Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.

Koko: px
Aloita esitys sivulta:

Download "Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori."

Transkriptio

1 Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali Gauss ( ) Poisson Poisson ( ) Exponential Laplace ( ) Slide 2

2 Binomijakauma Data y 1,...,y n, joista jokainen on 0 tai 1 Luonnollinen malli kun tehdään keskenään vaihtokelpoisia (exchangeable) toistokokeita tai poimintoja suuresta populaatiosta, joissa jokaisen kokeen tulos voi olla yksi kahdesta vaihtoehdosta (usein success ja failure ) Esimerkkejä Slide 3 - Bernoullin koe, missä laatikosta poimitaan kahden värisiä palloja - kolikonheitto - tyttö- ja poikavauvojen suhde Binomijakauma Vaihtokelpoisuuden vuoksi data voidaan esittää kertomalla onnistumisten määrä y ja kokeiden kokonaismäärä n Olettamalla binomi-malli ja onnistumistodennäköisyyttä kuvaava parametri θ, voidaan toimia aivan kuin kokeiden tulokset olisivat riippumattomia (independent) ja identtisesti jakautuneita ehdolla malli M ja parametri θ Slide 4 p(y θ,n, M) = Bin(y n,θ) = ( ) n θ y (1 θ) n y y missä n oletetaan fiksatuksi ja osaksi koesuunnittelua (eli ei parametri)

3 θ :n posteriori Bayesin kaavan mukaan p(θ y, n, M) = p(y θ,n, M)p(θ n, M) p(y n, M) Yksinkertaistuksen vuoksi aloitetaan helpolla priorilla Slide 5 p(θ n, M) = p(θ M) = 1, kun 0 θ 1 Jolloin p(θ n, M) θ y (1 θ) n y Ja kaikkihan heti tunnistavat tästä, että θ y, n Beta(y + 1, n y + 1) Jakaumista Jos p(θ)dθ =, p(θ) on improper Jos p(θ)dθ = Z = 1, p(θ) on normalisoimaton Jos p(θ)dθ = 1, p(θ) on proper ja normalisoitu Slide 6

4 Matlab demonstraatio: Beta-jakauma n=5, y=3 n=20, y=12 n=100, y=60 n=1000, y=600 Slide 7 Esimerkki: tyttövauvojen suhteellinen osuus Pariisissa syntyi tyttöä ja poikaa vuosina Laplace ei vielä osannut Beta-integraalia, joten kehitti normaalijakauma-approksimaation Slide 8 Laplace laski ˆθ = σ = ( ) p(θ 0.5 y, n, M) Laplace kirjoitti olevansa morally certain, että θ<0.5

5 Ennustaminen Laplace laski (Laplace s law of succession) Slide 9 p(ỹ = 1 y, n, M) = = = y + 1 n + 2 p(ỹ = 1 θ, y, n, M)p(θ y, n, M)dθ θp(θ y, n, M)dθ Ääritapaukset p(ỹ = 1 y = 0, n, M) = 1 n + 2 p(ỹ = 1 y = n, n, M) = n + 1 n + 2 Vrt. maximum likelihood Posteriorijakaumien esittäminen Posteriorijakauma sisältää kaiken sen hetkisen informaation parametrista θ Ideaalitapauksesa voisi raportoida koko posteriorijakauman Usein käytettyjä yhteenvetoesityksiä paikalle (location) - keskiarvo (mean) Slide 10 - mediaani - moodi(t) Usein käytettyjä yhteenvetoesityksiä variaatiolle (variation) - hajonta (standard deviation) - kvantiilit

6 Posteriorijakaumien esittäminen Keskiarvo on parametrin posterioriodotusarvo optimaalinen valinta neliösummavirheen perusteella Mediaanin molemilla puolilla yhtä paljon todennäköisyysmassaa optimaalinen valinta absoluuttivirheen perusteella Slide 11 Moodi on yksittäinen todennäköisin arvo Hajonta kuvaa normaalijakauman leveyden, joten kuvaa hyvin myös lähellä normaalijakaumaa olevia jakaumia Posteriorijakaumien esittäminen Kun posteriorijakaumalla on suljettu muoto voidaan keskiarvo, mediaani ja hajonta usein saada myös suljetussa muodossa esim. Beta(y + 1, n y + 1):n keskiarvo on y+1 n+2 Jos suljettua muotoa ei ole, voidaan käyttää normaalijakauma-approksimaatiota tai numeerista integrointia (esim. Monte Carlo) Slide 12

7 Posteriori-intervallit Luottovälit (credible interval) (vrt. frekventistit: luottamusväli (confidence interval) Highest posterior density (HPD) interval Slide 13 Suljetunmuodon jakaumille usein helppo laskea kumulatiivisista jakaumista (CDF), ja muille sitten numeerisesti Todennäköisyydet Todennäköisyydet, p-arvot p(θ A y, M) Slide 14

8 Päätösanalyysi Tästä myöhemmin... Slide 15 Ongelmallisia Moniulotteiset jakaumat Multimodaaliset jakaumat Slide 16

9 Priorijakaumista Populaatioon perustuvat - eli populaation perustuva posteriorijakauma priorina Tietämyksen tilaan perustuvat - helppoa jos tietämyksen epävarmuus pieni (informatiiviset) - vaikeaa jos tietämyksemme on epävarmaa (ei-informatiiviset) Slide 17 - esitettävä myös epävarmuus Priorijakaumista Priorijakauman pitäisi kattaa kaikki edes jotenkin mahdolliset parametrin arvot - jos dataa riittävästi likelihood voi dominoida posteriorijakaumassa ja priorin muodolla ei niin paljon väliä - jos dataa vähän voi priorijakauman muoto vaikuttaa paljon Slide 18

10 Perustelu aiemmin käyttämällemme priorille Uniformi priori θ:lle, jolloin prioriprediktiivinen jakauma p(y n) = 1 n + 1, y = 0,...,n Slide 19 Bayesin perustelu ilmeisesti perustui tähän - mukava perustelu, koska se voidaan esittää pelkästään havaittavien suureiden y ja n avulla Laplacen perustelu ilmeisesti suoraan θ:lle indifference periaatteen mukaisesti Konjugaattipriorit Virallinen määritelmä jos p( y) P kaikille p(y ) F ja p( ) P tämä kuitenkin liian väljä määritelmä jos valitaan, että P on kaikkien jakaumien joukko Slide 20 Kiinnostavampia ovat luonnolliset konjugaattipriorit, jolloin priori ja posteriori samasta funktioperheestä (samat parametrit) Laskennallisesti mukavia Voidaan tulkita prioridatana

11 Beta-priori Binomi-jakaumalle Priori Beta(θ α, β) θ α 1 (1 θ) β 1 Slide 21 Posteriori p(θ y, n, M) θ y (1 θ) n y θ α 1 (1 θ) β 1 = θ y+α 1 (1 θ) n y+β 1 = Beta(θ α + y,β+ n y) Voidaan tulkita, että (α 1) ja (β 1) priorinäytteitä Uniformipriori kun (α 1) = 0 ja (β 1) = 0 Beta-priori Binomi-jakaumalle Posteriori p(θ y, n, M) = Beta(θ α + y,β+ n y) Odotusarvo ja hajonta Slide 22 E[θ] = α + y α + β + n E[θ](1 E[θ]) Var[θ] = α + β + n + 1

12 Konjugaattiprioreista Konjugaattipriorit mukavia kuten myös standardimallitkin - tulkinnan helppous - jakaumat suljettua muotoa - laskennallinen mukavuus - tärkeitä rakennuspalikoita monimutkaisemmissakin malleissa Slide 23 - mixturepriorit ja -mallit laajentavat mahdollisuuksia Ei-konjugaattiset käsitteellisesti yhtä helppoja - laskenta vaikeampaa, mutta ei mahdotonta - ei tarvetta tehdä kompromissia tietämyksen esittämisessä Esimerkki priorin vaikutuksesta Eteisistukkatapauksissa 437 tyttövauvaa ja 543 poikavauvaa - Poikkeaako tyttövauvan todennäköisyys yleisestä (0.485)? Slide 24 Uniformipriorilla posteriori on Beta(438, 544) - keskiarvo ja hajonta % posterioriväli [0.415, 0.477] - p(θ < 0.485) = 0.99 Matlab-demo

Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali de Moivre ( ), Laplace ( ), Gauss ( )

Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali de Moivre ( ), Laplace ( ), Gauss ( ) Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali

Lisätiedot

exp Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli

exp Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Luento 3 Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide Cauchy-jakauma Ei-informatiivisista priorijakaumista *-merkatut kalvot

Lisätiedot

S Bayesilaisen mallintamisen perusteet

S Bayesilaisen mallintamisen perusteet S-114.2601 Bayesilaisen mallintamisen perusteet Laajuus: 5 op, L Opettajat: TkT Aki Vehtari, DI Simo Särkkä Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit

Lisätiedot

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten Viime kerralla Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide 1 Cauchy-jakauma Ei-informatiivisista priorijakaumista Bayesilaisen

Lisätiedot

exp p(y θ) = 1 2πσ θ)2 2σ 2(y y N(θ, σ 2 ) Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla

exp p(y θ) = 1 2πσ θ)2 2σ 2(y y N(θ, σ 2 ) Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla Luento 3 Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-malli Exponentiaalinen malli Slide 1 Cauchy-jakauma Lisää konjugaattiprioreista Ei-informatiivisista priorijakaumista

Lisätiedot

Viime kerralla. Luento 6. Normaalijakauma-approksimaatio - moodi. - havaittu informaatio

Viime kerralla. Luento 6. Normaalijakauma-approksimaatio - moodi. - havaittu informaatio Viime kerralla Normaalijakauma-approksimaatio - moodi - havaittu informaatio Suurten otosten teoria - asymptoottinen normaalius ja konsistenttisuus Slide 1 - vastaesimerkkejä Bayesilaisen päättelyn frekvenssiarviointi

Lisätiedot

p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma

p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma Viime kerralla Marginalisointi Marginaalijakauma Posteriorijakauman faktorointi Ehdollinen posteriorijakauma Slide 1 Posteriorijakaumasta simulointi Normaalijakauma - tuntematon keskiarvo ja varianssi

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

θ 1 θ 2 θ n y i1 y i2 y in Luento 6 Hierarkkinen malli Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model

θ 1 θ 2 θ n y i1 y i2 y in Luento 6 Hierarkkinen malli Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model Luento 6 Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model Vaihtokelpoisuus (exchangeability) Slide 1 Hierarkkinen malli Esimerkki: sydäntautien hoidon tehokkuus - sairaalassa j

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Posteriorijakauman normaalijakauma-approksimaatio. Usein posteriorijakauma lähestyy normaalijakaumaa kun n

Posteriorijakauman normaalijakauma-approksimaatio. Usein posteriorijakauma lähestyy normaalijakaumaa kun n Luento 5 Päättely suurten otosten tapauksessa, n - normaalijakauma-approksimaatio - suurten otosten teoria - asymptoottinen normaalius ja konsistenttisuus - vastaesimerkkejä Slide 1 Bayesilaisen päättelyn

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

S-114.600 Bayesilaisen mallintamisen perusteet

S-114.600 Bayesilaisen mallintamisen perusteet S-114.600 Bayesilaisen mallintamisen perusteet Laajuus: 2 ov Opettajat: TkT Aki Vehtari, DI Toni Tamminen Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit

Lisätiedot

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia

Lisätiedot

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin ja monimuuttuja-analyysiin Loppuseminaari: Terveydenhuollon uudet analyysimenetelmät (TERANA) Aki Vehtari AB HELSINKI UNIVERSITY OF TECHNOLOGY Department of Biomedical Engineering and Computational Science

Lisätiedot

Luento 11. Muutama hyödyllinen Monte Carlo-menetelmä. Muutama hyödyllinen Monte Carlo-menetelmä. Mitä muuta hyödyllistä Gelman et al kirjasta löytyy

Luento 11. Muutama hyödyllinen Monte Carlo-menetelmä. Muutama hyödyllinen Monte Carlo-menetelmä. Mitä muuta hyödyllistä Gelman et al kirjasta löytyy Luento 11 Muutama hyödyllinen Monte Carlo-menetelmä Mitä muuta hyödyllistä Gelman et al kirjasta löytyy Kertaus koko kurssiin - tenttiinlukuohjeet Slide 1 Muutama hyödyllinen Monte Carlo-menetelmä Hylkäyspoiminta

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä

Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Antti Penttinen Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Metodifestivaalit Jyväskylän yliopisto 21.5.2013 Suunnitelma

Lisätiedot

Bayesilaisen mallintamisen perusteet

Bayesilaisen mallintamisen perusteet Bayesilaisen mallintamisen perusteet Johdanto Yksiparametrisia malleja Moniparametrisia malleja Slide 1 Päättely suurten otosten tapauksessa ja bayesilaisen päättelyn frekvenssiominaisuudet Hierarkiset

Lisätiedot

Bayesilaisen mallintamisen perusteet kurssin sisältö

Bayesilaisen mallintamisen perusteet kurssin sisältö S-114.2601 Bayesilaisen mallintamisen perusteet Laajuus: 5 op, L Opettajat: Dos. TkT Aki Vehtari, DI Jarno Vanhatalo Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

p(y θ, M) p(θ M)dθ p(θ y, M) = p(y M) Luento 10 Marginaaliuskottavuus Bayes-tekijä Mallin odotettu hyöty DIC (Deviance Information Criterion)

p(y θ, M) p(θ M)dθ p(θ y, M) = p(y M) Luento 10 Marginaaliuskottavuus Bayes-tekijä Mallin odotettu hyöty DIC (Deviance Information Criterion) Luento 10 Bayes-tekijä Mallin odotettu hyöty DIC (Deviance Information Criterion) Mallin valinta Slide 1 Marginaaliuskottavuus Bayesin kaava missä p(θ y, M) = p(y M) = p(y θ, M)p(θ M) p(y M) p(y θ, M)

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut).

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). KÄSITTEITÄ POPULAATIO Joukko, jota tutkitaan (äärellinen, ääretön). Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). Näiden välillä ei aina tehdä eroa, kun puhutaan

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia

Lisätiedot

TILASTOLLINEN OPPIMINEN

TILASTOLLINEN OPPIMINEN 301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%

Lisätiedot

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän

Lisätiedot

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - odotettu hyöty tai kustannus (expected utility or cost)

Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - odotettu hyöty tai kustannus (expected utility or cost) Viime kerralla Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - kuinka monta riippuvaa simulaationäytettä tarvitaan - joitakin perus-mcmc-menetelmien parannuksia Slide 1

Lisätiedot

Bayesiläinen tilastollinen vaihtelu

Bayesiläinen tilastollinen vaihtelu Bayesiläinen tilastollinen vaihtelu Janne Pitkäniemi FT, dos. (biometria), joht. til. tiet Suomen Syöpärekisteri Hjelt-instituutti /Helsingin yliopisto Periaatteet Tilastollinen vaihtelu koskee perusjoukon

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tilastollinen päättely II, kevät 2017 Harjoitus 1A Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti

Lisätiedot

Tilastollinen päättely, 10 op, 4 ov

Tilastollinen päättely, 10 op, 4 ov Tilastollinen päättely, 0 op, 4 ov Arto Luoma Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede 3304 TAMPEREEN YLIOPISTO Syksy 2006 Kirjallisuutta Garthwaite, Jolliffe, Jones Statistical Inference,

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

TEKNILLINEN KORKEAKOULU ERIKOISTYÖ. koulutusohjelma MUUTOSPISTEIDEN TUNNISTAMINEN BAYESILAISELLA ANALYYSILLA

TEKNILLINEN KORKEAKOULU ERIKOISTYÖ. koulutusohjelma MUUTOSPISTEIDEN TUNNISTAMINEN BAYESILAISELLA ANALYYSILLA TEKNILLINEN KORKEAKOULU ERIKOISTYÖ Teknillisen fysiikan Mat-2.108 Sovellettu matematiikka koulutusohjelma 11.7.2007 MUUTOSPISTEIDEN TUNNISTAMINEN BAYESILAISELLA ANALYYSILLA Pyry-Matti Hjalmar Niemelä 55448H

Lisätiedot

Bayesläiset tilastolliset mallit

Bayesläiset tilastolliset mallit Luku 9 Bayesläiset tilastolliset mallit Lasse Leskelä Aalto-yliopisto 8. lokakuuta 07 9. Priorijakauma ja posteriorijakauma Bayesläisen tilastollisen päättelyn lähtökohtana on päivittää satunnaisilmiöön

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Log-tiheydet - yli- ja alivuotojen välttämiseksi laskenta usein suoritettava log-tiheyksillä

Log-tiheydet - yli- ja alivuotojen välttämiseksi laskenta usein suoritettava log-tiheyksillä Luento 7 Yleistä laskennasta mm. (luvut 10 ja 12) - karkea estimointi - posteriorimoodit - kuinka monta simulaationäytettä tarvitaan Monte Carlo (luku 11) Slide 1 - suora simulointi - hiladiskretointi

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

Demonstraatiot Luento 7 D7/1 D7/2 D7/3

Demonstraatiot Luento 7 D7/1 D7/2 D7/3 TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 7 7.2.2008 D7/ Tarkastellaan piirikytkentäisen järjestelmän n-kanavaista

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

2. Uskottavuus ja informaatio

2. Uskottavuus ja informaatio 2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö

Lisätiedot

Mitä on bayesilainen päättely?

Mitä on bayesilainen päättely? Metodifestivaali 29.5.2009 Aki Vehtari AB TEKNILLINEN KORKEAKOULU Lääketieteellisen tekniikan ja laskennallisen tieteen laitos Esityksen sisältö Miksi? Epävarmuuden esittäminen Tietämyksen päivittäminen

Lisätiedot

4. Todennäköisyyslaskennan kertausta

4. Todennäköisyyslaskennan kertausta luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia keskenään

Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia keskenään Viime kerralla Johdatus hierarkisiin malleihin Vaihtokelpoisuus Slide 1 Hierarkinen malli Esimerkki: sydäntautien hoidon tehokkuus Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1 T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 4

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 4 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 4 Ratkaisuehdotuksia 1. Omppukone Oy valmistaa liukuhihnalla muistipiirejä kymmenen piirin sarjoissa. Omppukone arvioi, että keskimäärin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx. Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: 4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1)

Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1) 5. ESTIMOINTITEORIAN PERUSTEITA 5.1. Perusjakaumat 1-ulotteisina Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) Siksi tarvitaan todennäköisyyslaskentaa

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

pisteet Frekvenssi frekvenssi Yhteensä

pisteet Frekvenssi frekvenssi Yhteensä 806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

BECS Bayesilainen mallintaminen Lyhyt englanti-suomi sanasto

BECS Bayesilainen mallintaminen Lyhyt englanti-suomi sanasto BECS-114.2601 Bayesilainen mallintaminen Lyhyt englanti-suomi sanasto Aki Vehtari ja Jarno Vanhatalo September 23, 2013 Lyhyt englanti-suomi-sanasto kurssin termeistä. Osalle termeistä emme tiedä virallista

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot