3.5 Todennäköisyyden laskumenetelmiä
|
|
- Mikko Lahti
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 MAB5: Todennäköisyyden lähtökohdat 3.5 Todennäköisyyden laskumenetelmiä Aloitetaan esimerkillä, joka on sitä sarjaa, mihin ei ole mitään muuta yleispätevää ohjetta kuin että on edettävä järjestelmällisesti usein muistiinpanoja tehden. Esimerkki 8 Laatikossa on 50 valkoista ja 50 mustaa sukkaa. Kuinka monta kertaa joudut ottamaan sukan, jotta voit olla varma siitä, että sinulla on ainakin yksi samanvärinen sukkapari? Otat sukat tietenkin umpimähkään. Kun otat ensimmäisen sukan, sinulla on tasan 50 prosentin todennäköisyys saada valkoinen ja 50 prosentin todennäköisyys saada musta sukka. Ainoa seikka, mikä on varmaa, on se, että saat joko mustan tai valkoisen sukan. Sama juttu, kun otat toisen sukan. Kahden sukan jälkeen et voi olla varma, että sinulla on pari. Sait ehkä yhden mustan ja yhden valkoisen sukan. Mutta kun otat kolmannen sukan, saat joko valkoisen tai mustan. Huonoimmassakin tapauksessa sinulla on kahden noston jälkeen sekä valkoinen että musta sukka. Koska kolmas on toinen näistä, saat parin täyteen. Minimi on siis kolme kertaa. Seuraavan esimerkin periaatetta tarvitaan jatkossa. Esimerkki 9 Kuinka monella eri tavalla,,, ja voidaan järjestää jonoon? Jonon ensimmäistä henkilöä päätettäessä valittavana on viisi henkilöä. Kun ensimmäinen on valittu, jäljellä on neljä henkeä, joista valitaan jonossa toisena oleva. Jos siis ensimmäiseksi valittiin, toiseksi voidaan valita joko,, tai. Tai jos ensimmäiseksi valittiin, toiseksi voidaan valita joko,, tai. Muodostetaan asiasta kaavio. Jos niin toka on eka on 1(9)
2 Siis kun on valittu ekaksi, tokaksi voidaan valita neljä muuta ja kun a on valittu ekaksi, niin tokaksi on taas neljä vaihtoehtoa. Kaksi ensimmäistä voidaan siis valita eli viisi kertaa neljällä eri tavalla. Samalla tavalla jatkamalla saadaan tulokseksi, että viisi henkilöä (tai viisi erilaista kirjaa tai kotieläintä tai melkein mitä tahansa muuta) voidaan valita = 10 eri tavalla. Huomaa kaavion käyttö. Se on usein havainnollinen tapa jäsentää tilanne. Yleisesti n erilaista alkiota voidaan valita n ( n 1) ( n ) ( n 3)... 1 eri tavalla. Tällaista tuloa sanotaan n -kertomaksi. Sitä merkitään huutomerkillä ja sen englanninkielinen nimi on factorial. Tällä kurssilla kertoma-funktiota käytetään vain luonnollisten lukujen kanssa. Monissa laskimissa on kertoma-funktio. n-kertoma = ( n 1)( n )( n 3) Määritellään: 1! = 1 Määritellään: 0! = 1 n = n! Esimerkki 10 Herbertillä laittaa hyllyyn matematiikan, fysiikan, äidinkielen, historian, ruotsin, englannin, saksan, uskonnon, yhteiskuntaopin ja musiikin kirja, yhden kappaleen kutakin. Kuinka moneen järjestykseen hän voi kirjansa järjestää? Koska kirjoja on 10 erilaista, on järjestyksiä 10! eli kappaletta. Vastaus: Herbert voi järjestää kirjansa eri järjestykseen. Esimerkki 11 Herbertillä on laitettavana hyllyyn 5 matematiikan, 4 fysiikan, äidinkielen ja 4 historian kirjaa. Hän ei kiinnitä huomiota kirjojen alojen sisäiseen järjestykseen. Kuinka moneen eri järjestykseen omalta kannaltaan erilaiseen hän voi kirjansa järjestää? Ratkaista Koska alojen sisäisellä järjestyksellä ei ole väliä, niin esimerkiksi hänen 5 matematiikan menevät yhtenä nippuna, samoin hänen 4 fysiikan kirjaansa ja niin edelleen. Hän valitsee siis järjestyksen neljän eri aiheen kesken. Niillä on 4! = 4 eri järjestystä. Vastaus: Herbert voi järjestää kirjansa 4 erilaiseen merkitykselliseen järjestykseen. Esimerkki 1 Tällä kertaa Herbert laittaa hyllyyn 5 matematiikan, 4 fysiikan, äidinkielen ja 4 historian kirjaa siten, että hän järjestää kirjansa ensin aakkosjärjestykseen aineen mukaan ja aineen sisällä johonkin muuhun järjestykseen. Kuinka monta eri vaihtoehtoa hänellä on? Mainittujen aineitten aakkosjärjestys on: fysiikka, historia, matematiikka ja äidinkieli. Piirrä itsellesi tähän tilanteeseen sopiva, Esimerkin 9 kaltainen kaavio. (9)
3 Herbert aloittaa järjestämällä fysiikan kirjat. Koska niitä on viisi, niillä on 5! = 10 eri järjestystä. Päättelemällä kuten Esimerkissä 9, saadaan, että erilaisia järjestyksiä on 5!4!! 4! kappaletta. Vastaus: Herbertillä on erilaista vaihtoehtoa järjestää kirjansa. Toisinaan vastaan tulee tilanne, jossa hyvä keino on luetella kaikki vaihtoehdot. Tällöin täytyy tietysti olla järjestelmällinen, jotta ensinnäkin jokainen vaihtoehto tulee mukaan ja toiseksi, että kukin vaihtoehto on mukana vain kerran. Esimerkki 13 Herbertillä on lähiaikoina tulossa kokeet sekä matematiikassa, ruotsissa, englannissa että historiassa. Hän päättää aloittaa tänään, mutta lukea korkeintaan kahta alaa. Arpominen on jälleen hänen keinonsa päättää, mistä kahdesta aiheesta aloittaa. a) Millä todennäköisyydellä hän valitsee päivän aiheiksi historian ja matematiikan? b) Millä todennäköisyydellä valituksi tulee historia tai matematiikka? Aloitetaan laatimalla luettelo kaikista kahden aiheen vaihtoehdoista. Merkitään matematiikkaa kirjaimella M, ruotsia kirjaimella R, englantia kirjaimella E ja historiaa kirjaimella H. Kaikki vaihtoehdot ovat seuraavassa taulukossa. Huomaa taulukon laatimisessa käyttämäni menetelmä. Ensimmäisellä rivillä ovat kaikki matematiikkaa sisältävät vaihtoehdot, jolloin ensimmäisenä kirjaimena on M. Toinen kirjain käy läpi kaikki muut aiheet. Toisella rivillä sama toistuu niin, että ensimmäisenä on ruotsi eli kirjain R. Näin käyn läpi jokaisen vaihtoehdon. Tuloksena on 1 alaparin luettelo. Koska Herbert ei kiinnitä huomiota järjestykseen näin voimme olettaa niin esimerkiksi MR = RM. Tällöin aidosti erilaisia vaihtoehtoja jää kuusi kappaletta, jotka ovat MR, ME, MH, RE, RH ja EH. Täten kaikkien tapausten joukossa on kuusi alkiota. a) Suotuisia tapauksia tämän kohdan mielessä on vain yksi, joten TN(historia ja matematiikka) = 6 1. Vastaus: Historia ja matematiikka tulevat valituiksi todennäköisyydellä 6 1. b) Nyt suotuisia tapauksia ovat MH, MR, ME, HE, HR ja niitä on siis viisi kappaletta. Kysytty todennäköisyys on siis 6 5. Vastaus: Vähintään toinen aineista matematiikka ja ruotsi tulee valituksi todennäköisyydellä 6 5. MR ME MH RM RE RH EM ER EH HM HR HE Tarkastellaan seuraavaksi puudiagrammin eli päätöspuun (decision tree) käyttöä. Esimerkki 14 Wilbert yrittää avata yhdistelmälukkoa. Lukko on siitä erikoinen, että numerokiekkojen sijasta siinä on kiekkoja, joissa on erilaisia kuvioita. Kiekkoja on kolme kappaletta. Wilbert tietää, että hänen on paitsi löydettävä oikea kuvioyhdistelmä, niin lisäksi valittava kiekkojen asennot tietyssä järjestyksessä. Ensimmäisenä on asetettava kiekko, jossa on hedelmien kuvia: banaani, kiivi ja päärynä. Toisessa kiekossa on marjoja: karpalo, lakka, mansikka ja mustikka ja viimein kolmannessa on viljoja:,, ja. Millä todennäköisyydellä Wilbert ratkaisee ongelmansa kerralla, kun oikeaksi ratkaisuksi hyväksytään vain yksi yhdistelmä: päärynä, lakka ja? 3(9)
4 4(9) 1. rengas 3. rengas ka ohr rui ve karpalo lakka mansikka mustikka W karpalo lakka mansikka mustikka kiivi banaani päärynä karpalo lakka mansikka mustikka ka ohr rui ve ka ohr rui ve ka ohr rui ve. rengas
5 Piirretään heti aluksi päätöspuu. On siis aloitettava arvaamalla ensimmäisen kiekon oikea asetus. Vaihtoehtoja on kolme. Toinen kiekko voidaan laittaa neljään eri asentoon ja kolmas samoin neljään. Jokaista ensimmäisen kiekon kolmea vaihtoehtoa kohti toisessa kiekossa on siis neljä vaihtoehtoa, joten tähän mennessä 3 4 = 1 vaihtoehtoa. Kutakin näitä 1 vaihtoehtoa kohti kolmannessa kiekossa on vielä neljä vaihtoehtoa. Vaihtoehtoja on kaikkiaan siis 1 4 = 48 kappaletta. Kuten esimerkin kuvasta ja harjoituksesta näkyy, vaihtoehtojen määrä kasvaa nopeasti, kun kiekkoja määrä kasvaa. Esimerkki 15 Heitetään noppaa kaksi kertaa ja kiinnitetään huomiota siihen, kummasta nopasta mikin silmäluku tuli. Millä todennäköisyydellä silmälukujen summa on vähintään 9? Summa on vähintään 9, kun yhteenlaskettavat ovat 3 ja 6 tai 4 ja 5 tai 5 ja 5 tai 5 ja 6 tai 6 ja 6. Nyt se, että saadaan ensin 5 ja sitten 6, on eri asia kuin että kuutonen tulee ensin. Siksi kaikkien tulosten taulukko on laadittava niin, että se erottaa noppien järjestyksen. Eräs hyvä keino on käyttää järjestettyä paria. Järjestetyt parit voidaan esittää joko taulukkona tai piirtää koordinaatistoon. Järjestetty pari on sinulle ennestään tuttu merkintä koordinaatiston pisteenä. Merkitään esimerkiksi sitä, että ensimmäisestä nopasta tuli ja toisesta 4, kirjoittamalla (;4). Täten suotuisien tapausten joukko on (3;6), (6;3), (4;6), (6;4), (4;5), (5;4), (5;5), (6;5), (5;6) ja (6;6). Laaditaan taulukko kaikkien tapausten joukosta ja koodataan suotuisien tapausten joukko siinä punaisella. (1;1) (;1) (3;1) (4;1) (5;1) (6;1) (1;) (;) (3;) (4;) (5;) (6;) (1;3) (;3) (3;3) (4;3) (5;3) (6;3) (1:4) (;4) (3;4) (4;4) (5;4) (6;4) (1;5) (;5) (3;5) (4;5) (5;5) (6;5) (1;6) (;6) (3;6) (4;6) (5;6) (6;6) Varmistetaan se, että kaikki vaihtoehdot tulevat mukaan tarkalleen kerran, kirjoittamalla ensimmäiseen sarakkeeseen kaikki ne vaihtoehdot, joissa ensimmäisellä nopalla tulee ykkönen, toiseen sarakkeeseen kaikki ne vaihtoehdot, joissa ensimmäisellä nopalla tulee kakkonen ja niin edelleen. Taulukon avulla näemme heti, että suotuisia tapauksia on kymmenen kappaletta ja kaikkia 10 5 vaihtoehtoja 36 kappaletta. Kysytty todennäköisyys on siis = Taulukon sijasta voit tulkita järjestetyt lukuparit siis myös koordinaatiston pisteinä ja suorittaa laskut sen mukaisesti. Vastaus: Kahta noppaa heitettäessä silmälukujen summa on vähintään 9 todennäköisyydellä 0,7. 5(9)
6 Esimerkki 16 Valiokuntaan arvotaan kolme jäsentä kansainvälisen kokouksen osallistujien joukosta. Mainittuun kokoukseen osallistuvat aasialainen lakimies, afrikkalainen insinööri, afrikkalainen poliitikko, australialainen lääkäri ja eurooppalainen tulkki. Laske todennäköisyys, jolla ainakin yksi afrikkalainen henkilö tulee valituksi. Aasia Afrikka Australia Eurooppa Kaikki vaihtoehdot kannattaa jälleen taulukoida. Määritellään sitä varten merkinnät. Insinööri Symbolien avulla esitettyinä käytettävissä olevat henkilöt ovat siis: Lakimies Lääkäri Poliitikko Tulkki Kaikki kolmen henkilön 10 erilaista kombinaatiota eli kolmen alkion osajoukkoa ovat: 6(9)
7 Kuten kuvasta heti näet, suotuisia tapauksia eli kolmen henkilön joukkoja, joissa on ainakin yksi afrikkalainen, on yhdeksän kappaletta. Täten kysytty todennäköisyys on 9/10. Vastaus: TN(valiokunnassa on ainakin yksi afrikkalainen) = 0,9. Esimerkki 17 Kaksi kurkea sanokaamme pariskunta Helmi ja Heikki saapuvat muuttomatkaltaan yhteisen kotisuonsa ainoaan vapaana lainehtivaan kanavaan. Kanava on etriä pitkä ja saman suuntainen kurkiemme lentosuunnan kanssa, ja kurjet laskeutuvat toisistaan riippumatta satunnaiseen kanavan kohtaan. Kanavan leveydellä ei ole väliä. Annetaan ojan alkupenkereelle nimi A ja loppupenkereelle nimi B. a) Millä todennäköisyydellä kurjet laskeutuvat ensimmäiseen 0 metrin alueelle? b) Millä todennäköisyydellä kurjet laskeutuvat vähintään 50 metrin etäisyydelle toisistaan? c) Millä todennäköisyydellä Helmi laskeutuu tarkalleen kanavan keskelle ja Heikki sen 50 viimeiselle metrille? Piirretään asiasta kaavio. Kaaviosta tulee kaksiulotteinen: Helmin kanava eli Helmin akseli, joka olkoon myös pystyakseli ja Heikin kanava eli Heikin akseli, joka olkoon myös vaaka-akseli. a) Piirroksen avulla on helppo uskoa, että kaikkien tapausten joukko on 100m 100m ja suotuisien tapausten joukko on 0m 0m, joten kysytty todennäköisyys on 0m 0m 1 = = 100m 100m 5 0,04. Vastaus: Todennäköisyys sille, että Helmi ja Heikki laskeutuvat kanavan ensimmäisten 0 metrin matkalle on 0,04. 0 m 0 m Helmi 0 m Heikki 7(9)
8 b) Piirretään kaavioon 50 metrin ala erikseen kummankin linnun kannalta. Kyseessä on siis ala, joka merkitsee tapausta, että Helmi laskeutuu ensimmäisten 50 metrin alueelle tai Heikki 1 laskeutuu ensimmäisten 50 metrin alueelle. Kunkin kolmion ala on 50m 50m = 150m 150m ja koko kuvion ala on m. Kysytty todennäköisyys on siis = 0, m Vastaus: Kysytty todennäköisyys on 0,15. Helmi 50 m 0 m 50 m Heikki c) Tämä vaatimus on mahdoton, koska tarkalleen keskellä ei voi osua, ei taitavakaan kurki! Kysymyksen konnektiivi ja liittää mahdollisen tapauksen Heikki laskeutuu kanavan jälkimäiseen 50 metriin mahdottomaan tapaukseen vaatimuksella, että molemmat tapahtuvat. Kysytty todennäköisyys on siis nolla. Geometrisesti tämä tulos saadaan siitäkin, että janan pinta-ala on nolla. Vastaus: Kysytty todennäköisyys on nolla. 0 m Helmi Heikki 8(9)
9 Esimerkki 18 Heitetään kolikkoa kahdeksan kertaa ja pidetään kirjaa jokaisesta heitosta erikseen. Millä todennäköisyydellä jokaisella parillisella heitolla saadaan klaava ja parittomalla kruuna? Havainnollistetaan tilannetta lokerikolla, jossa on kahdeksan lokeroa ja kukin lokero on numeroitu 1 8. Ensimmäisellä heitolla voi tulla joko kruuna tai klaava kuten jokaisella seuraavallakin heitolla. Täten ensimmäisen lokeron sisältö voi olla kolikko kruuna-puoli ylös tai klaava-puoli ylös, siis kaksi mahdollisuutta. Sama toistuu kaikkien kahdeksan kohdalla. Siis ensimmäistä kahta vaihtoehtoa kohti seuraavan lokeron kolikolla on taas kaksi mahdollisuutta, yhteensä tähän 8 mennessä 4 mahdollisuutta. Näin jatketaan loppuun saakka. Tuloksena on vaihtoehto. Koska suotuisia tapauksia on vain yksi eli tulossarja kr, kl, kr, kl, kr, kl, kr, kl, sen todennäköisyys on 1 1 = = 0, Vastaus: Kolikonheitossa TN(jokaisella parillisella heitolla saadaan klaava ja parittomalla kruuna) = 0, (9)
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä
LisätiedotTodennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset
Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan
LisätiedotTuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta
Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,
LisätiedotOTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada
OTATKO RISKIN? peli 1. Heitä noppaa 20 kertaa. Tavoitteena on saada vähintään 10 kertaa silmäluku 4, 5 tai 6. Jos onnistut, saat 300 pistettä. Jos et onnistu, menetät 2. Heitä noppaa 10 kertaa. Tavoitteena
Lisätiedot3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
Lisätiedot2. laskuharjoituskierros, vko 5, ratkaisut
2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,
LisätiedotTODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS
TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS Klassinen todennäköisyys P suotuisten alkeistapausten lkm kaikkien alkeistapausten lkm P( mahdoton tapahtuma ) = 0 P( varma tapahtuma ) = 1 0 P(A) 1 Todennäköisyys
LisätiedotTodennäköisyys (englanniksi probability)
Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,
Lisätiedot1. Tässä tehtävässä päätellään kaksilapsisen perheen lapsiin liittyviä todennäköisyyksiä.
TODENNÄKÖISYYS Aihepiirejä: Yhden ja kahden tapahtuman tuloksien käsittely ja taulukointi, ovikoodit, joukkueen valinta, bussin odotus, pelejä, urheilijoiden testaus kielletyn piristeen käytöstä, linnun
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot
Lisätiedot7 TODENNÄKÖISYYSLASKENTAA
7 TODENNÄKÖISYYSLASKENTAA ALOITA PERUSTEISTA 277A. a) 8! = 40 320 Vastaus: 40 320 5 b) 5005 6 Vastaus: 5005 7 c) 7 Vastaus: 278A. Tuloperiaatteen mukaan asukokonaisuuksia on 4 2 2 = 6. Vastaus: 6 asukokonaisuutta
LisätiedotKlassisen ja geometrisen todennäköisyyden harjoituksia
MAB5: Todennäköisyyden lähtökohdat Harjoitustehtävät Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c)
LisätiedotMat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:
Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,
LisätiedotKlassisen ja geometrisen todennäköisyyden harjoituksia
MAB5: Todennäköisyyden lähtökohdat Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c) saat parittoman pisteluvun?
Lisätiedot(x, y) 2. heiton tulos y
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen
Lisätiedot1. laskuharjoituskierros, vko 4, ratkaisut
1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)
LisätiedotAluksi. 1.1. Kahden muuttujan lineaarinen yhtälö
Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä
Lisätiedot5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
LisätiedotMat Sovellettu todennäköisyyslasku A
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,
LisätiedotA-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
Lisätiedotikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 %
Testaa taitosi 1 1. Noppaa heitetään kahdesti. Merkitse kaikki alkeistapaukset koordinaatistoon. a) Millä todennäköisyydellä ainakin toinen silmäluvuista on 3? b) Mikä on a-kohdan tapahtuman vastatapahtuma?
LisätiedotKenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)
Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
Lisätiedot9 Yhteenlaskusääntö ja komplementtitapahtuma
9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että
LisätiedotVarma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,
LisätiedotTodennäköisyyslaskenta - tehtävät
Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,
LisätiedotKenguru 2017 Mini-Ecolier: Ratkaisut (2. ja 3. luokka)
sivu 1 / 13 Oikeat vastaukset ovat alla. 3 pistettä TEHTÄVÄ 1 2 3 4 5 6 VASTAUS D C C B E B 4 pistettä TEHTÄVÄ 7 8 9 10 11 12 VASTAUS C E D C D A 5 pistettä TEHTÄVÄ 13 14 15 16 17 18 VASTAUS B E D D E
LisätiedotAMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE
AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Tekstikoe ja Ongelmanratkaisu HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja
LisätiedotKenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5
Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
LisätiedotTodennäköisyys. Antoine Gombaud, eli chevalier de Méré?.? Kirjailija ja matemaatikko
Todennäköisyys TOD.NÄK JA TILASTOT, MAA10 Todennäköisyyslaskennan juuret ovat ~1650-luvun uhkapeleissä. Kreivi de Mérén noppapelit: Jos noppaa heitetään 4 kertaa, niin kannattaako lyödä vetoa sen puolesta,
Lisätiedot1. Kuinka monella tavalla joukon kaikki alkiot voidaan järjestää jonoksi? Tähän antaa vastauksen: tuloperiaate ja permutaatio
TOD.NÄK JA TILASTOT, MAA10 Kombinatoriikka Todennäköisyyksiä (-laskuja) varten tarvitaan tieto tapahtumille suotuisien alkeistapausten lukumäärästä eli tapahtumaa vastaavan osajoukon alkioiden lukumäärästä.
LisätiedotYlioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta
Lisätiedot8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan?
8.2. Permutaatiot Esim. 1 irjaimet, ja asetetaan jonoon. uinka monta erilaista järjes-tettyä jonoa näin saadaan? Voidaan kuvitella vaikka niin, että hyllyllä on vierekkäin kolme laatikkoa (tai raiteilla
LisätiedotPäähaku, matemaattisten tieteiden kandiohjelma Valintakoe klo
Teknisiä merkintöjä: MATEM Sivu: 1 (9) Päähaku, matemaattisten tieteiden kandiohjelma Valintakoe 7.5.2018 klo 10.00 13.00 Kirjoita henkilö- ja yhteystietosi tekstaamalla. Kirjoita nimesi latinalaisilla
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
LisätiedotHarjoitustehtävien ratkaisut. Joukko-opin harjoituksia. MAB1: Luvut ja lukujoukot 2
MAB: Luvut ja lukujoukot Harjoitustehtävien ratkaisut Joukko-opin harjoituksia T Joukossa W V ovat kaikki joukkojen W ja V alkiot, siis alkiot, jotka ovat joko W :n tai V :n tai molempien alkioita. Siis
LisätiedotJuuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
Lisätiedot(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
LisätiedotA-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.
MAA6 koe 26.9.2016 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-osio: Ilman laskinta, MAOL:in taulukkokirja
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Lisätiedothttps://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015
12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotMuista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!
MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki
Lisätiedot&idx=2&uilang=fi&lang=fi&lvv=2015
20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotLUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut.
LUKUJONOT 2 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. 2, 4,, 8,, 12,,, 7,, 3, 1 3) Keksi oma lukujono ja kerro
Lisätiedot3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden
LisätiedotSuotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä
Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa
LisätiedotYlioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei
LisätiedotApprobatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Lisätiedot8.1. Tuloperiaate. Antti (miettien):
8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei
LisätiedotTodennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
LisätiedotMAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
Lisätiedot= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 7. Kombinatoriikka 7.1 Johdanto Kombinatoriikka tutkii seuraavan kaltaisia kysymyksiä: Kuinka monella tavalla jokin toiminto voidaan suorittaa? Kuinka monta tietynlaista
Lisätiedotkeskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5
Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a
LisätiedotKenguru 2010, Benjamin, ratkaisut sivu 1 / 9
Kenguru 2010, Benjamin, ratkaisut sivu 1 / 9 3 pistettä 1. Kun tiedetään, että + + 6 = + + +, mikä luku voidaan sijoittaa kolmion paikalle? A) 2 B) 3 C) 4 D) 5 E) 6 Ratkaisu: Kun poistetaan kummaltakin
LisätiedotKenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
Lisätiedot1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
LisätiedotKenguru 2014 Cadet (8. ja 9. luokka)
sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Lisätiedotverkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
Lisätiedot4. Funktion arvioimisesta eli approksimoimisesta
4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,
Lisätiedot3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotKaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 1.2.2013 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
LisätiedotPRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.
Lisätiedot= = = 1 3.
9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala
LisätiedotTämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.
MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Lisätiedotc) 22a 21b x + a 2 3a x 1 = a,
Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. 1. Lukion A ja lukion B oppilasmäärien suhde oli a/b vuoden 2017 lopussa. Vuoden 2017 aikana
LisätiedotYlioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
LisätiedotKenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka
3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta
Lisätiedot27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
Lisätiedot3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.
3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta
LisätiedotKenguru 2019 Mini-Ecolier 2. ja 3. luokka Ratkaisut Sivu 0 / 11
Sivu 0 / 11 3 pistettä TEHTÄVÄ 1 2 3 4 5 6 VASTAUS D C E C A C 4 pistettä TEHTÄVÄ 7 8 9 10 11 12 VASTAUS E B A E B D 5 pistettä TEHTÄVÄ 13 14 15 16 17 18 VASTAUS D A D B D D Kilpailu pidetään aikaisintaan
LisätiedotLukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)
Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten
Lisätiedota) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedot1. Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua
. Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua. Jatka. + 00 000 0 0 0 0 0 0 0 000 + 0 000 0 0 0 0 0 0 0 + 0,0,,,,,,0 0,,,,,,, + 0,,,0,,0,,00. Merkitse laskutapa ja laske. a), +, + 0,,
Lisätiedot031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta
031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset
Lisätiedot811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
Lisätiedot4 LUKUJONOT JA SUMMAT
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 4 LUKUJONOT JA SUMMAT ALOITA PERUSTEISTA 45A. Määritetään lukujonon (a n ) kolme ensimmäistä jäsentä ja sadas jäsen a 00 sijoittamalla
Lisätiedot1 Aritmeettiset ja geometriset jonot
1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään
LisätiedotKäytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotOpetusmateriaali. Fermat'n periaatteen esittely
Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja
LisätiedotKenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi)
Kenguru 2014 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotOsa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen
LisätiedotPreliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
Lisätiedot1. Fysiikan ylioppilaskokeessa jaettiin keväällä 2017 oheisen taulukon mukaisesti arvosanoja. Eri arvosanoille annetaan taulukon mukaiset lukuarvot.
MAB5-Harjoituskoe RATKAISUT 1. Fysiikan ylioppilaskokeessa jaettiin keväällä 2017 oheisen taulukon mukaisesti arvosanoja. Eri arvosanoille annetaan taulukon mukaiset lukuarvot. Fysiikka, kevät 2017, arvosanajakauma
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
LisätiedotMatemaatiikan tukikurssi
Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon
LisätiedotHelsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotKenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6
Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö
Lisätiedot5.3 Ensimmäisen asteen polynomifunktio
Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;
LisätiedotMatematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Lisätiedot