ2 (t) = [ ẋ(t) 1 [ ẋ(t) + 1 [ ẋ 2 (t) 1 4ẋ 2 (t) = [ ẋ(t) 1 [ ẋ(t) + 1 [ 3ẋ 2 (t) + 1 ovat jatkuvia, kun taas ẋ (t) on epäjatkuva pisteessä t 1. Olkoon nyt a := lim t t + ẋ(t); 1 b := lim t t ẋ(t); 1 a b. Tavoite on etsiä raja-arvojen a ja b mahdolliset arvot. Ensimmäinen jatkuvuusehto antaa 4(a 1)(a + 1)a = 4(b 1)(b + 1)b = p(a) = p(b), missä p on polynomi. Toinen jatkuvuusehto antaa (a 1)(a + 1)(3a 2 + 1) = (b 1)(b + 1)(3b 2 + 1) = q(a) = q(b),
5 missä q on eräs toinen polynomi. Koska ehdot ovat yhtä aikaa voimassa, pätee myös p(a)q(b) p(b)q(a) =. Kirjoittamalla tämä auki ja ryhmittelemällä tekijöitä saadaan (a 2 1)(b 2 1) [ a(3b 2 + 1) b(3a 2 + 1) =. Voidaan osoittaa, että kaksi mahdollista ratkaisuparia (a, b), joille pätee a b, ovat (a, b) = (1, 1) (a, b) = ( 1, 1). Siis olemme löytäneet ẋ (t 1 ):n molemmanpuoleiset raja-arvot (kaksi eri tapausta). Kirjoitetaan nyt Eulerin yhtälö: d dt F ẋ = Fẋẋ ẋ = [3ẋ 2 1ẍ = jonka ratkaisu on suora x(t) = c 1 t + c 2. Koska ratkaisut ovat jatkuvia paloittain lineaarisia funktioita, joilla on yksi kulma ja joiden derivaatat ovat siis edellä päätellyn mukaisesti ±1, niin on olemassa vain kaksi mahdollista funktiota, jotka toteuttavat Eulerin yhtälön paloittain sekä WE-kulmaehdot: { t, t < x t1 1(t) = t 2, t 1 t 4 Kuvassa 2 on esitetty ratkaisut. { t, t < x 2 (t) = t1 6 t, t 1 t x(t) t Kuva 2: Optimaaliset trajektorit tehtävälle 3, kun trajektorissa saa olla yksi kulma. Mahdolliset kulmapisteet ovat t = 1 ja t = 3.
6 4. Etsittävä ekstremaalit funktionaalille isoperimetrisellä rajoitusehdolla sekä reunaehdoilla J = ẋ 2 (t) dt x 2 (t) dt = 2 x() = x(1) =. Isoperimetrinen rajoite voidaan sisällyttää tehtävään seuraavasti. Olkoon ( t z(t) = ) x 2 (τ) dτ ylimääräinen tilamuuttuja em.tehtävälle, jolloin isoperimetrinen rajoitus vastaa ehtoja Derivoimalla saadaan rajoitus muodossa z() =, z(1) = 2. ż(t) = x 2 (t). Ekvivalentti funktionaali rajoitusten vallitessa on tällöin J a = g a (x, ẋ, z, ż, t) dt = {ẋ 2 (t) + p(t)[x 2 (t) ż(t)} dt, missä p(t) on Lagrangen kerroinfunktio. Muodostamalla Eulerin yhtälöt sekä tilamuuttujalle x(t) että ylimääräiselle tilamuuttujalle z(t) saadaan välttämättömät ehdot ekstremaalille: p(t)x(t) d [2ẋ(t) = dt d dt [ p(t) = Tällöin ratkaisut ovat tunnetusti muotoa ẍ(t) = p(t)x(t), p(t) λ (vakio). x(t) = c 1 e t λ + c 2 e t λ. Vakiot c 1,c 2 ja λ määräytyvät reunaehdoista. Jos olisi λ >, niin silloin reunaehdoista seuraa c 1 = c 2 =, eli x(t), mutta silloin isoperimetrinen rajoite ei voi toteutua. Samoin käy jos λ =. On siis oltava λ <. Olkoon ω = λ. Ratkaisut ovat tällöin muotoa x(t) = c 1 sin(ωt) + c 2 cos(ωt). Reunaehdoista seuraa, että jolloin c 1 sin(ω) =, c 2 =, x(t) = c 1 sin(πnt), n Z\{}.
7 Vakion c 1 kiinnittää isoperimetrinen ehto: x 2 (t) dt = c 2 1 Ekstremaaliehdokkaita ovat siis funktiot sin 2 (πnt) dt = c2 1 2 = 2 c 1 = ±2. x(t) = ±2 sin(πnt), n Z\{}. Laskemalla funktionaalin arvot saadaan J(x(t)) = ẋ 2 (t) dt = 4π 2 n 2 cos 2 (πxt) dt = 2π 2 n 2, joten minimi löytyy, kun x min (t) = ± sin(πt), ja maksimia ei ole olemassa. 5. Funktionaali differentiaaliyhtälörajoituksella J = t F(x, ẋ, t) dt kun x(t ) = x, t f on kiinteä ja x(t f ) vapaa. Tässä siis f(x, ẋ, t) = (4) x : R R n+m, f : R n+m R n+m R R n. Differentiaaliyhtälörajoitteet otetaan mukaan Lagrangen kerroinfunktioiden p 1 (t),...,p n (t) avulla: [ J a = F(x, ẋ, t) + p T (t)f(x, ẋ, t) dt. t Laajennettu funktionaali J a yhtyy alkuperäiseen funktionaaliin J, kun f(x, ẋ, t) =. Varioidaan nyt laajennettua funktionaalia. Huomattavaa on, että Lagrangen kerroinfunktioita tulee myös varioida, ja ne toimivat ylimääräisinä tilamuuttujina (jatkossa puhumme liittotilamuuttujista): δj a (x, δx, p, δp) = Osittaisintegroimalla saadaan t t t ( F ẋ [( F x f ) ( F + pt δx + x ẋ f ) + pt δẋ dt ẋ f ) + pt δẋ + f T δp dt. ẋ = [ F ẋ (x(t f), ẋ(t f ), t f ) + p T f ẋ (x(t f), ẋ(t f ), t f ) δx(t f ) d [ F f + pt δx dt. dt ẋ ẋ Siis δj a = [ F ẋ (x(t f), ẋ(t f ), t f ) + p T f ẋ (x(t f), ẋ(t f ), t f ) δx(t f ) {[( F f ) d ( F f ) + + pt + pt δx + f T δp } dt. x x dt ẋ ẋ t
8 Ekstremaalilla tulee toteutua δj a =, f =. Reunaehdoista riippumatta integraalin tulee aina hävitä, kuten todettua aikaisemmin (katso esimerkiksi harjoitus 5 tehtävä 6). Integraalin alla oleva osa vaaditaan differentiaaliyhtälöjen toteutuessa siis nollaksi: n+m k=1 [( F + p T f ) d ( F + p T f ) δxk =. (5) x k x k dt ẋ k ẋ k Nyt on muistettava, että termit δx 1,...δx n+m eivät ole riippumattomia! Niitä sitoo n kpl rajoitteita (4). Kuitenkin rajoitteiden toteutuessa p k (t) voidaan valita mielivaltaisesti. Valitaan ne siten, että lausekkeessa (5) n kpl δx k :iden kertoimista tulee nolliksi, ja jäljelle jää m kpl mahdollisesti nollasta poikkeavia kertoimia. Jäljelle jäävät muutokset δx k ovat riippumattomia, joten niiden lineaarikombinaation ollessa nolla täytyy myös jäljelle jääneiden kertoimien olla nollia. Silloin kaikkien δx k kertoimien tulee olla nollia. Saadaan n+m kpl differentiaaliyhtälöjä missä F a d F a =, k = 1,...,n + m, x k dt ẋ k F a F(x, ẋ, t) + p T (t)f(x, ẋ, t) on laajennettu kustannusfunktio. Lisäksi tulee toteutua differentiaaliyhtälörajoite ja koska lopputila x(t f ) oli vapaa niin myöskin eli saadaan n + m transversaalisuusehtoa f(x, ẋ, t) =, F ẋ (x (t f ), ẋ (t f ), t f ) + p T f ẋ (x (t f ), ẋ (t f ), t f ) = }{{} =, optimitrajektorilla F a ẋ k (x (t f ), ẋ (t f ), p (t f ), t f ) =, k = 1,...,n + m. Lisäksi vielä alkuehdot x(t ) = x (n + m kpl).
Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään
LisätiedotMat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
Lisätiedot6 Variaatiolaskennan perusteet
6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 9 1. Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,..., N 1 alkuehdolla
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros 1
Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä
Lisätiedot[xk r k ] T Q[x k r k ] + u T k Ru k. }.
Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+
Lisätiedotv AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =
Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB
Lisätiedotmin x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Lisätiedot2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
LisätiedotJos siis ohjausrajoitusta ei olisi, olisi ratkaisu triviaalisti x(s) = y(s). Hamiltonin funktio on. p(0) = p(s) = 0.
Mat-.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 1 1. Olkoon maaston korkeus y(s) derivoituva funktio ja etsitään tien profiilia x(s). Päätösmuuttuja on tien jyrkkyys
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros 11
Mat-.148 Dynaaminen optimointi, mallivastaukset, kierros 11 1. Olkoon tehtaan tuotanto x(t) ajan hetkellä t ja investoitava osuus tuotannosta u(t). Tehdasta kuvaa systeemiyhtälö ẋ(t) = u(t)x(t) x() = c
LisätiedotMS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
Lisätiedot4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
LisätiedotHarjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
Lisätiedoty + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
Lisätiedot1 Perusteita lineaarisista differentiaaliyhtälöistä
1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
Lisätiedotw + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
Lisätiedota(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
Lisätiedotlnx x 1 = = lim x = = lim lim 10 = x x0
BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4
Lisätiedotb 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
LisätiedotEnsimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
Lisätiedot1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotFunktioiden approksimointi ja interpolointi
Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
LisätiedotEsimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).
6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
LisätiedotLUKU 10. Yhdensuuntaissiirto
LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin
LisätiedotFunktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
LisätiedotNumeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43
Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotGeneroivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
Lisätiedotx = ( θ θ ia y = ( ) x.
Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2429 Systeemien Identifiointi 5 harjoituksen ratkaisut Esitetään ensin systeemi tilayhtälömuodossa Tiloiksi valitaan
Lisätiedot4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
LisätiedotLaplace-muunnos: määritelmä
Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin
Lisätiedot3 Toisen kertaluvun lineaariset differentiaaliyhtälöt
3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
LisätiedotLukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
LisätiedotTampere University of Technology
Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
LisätiedotMatematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
Lisätiedot2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko
MS-A0107 - Differentiaali- integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko 1 Tehtävä Etsi seuraavien yhtälöiden yleiset ratkaisut: Ratkaisu: a) y y 2y = 4x, b) y + 4y = sin 3x, c) y + 2y + 5y = e x
LisätiedotFourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
Lisätiedot2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
LisätiedotMapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:
Mapu I Laskuharjoitus 2, tehtävä 1 1. Eräs trigonometrinen ientiteetti on sin2x = 2sinxcosx Derivoimalla yhtälön molemmat puolet x:n suhteen, joha lauseke cos 2x:lle. Ratkaisu: Derivoiaan molemmat puolet,
LisätiedotLukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros 3
Mat-2.48 Dynaaminen optimointi, mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: Kustannusfunktio: J = 2 xt NHx
LisätiedotHarjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista
Lisätiedotx j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu
2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)
LisätiedotKaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
LisätiedotOsittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Lisätiedotx = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
Lisätiedotf (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2
BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
LisätiedotH5 Malliratkaisut - Tehtävä 1
H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa
LisätiedotIntegroimistekniikkaa Integraalifunktio
. Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista
Lisätiedotläheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotLuento 11: Rajoitusehdot. Ulkopistemenetelmät
Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)
Lisätiedot