MIKSI YLIOPISTON MATEMATIIKAN OPETUSTA PITÄÄ KEHITTÄÄ?

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MIKSI YLIOPISTON MATEMATIIKAN OPETUSTA PITÄÄ KEHITTÄÄ?"

Transkriptio

1 YLIOPISTOMATEMATIIKAN OPETTAJUUDEN KEHITTÄMINEN JORMA JOUTSENLAHTI YLIOPISTONLEHTORI (TAY), DOSENTTI (TTY), 1 2 MIKSI YLIOPISTON MATEMATIIKAN OPETUSTA PITÄÄ KEHITTÄÄ? 3 1. Opiskelijoiden lähtötaso Yliopisto-opiskelijoiden lähtötason matematiikassa on havaittu heikentyneen ympäri maailmaa (SEFI 2002) TTY:n matematiikan perustaitotestissä opintojen alussa yli puolet opiskelijoista teki konseptuaalisen virheen vähintään kolmessa testin viidestätoista tehtävästä ja yli 40 % opiskelijoista teki konseptuaalisen virheen vähintään viidessä tehtävässä. (Laukkonen, 2006) Pitkän matematiikan opiskelijoiden määrä lukiossa ei ole riittävä suuri korkeakoulualoituspaikkoihin nähden Pitkän matematiikan ylioppilaskirjoitusten tuloksissa nähtävissä polarisoitumista viime vuosikymmenen aikana 1

2 2. Uusi teknologia lukio-opiskelussa: CAS-laskimet luvulla CAS -laskimet (Computer Algebra System) 5 YO-k09p 6 Kysymyksiä yliopiston matematiikan opetukselle: Voidaanko opiskelijoilta odottaa aiemman kaltaista proseduraalista sujuvuutta? Pitäisikö uutta teknologiaa hyödyntää myös matematiikan korkeakouluopetuksessa? Miten motivoidaan uusiin tekniikoihin tottuneet opiskelijat opiskelemaan esim. mekaanista derivointia tai integrointia? Voidaanko (massa)opetuksessa huomioida monenlaisia oppijoita? 2

3 Käsitys matemaattisesta osaamisesta on kehittynyt aikaisempaa moniulotteisemmaksi Mathematical proficiency (Kilpatrick, etc. 2002, 16) 7 8 Matematiikan kielentäminen Lyhentein merkityt alueet ovat matematiikan luonnollinen kieli (MLK), matematiikan symbolikieli (MSK) ja matematiikan kuviokieli (MKK) (Joutsenlahti & Kulju 2010). 9 Kokeiluja yliopistomatematiikassa TTY:llä syksyllä 2010: kokeilussa yksi insinöörimatematiikan ja yksi laajan matematiikan kurssi (yhteensä 249 opiskelijaa) Luennoitsijoiden mielestä kielentäminen on toimiva tapa ohjata opiskelijoita perustelemaan ratkaisujaan ja he ilmoittivat saaneensa kielentämistehtävistä ideoita, joita soveltaa tulevaisuudessakin harjoitustehtäviä laatiessa. Opiskelijat kokivat luonnollisen kielen käytön selkeyttävän ratkaisuja. Suurin osa opiskelijoista (61,2 %; n=160) koki luonnollisen kielen käytön tehtävien ratkaisuissa positiivisena (negatiivisena 12,5%). (Kangas, Silius ym. 2011). 3

4 10 Kirjallisen kielentämisen tehtäväkokeilu Syksyllä 2012 kokeillaan Tampereen teknillisen yliopiston insinöörimatematiikan kurssilla (Jussi Kangas, n=229) ja Turun yliopiston matematiikan laitoksen Analyysi 1 kurssilla (Petteri Harjulehto, n=48) kielentämistehtäviä (noin yksi kielentämistehtävä viikottain) Opiskelijat ovat palauttaneet kielentämistehtävien ratkaisut luennoitsijalle Opiskelijoille tehtiin kurssin loppuvaiheessa kysely miten he ovat esimerkiksi kokeneet kielentämisen tukeneen opiskeluaan 11 Kysymykset (suluissa samaa mieltä olevien %-osuus) 7. Selitän mielelläni muille matematiikan tehtävän ratkaisuani. (73 %) 8. Oma kirjallinen kommentointi ja väliotsikointi helpottavat matematiikan tehtävän ratkaisua. (81 %) 9. Perustelujen kirjoittaminen sanallisesti on mielestäni helppoa. (52%) 10. Kirjoittaminen sanallisesti auttaa minua ymmärtämään tehtävää paremmin. (84%) 11. Matematiikassa vaikeinta on kirjoittaa ajatukset matemaattisessa muodossa. (47%) 12. Kun ratkaisen matematiikan tehtävää, teen ajatustyön päässäni enkä kirjoita paperille kuin välttämättömän. (44%) Perustelen ratkaisuni välivaiheita mielelläni käyttämällä matematiikan kaavoja tai muuta matematiikan symbolikieltä.(61%) 14. Sellaista matematiikan tehtävää, jossa on selitetty vaiheita luonnollisella kielellä, on helpompi ymmärtää kuin sellaista, jossa on vain matematiikan symbolikieltä.(89%) 4

5 13 Omin sanoin kielentäminen Yhteenvetona sanoisin: lisää kielentämistehtäviä! Erityisesti sellaisia, joissa pitää selittää mitä jokin tarkoittaa (esim. funktio) ja laskea aiheeseen liittyvä tehtävä (ei sieltä vaikeimmasta päästä) selittäen samalla. Kielentämistehtävät voisivat olla ns. ymmärrä asia paremmin tehtäviä. (Harjoitustehtävissähän vain lasketaan lähinnä.) 14 Matematiikan kielentäminen Matematiikan kielentämisellä tarkoitetaan matemaattisen ajattelun ilmaisemista kielen avulla pääsääntöisesti suullisesti tai kirjallisesti (Joutsenlahti 2009, vrt. Høines 2000). Matemaattisella ajattelulla tarkoitetaan matemaattisen tiedon (konseptuaalisen, proseduraalisen tai strategisen) prosessointia, jota ohjaavat ajattelijan metakognitiot (Joutsenlahti 2005, Sternberg 1996). 15 KIITOS MIELENKIINNOSTA! 5

Perusopetuksen matematiikan pitkittäisarviointi 2005-2012

Perusopetuksen matematiikan pitkittäisarviointi 2005-2012 5.10.2015 MAOL RAUMA / JoJo 1 Perusopetuksen matematiikan pitkittäisarviointi 2005-2012 5.10.2015 MAOL RAUMA / JoJo 2 Opetushallitus Koulutuksen seurantaraportti 2013:4 5.10.2015 MAOL RAUMA / JoJo 3 1

Lisätiedot

Oppimistyökalujen käyttö verkkopohjaisessa Matematiikkajumppa -tukiopetuksessa. Myllykoski Tuomas, Ali-Löytty Simo, Pohjolainen Seppo

Oppimistyökalujen käyttö verkkopohjaisessa Matematiikkajumppa -tukiopetuksessa. Myllykoski Tuomas, Ali-Löytty Simo, Pohjolainen Seppo Oppimistyökalujen käyttö verkkopohjaisessa Matematiikkajumppa -tukiopetuksessa Myllykoski Tuomas, Ali-Löytty Simo, Pohjolainen Seppo Sisältö Taustaa Perustaitotesti ja Matematiikkajumppa Tutkimuksen tarkoitus

Lisätiedot

Matematiikan kielentäminen. Matematiikan kielentäminen. I Matematiikan kielentämisen perusteet. Tuttua tunneilta

Matematiikan kielentäminen. Matematiikan kielentäminen. I Matematiikan kielentämisen perusteet. Tuttua tunneilta Matemaattisen ajattelun kehittämisen keinot koulutussarja 2011 Jorma Joutsenlahti Tampereen yliopisto Hyvin monet opiskelijat tuntevat, etteivät kykene milloinkaan ymmärtämään matematiikkaa, mutta että

Lisätiedot

Sanalliset tehtävät ja niiden ratkaisut

Sanalliset tehtävät ja niiden ratkaisut Sanalliset tehtävät ja niiden ratkaisut Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos 1 2 1 Jaakkola etc. (2001) KOLMIO Matematiikan harjoituskirja 2, Tammi, s.102 Sanallinen tehtävä

Lisätiedot

Opetusteknologiastako apua matematiikan opiskelun reaaliaikaisessa ohjaamisessa ja arvioinnissa. Kari Lehtonen Metropolia ammattikorkeakoulu

Opetusteknologiastako apua matematiikan opiskelun reaaliaikaisessa ohjaamisessa ja arvioinnissa. Kari Lehtonen Metropolia ammattikorkeakoulu Opetusteknologiastako apua matematiikan opiskelun reaaliaikaisessa ohjaamisessa ja arvioinnissa Kari Lehtonen Metropolia ammattikorkeakoulu Sisältö Matematiikka kompastuskivenä Matematiikan osaamisprofiilin

Lisätiedot

Jorma Joutsenlahti / 2008

Jorma Joutsenlahti / 2008 Jorma Joutsenlahti opettajankoulutuslaitos, Hämeenlinna Latinan communicare tehdä yleiseksi, jakaa Käsitteiden merkitysten rakentaminen ei ole luokassa kunkin oppilaan yksityinen oma prosessi, vaan luokan

Lisätiedot

Matematiikan osaaminen ja osaamattomuus

Matematiikan osaaminen ja osaamattomuus 1 Matematiikan osaaminen ja osaamattomuus Peda-Forum 21.8.2013 Seppo Pohjolainen Tampereen teknillinen yliopisto Matematiikan laitos 2 Esityksen sisältö Taustaa Matematiikan osaaminen ja osaamattomuus

Lisätiedot

4.10.2008. MOT-projekti. MOT-projektin tarkoitus. Oppikirjat ja opettajan oppaat

4.10.2008. MOT-projekti. MOT-projektin tarkoitus. Oppikirjat ja opettajan oppaat Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos 2 Mitä tarkoittaa "=" merkki? Peruskoulun 2. lk 3 1 MOT-projekti Matematiikan Oppimateriaalin Tutkimuksen projekti 2005-2007 Hämeenlinnan

Lisätiedot

TAMPEREEN TEKNILLINEN LUKIO

TAMPEREEN TEKNILLINEN LUKIO TAMPEREEN TEKNILLINEN LUKIO 1.8.2012 1 Visio ja toiminta ajatus Tampereen teknillinen lukio on Suomessa ainutlaatuinen yleissivistävä oppilaitos, jossa painotuksena ovat matematiikka ja tekniikka sekä

Lisätiedot

1.8.2008. Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos. 4.8.2008 Jyväskylän Kesäkongressi. JoJo / TaY 2

1.8.2008. Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos. 4.8.2008 Jyväskylän Kesäkongressi. JoJo / TaY 2 Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos 2 Tv-maailma nro 30, s. 2-3 1 4 Matematiikkakuva (View of Mathematics) koostuu kolmesta komponentista: 1) Uskomukset itsestä matematiikan

Lisätiedot

Kielenta minen derivaatan opetuksessa

Kielenta minen derivaatan opetuksessa Kielenta minen derivaatan opetuksessa Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Pro gradu -tutkielma Matematiikka Lokakuu 2013 Annina Kari Ohjaaja:

Lisätiedot

Matematiikka ja tilastotiede

Matematiikka ja tilastotiede Matematiikka ja tilastotiede Turun yliopistossa Lauri Heinonen lakahei@utu.fi 21.12 Laitilan lukiolla Minä Kirjoitin keväällä 2015 Laitilan lukiosta Matematiikan ja tilastotieteen koulutusohjelma Luen

Lisätiedot

January 31 to February 6, 2011

January 31 to February 6, 2011 January 31 to February 6, 2011 Week 5 January 2011 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 Monday 31 Tuesday 1 Wednesday 2 Thursday 3 Friday 4 Saturday 5 Sunday

Lisätiedot

TAMPEREEN YLIOPISTO. Matemaattisen ajattelun kirjallinen kielentäminen matemaattisen ongelman ratkaisuvälineenä

TAMPEREEN YLIOPISTO. Matemaattisen ajattelun kirjallinen kielentäminen matemaattisen ongelman ratkaisuvälineenä TAMPEREEN YLIOPISTO Matemaattisen ajattelun kirjallinen kielentäminen matemaattisen ongelman ratkaisuvälineenä Kasvatustieteiden tiedekunta Opettajankoulutuslaitos, Hämeenlinna Kasvatustieteen pro gradu

Lisätiedot

TAMPEREEN YLIOPISTO. Kielentämistehtävät lukion lyhyessä matematiikassa

TAMPEREEN YLIOPISTO. Kielentämistehtävät lukion lyhyessä matematiikassa TAMPEREEN YLIOPISTO Kielentämistehtävät lukion lyhyessä matematiikassa Kasvatustieteiden yksikkö Kasvatustieteen pro gradu -tutkielma Marko Blomqvist Heinäkuu 2015 Tampereen yliopisto Kasvatustieteiden

Lisätiedot

5.10.2008. Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos

5.10.2008. Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos Jorma Joutsenlahti Tampereen yliopiston opettajankoulutuslaitos 1 4.10.2008 Lahti JoJo / TaY 2 2 Mitä tarkoittaa "=" merkki? Peruskoulun 2. lk 4.10.2008 Lahti JoJo / TaY 3 3 MOT-projekti Matematiikan Oppimateriaalin

Lisätiedot

Dia 1. Dia 2. Dia 3. Tarinat matematiikan opetuksessa. Koulun opettaja. Olipa kerran pieni kyläkoulu. koulu

Dia 1. Dia 2. Dia 3. Tarinat matematiikan opetuksessa. Koulun opettaja. Olipa kerran pieni kyläkoulu. koulu Dia 1 Tarinat matematiikan opetuksessa merkityksiä ja maisemia matemaattiselle ajattelulle Dia 2 Olipa kerran pieni kyläkoulu koulu Dia 3 Koulun opettaja Laskehan kaikki luvut yhdestä sataan yhteen Dia

Lisätiedot

Matematiikan opintosuunta

Matematiikan opintosuunta Matematiikan opintosuunta Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on mahdotonta antaa. Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on

Lisätiedot

Kohti tentitöntä matematiikkaa

Kohti tentitöntä matematiikkaa Kohti tentitöntä matematiikkaa Riikka Nurmiainen Esitys Matematiikan, fysiikan ja kemian AMK-opettajien päivillä 2152015 Arviointikokeiluja talotekniikan matematiikan opintojaksoilla Miksi? Koska laskemalla

Lisätiedot

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 tuetusti / vaihtelevasti / hyvin / erinomaisesti vuosiluokka 1 2 3 4 käyttäytyminen Otat muut huomioon ja luot toiminnallasi myönteistä ilmapiiriä.

Lisätiedot

Insinöörimatematiikan tentin toteuttaminen EXAM-järjestelmällä

Insinöörimatematiikan tentin toteuttaminen EXAM-järjestelmällä Insinöörimatematiikan tentin toteuttaminen EXAM-järjestelmällä Matematiikan ja luonnontieteiden opetuksen tutkimuspäivät 27.-28.10.2016 Simo Ali-Löytty Jorma Joutsenlahti Jesse Kela Salla Koskinen Sisällys

Lisätiedot

Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa

Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa Substanssiosaamisen integroinnin vaikutus asenteisiin ja motivaatioon yliopistomatematiikassa 27.-28.10.2016 Mira Tengvall Terhi Kaarakka Simo Ali-Löytty Johdanto Matemaattinen osaaminen on olennainen

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa

Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa Linda Havola, Helle Majander, Harri Hakula ja Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto,

Lisätiedot

MAA8 Juuri- ja logaritmifunktiot, Opintokortti

MAA8 Juuri- ja logaritmifunktiot, Opintokortti MAA8 Juuri- ja logaritmifunktiot, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin

Lisätiedot

OPS-kommentointi - Perusraportti

OPS-kommentointi - Perusraportti OPS-kommentointi - Perusraportti 1. Nimi tai taho: Anonyymi 1 Nimi Avoimet vastaukset: Nimi - Marja-Liisa Mikkola 2. Mitä osiota kommentti koskee? Kirjoita kommenttisi oikealla olevaan ruutuun. Mitä osiota

Lisätiedot

Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa

Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa Riikka Nurmiainen riikka.nurmiainen@metropolia.fi Arviointikokeiluja talotekniikan matematiikan opintojaksoilla

Lisätiedot

Yksilöllisen oppimisen menetelmä. Ville Aitlahti, @matikkamatskut, www.matikkamatskut.com

Yksilöllisen oppimisen menetelmä. Ville Aitlahti, @matikkamatskut, www.matikkamatskut.com Yksilöllisen oppimisen menetelmä Yksilöllisen oppimisen menetelmä Tarve menetelmän takana: http://youtu.be/dep6mcnbh_c Oman oppimisen omistaminen Opettajan tietyt raamit toiminnalle Oman oppimisen omistaminen

Lisätiedot

This document has been downloaded from Tampub The Institutional Repository of University of Tampere. Publisher's version

This document has been downloaded from Tampub The Institutional Repository of University of Tampere. Publisher's version This document has been downloaded from Tampub The Institutional Repository of University of Tampere Publisher's version Authors: Silius Kirsi, Pohjolainen Seppo, Miilumäki Thumas, Kangas Jussi, Joutsenlahti

Lisätiedot

LAULUMUSIIKIN PÄÄAINE I

LAULUMUSIIKIN PÄÄAINE I MUUT KIELIOPINNOT 3la71 Saksan kieli 1 (4 op) 3la31 Italian kieli 1 (4 op) 3la72 Saksan kieli 2 (5 op) 3la32 Italian kieli 2 (5 op) k0-9123 Englannin kielen valmentava opintojakso (3 op) k0-9122 Ruotsin

Lisätiedot

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI

OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI OPINTOJAKSOJA KOSKEVAT MUUTOKSET/MATEMATIIKAN JA FYSIIKAN LAITOS/ LUKUVUOSI 2008-2009 Muutokset on hyväksytty teknillisen tiedekunnan tiedekuntaneuvostossa 13.2.2008 ja 19.3.2008. POISTUVAT OPINTOJAKSOT:

Lisätiedot

CHERMUG-pelien käyttö opiskelijoiden keskuudessa vaihtoehtoisen tutkimustavan oppimiseksi

CHERMUG-pelien käyttö opiskelijoiden keskuudessa vaihtoehtoisen tutkimustavan oppimiseksi Tiivistelmä CHERMUG-projekti on kansainvälinen konsortio, jossa on kumppaneita usealta eri alalta. Yksi tärkeimmistä asioista on luoda yhteinen lähtökohta, jotta voimme kommunikoida ja auttaa projektin

Lisätiedot

Aktivoiva matematiikan opetus Aalto-yliopistossa

Aktivoiva matematiikan opetus Aalto-yliopistossa Aalto-yliopistossa Helle Majander ja Linda Havola Matematiikan ja systeemianalyysin laitos Aalto-yliopisto, Perustieteiden korkeakoulu helle.majander@aalto.fi 23. elokuuta 2011 Johdanto Esittelemme kaksi

Lisätiedot

Oppiminen yliopistossa. Satu Eerola Opintopsykologi

Oppiminen yliopistossa. Satu Eerola Opintopsykologi Oppiminen yliopistossa Satu Eerola Opintopsykologi Haasteita opinnoissa Opinnot eivät käynnisty Opinnot jumahtavat Opinnot eivät pääty.. Kielipelkoiset Graduttajat Opiskelutaidot puutteelliset Vitkastelijat

Lisätiedot

Monikulttuuristen lasten hyvinvointi opetuksen näkökulmasta. Monikulttuurisuusasioiden neuvottelukunta

Monikulttuuristen lasten hyvinvointi opetuksen näkökulmasta. Monikulttuurisuusasioiden neuvottelukunta Monikulttuuristen lasten hyvinvointi opetuksen näkökulmasta Monikulttuurisuusasioiden neuvottelukunta 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 syksy syksy syksy 2015 2016 2017

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka

Opetusperiodi:I, suunnattu hakukohteille: Teknillinen fysiikka ja matematiikka Kurssin nimi ja koodi MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja sovelluksineen. Sisältö: vektorilaskentaa, matriisit

Lisätiedot

o Ohjeet annetaan kurssin aikana. MAY1 Luvut ja lukujonot, Opintokortti

o Ohjeet annetaan kurssin aikana. MAY1 Luvut ja lukujonot, Opintokortti MAY1 Luvut ja lukujonot, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin

Lisätiedot

Arviointitiedote. Vuosiluokat 1-6

Arviointitiedote. Vuosiluokat 1-6 Arviointitiedote Vuosiluokat 1-6 Uusi perusopetuksen opetussuunnitelma, OPS 2016, astui voimaan 1.8.2016. Uuden opetussuunnitelman myötä myös arviointi muuttuu ja kehittyy. Puolalan koulun oppilasarviointi

Lisätiedot

Aktivoivat opetuskokeilut matematiikan perusopetuksessa

Aktivoivat opetuskokeilut matematiikan perusopetuksessa Aktivoivat opetuskokeilut matematiikan perusopetuksessa Linda Havola ja Helle Majander Matematiikan ja systeemianalyysin laitos Aalto-yliopisto, Perustieteiden korkeakoulu linda.havola@aalto.fi 15. toukokuuta

Lisätiedot

Geogebra-appletit Scifestissä

Geogebra-appletit Scifestissä Geogebra-appletit Scifestissä Raportti Henri Heiskanen 185703 Itä-Suomen yliopisto 29. huhtikuuta 2014 Sisältö 1 Johdanto 1 2 Pajan suunnittelu ja applettien taustateoria 1 3 Geogebra-appletit 2 4 Pohdintaa

Lisätiedot

Inklusiivisen valmistavan opetuksen alueelliset koulutuspäivät

Inklusiivisen valmistavan opetuksen alueelliset koulutuspäivät Inklusiivisen valmistavan opetuksen alueelliset koulutuspäivät 20.-30.3.2017 Sisältö 1.Valmistavan opetuksen tavoite 2.Kenelle opetus on tarkoitettu 3.Opetuksen toteuttamisen eri tavat 4. Resurssit 5.

Lisätiedot

Opiskelijan tie fuksista asiantuntijaksi osaamisen itsearviointi osana koulutuksen laadun varmistusta

Opiskelijan tie fuksista asiantuntijaksi osaamisen itsearviointi osana koulutuksen laadun varmistusta Opiskelijan tie fuksista asiantuntijaksi osaamisen itsearviointi osana koulutuksen laadun varmistusta Jussi Myllärniemi Sanna Nokelainen Eila Pajarre TTY 21.8.2013 Taustaa Yliopisto-opetuksessa arvioinnin

Lisätiedot

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi 1 Eri näkökulmia A Matematiikka välineenä B Matematiikka formaalina järjestelmänä C Matematiikka kulttuurina Matemaattinen ajattelu ja matematiikan

Lisätiedot

Kielentäminen matematiikan opiskelussa

Kielentäminen matematiikan opiskelussa Jorma Joutsenlahti Matematiikan didaktiikan lehtori Tampereen yliopisto, Hämeenlinna Kielentäminen matematiikan opiskelussa Abstrakti. Käsittelen matematiikan didaktiikan näkökulmasta matemaattisen ajattelun

Lisätiedot

Maahanmuuttajaoppilaan matematiikan kielentäminen suullisen kielentämisen haasteet ja hyödyt

Maahanmuuttajaoppilaan matematiikan kielentäminen suullisen kielentämisen haasteet ja hyödyt T A M P E R E E N Y L I O P I S T O Maahanmuuttajaoppilaan matematiikan kielentäminen suullisen kielentämisen haasteet ja hyödyt Kasvatustieteiden yksikkö Kasvatustieteiden pro gradu -tutkielma EVELIINA

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

korkeasti koulutetun maahan muuttaneen osaamisen tunnistamisen ja tunnustamisen viitekehys

korkeasti koulutetun maahan muuttaneen osaamisen tunnistamisen ja tunnustamisen viitekehys URAREITTI korkeasti koulutetun maahan muuttaneen osaamisen tunnistamisen ja tunnustamisen viitekehys Työpaketti 3: Ammatillinen suomen kieli ja viestintätaito terveysalalla iltapäiväseminaari 30.5.2017

Lisätiedot

T A M P E R E E N Y L I O P I S T O. Päinvastasesti ku supistaminen Matematiikan suullinen kielentäminen peruskoulun alaluokilla

T A M P E R E E N Y L I O P I S T O. Päinvastasesti ku supistaminen Matematiikan suullinen kielentäminen peruskoulun alaluokilla T A M P E R E E N Y L I O P I S T O Päinvastasesti ku supistaminen Matematiikan suullinen kielentäminen peruskoulun alaluokilla Kasvatustieteiden yksikkö, Hämeenlinna Kasvatustieteen pro gradu -tutkielma

Lisätiedot

MAB2 Geometria, Opintokortti. Nimi:

MAB2 Geometria, Opintokortti. Nimi: MAB2 Geometria, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää Opiskelija palauttaa viimeistään kokeeseen o Opintokortin täytettynä

Lisätiedot

Matematiikan täsmäopetuksella

Matematiikan täsmäopetuksella Matematiikan täsmäopetuksella parempia insinöörejä Tommi Sottinen 1 Antti Rasila 2 1 Vaasan yliopisto 2 Aalto-yliopisto ITK 25 vuotta -juhlakonferenssi, Hämeenlinna, 15-17 huhtikuuta 2015 1 / 13 Sisältö

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Juliet-ohjelma: monipuolisia osaajia alaluokkien englannin opetukseen

Juliet-ohjelma: monipuolisia osaajia alaluokkien englannin opetukseen Juliet-ohjelma: monipuolisia osaajia alaluokkien englannin opetukseen Marja-Kaisa Pihko, Virpi Bursiewicz Varhennettua kielenopetusta, kielisuihkuttelua, CLIL-opetusta Alakoulun luokkien 1 6 vieraiden

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

4.5. MATEMAATTISTEN AINEIDEN OPETTAJANKOULUTUS. 4.5.1. Tutkinnon rakenne. Matemaattisten aineiden koulutusohjelma

4.5. MATEMAATTISTEN AINEIDEN OPETTAJANKOULUTUS. 4.5.1. Tutkinnon rakenne. Matemaattisten aineiden koulutusohjelma Matemaattisten aineiden 82 4.5. MATEMAATTISTEN AINEIDEN OPETTAJANKOULUTUS Koulutuksesta vastaa professori Seppo Pohjolainen, Matematiikan laitos, huone Sg207, puhelin 365 2424 email: seppo.pohjolainen@tut.fi.

Lisätiedot

Opetusperiodi:I, suunnattu hakukohteille:

Opetusperiodi:I, suunnattu hakukohteille: Kurssin nimi ja koodi Muut kommentit MS-A0001 Matriisilaskenta 5 op (Matrisräkning, Kuvaus: kurssi Teknillinen fysiikka ja matematiikka käsittelee lineaarisia yhtälöryhmiä sekä vektoreita ja matriiseja

Lisätiedot

Yksilöllinen oppiminen ja ohjattu itsearviointi

Yksilöllinen oppiminen ja ohjattu itsearviointi Yksilöllinen oppiminen ja ohjattu itsearviointi eduhakkeri Pekka Peura Martinlaakson lukio pekka.peura@eduvantaa.fi blogi: www.maot.fi www.facebook.com/eduhakkerit 12.4.2014 Aiheet 1) Oppimispotentiaali

Lisätiedot

Perusopetuksen opetussuunnitelman perusteet. Vanhempainiltakiertue Iissä syyskuu 2017 Alarannan koulu Vuosiluokat 0-6 Jaana Anttonen

Perusopetuksen opetussuunnitelman perusteet. Vanhempainiltakiertue Iissä syyskuu 2017 Alarannan koulu Vuosiluokat 0-6 Jaana Anttonen Perusopetuksen opetussuunnitelman perusteet Vanhempainiltakiertue Iissä syyskuu 2017 Alarannan koulu 20.9.2017 Vuosiluokat 0-6 Jaana Anttonen Uudistuneen perusopetuksen opetussuunnitelman perusteiden taustalla

Lisätiedot

Funktiot ja raja-arvo P, 5op

Funktiot ja raja-arvo P, 5op Funktiot ja raja-arvo 800119P, 5op Pekka Salmi 15. syyskuuta 2017 Pekka Salmi FUNK 15. syyskuuta 2017 1 / 122 Yleistä Luennot: ke 810, to 1214 (ensi viikosta lähtien) Luennoitsija: Pekka Salmi, MA327 Laskupäivä:

Lisätiedot

OPS2016. Uudistuvat oppiaineet ja vuosiluokkakohtaisten osuuksien valmistelu 21.10.2015. Eija Kauppinen OPETUSHALLITUS

OPS2016. Uudistuvat oppiaineet ja vuosiluokkakohtaisten osuuksien valmistelu 21.10.2015. Eija Kauppinen OPETUSHALLITUS OPS2016 Uudistuvat oppiaineet ja vuosiluokkakohtaisten osuuksien valmistelu 21.10.2015 Eija Kauppinen OPETUSHALLITUS 1 Paikallinen opetussuunnitelma Luku 1.2 Paikallisen opetussuunnitelman laatimista ohjaavat

Lisätiedot

DI:stä matematiikan opettajaksi - koulutuksen matematiikan opinnot

DI:stä matematiikan opettajaksi - koulutuksen matematiikan opinnot DI:stä matematiikan opettajaksi - koulutuksen matematiikan opinnot 1 Aloitustilaisuus 4.1.2010 Edutech Simo Ali-Löytty TTY:n matematiikan laitos exp A 1 = 1 2 (x µ)t Σ 1 (x µ) dx =(2π) n 2 det (Σ) 1 ad

Lisätiedot

OPPIKIRJATON OPETUS! Kari Nieminen!! Tampereen yliopiston normaalikoulu!! ITK 2015!

OPPIKIRJATON OPETUS! Kari Nieminen!! Tampereen yliopiston normaalikoulu!! ITK 2015! OPPIKIRJATON OPETUS! Kari Nieminen!! Tampereen yliopiston normaalikoulu!! ITK 2015! OMA TAUSTA! Matematiikan opetukseen liittyvä FL-tutkielma tietojenkäsittelyopissa 90-luvun alussa! Jatko-opiskelija "Mobile

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Matematiikan didaktiikka, osa II Algebra

Matematiikan didaktiikka, osa II Algebra Matematiikan didaktiikka, osa II Algebra Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Mitä on algebra? Algebra on aritmetiikan yleistys. Algebrassa siirrytään operoimaan lukujen sijaan niiden ominaisuuksilla.

Lisätiedot

JUUSO LINNUSMÄKI Matematiikan perusopintojen kehittäminen matematiikan kielentämisen. Diplomityö

JUUSO LINNUSMÄKI Matematiikan perusopintojen kehittäminen matematiikan kielentämisen. Diplomityö JUUSO LINNUSMÄKI Matematiikan perusopintojen kehittäminen matematiikan kielentämisen avulla Diplomityö Tarkastajat: Dosentti Jorma Joutsenlahti, Lehtori Terhi Kaarakka, Yliopistonlehtori Simo Ali-Löytty

Lisätiedot

TTY:n palvelut yrityksille. Opiskelijayhteistyön mahdollisuudet

TTY:n palvelut yrityksille. Opiskelijayhteistyön mahdollisuudet TTY:n palvelut yrityksille Opiskelijayhteistyön mahdollisuudet Miksi yhteistyöhön? Yhteistyö opiskelijoiden kanssa on yrityksille ainutlaatuinen tilaisuus hyödyntää tuoreinta asiantuntemusta ja ratkaista

Lisätiedot

Opiskelijoiden TVT:n käyttö sähköistyvässä lukiossa. Tarja-Riitta Hurme, Minna Nummenmaa & Erno Lehtinen, Oppimistutkimuksen keskus, OKL

Opiskelijoiden TVT:n käyttö sähköistyvässä lukiossa. Tarja-Riitta Hurme, Minna Nummenmaa & Erno Lehtinen, Oppimistutkimuksen keskus, OKL Opiskelijoiden TVT:n käyttö sähköistyvässä lukiossa Tarja-Riitta Hurme, Minna Nummenmaa & Erno Lehtinen, Oppimistutkimuksen keskus, OKL Tutkimuksen kohteena Opiskelijoiden tvt:n käyttö Laitteet ja ohjelmistot

Lisätiedot

Oppiminen yliopistossa. Satu Eerola Opintopsykologi

Oppiminen yliopistossa. Satu Eerola Opintopsykologi Oppiminen yliopistossa Satu Eerola Opintopsykologi Ongelmia voi olla.. missä tahansa opintojen vaiheissa Eniten ekana vuonna ja gradun kanssa, myös syventäviin siirryttäessä yllättävästi: huippu opiskelija

Lisätiedot

Ohjatun harjoittelun palaute

Ohjatun harjoittelun palaute Ohjatun harjoittelun palaute Raportti harjoittelukouluissa lukuvuonna 2007 2008 suoritetusta palautekyselystä Lähtökohta tavoitteena oli kerätä palautetietoa yliopistojen harjoittelukouluissa ohjattuun

Lisätiedot

teknologia kielenopetuksessa Teknologia on monimuotoista

teknologia kielenopetuksessa Teknologia on monimuotoista teknologia kielenopetuksessa Teknologia on monimuotoista kirjapainotaito piirtoheitin, monistuskone, nauhurit, kielistudio, televisio tietokone, internet, sosiaalinen media, mobiililaitteet Ari Huhta,

Lisätiedot

Matematiikka. Orientoivat opinnot /

Matematiikka. Orientoivat opinnot / Matematiikka Orientoivat opinnot / 30.8.2011 Tutkinnot Kaksi erillistä ja peräkkäistä tutkintoa: LuK + FM Laajuudet 180 op + 120 op = 300 op Ohjeellinen suoritusaika 3 v + 2 v = 5 v Tutkinnot erillisiä

Lisätiedot

Info Kieli- ja viestintäopinnoista ja valmentavista kieliopinnoista Karelia ammattikorkeakoulussa 2016

Info Kieli- ja viestintäopinnoista ja valmentavista kieliopinnoista Karelia ammattikorkeakoulussa 2016 2 Info Kieli- ja viestintäopinnoista ja valmentavista kieliopinnoista Karelia ammattikorkeakoulussa 2016 Merja Öhman Kielten lehtori Karelia ammattikorkeakoulu 3 Miksi kieliä? Opiskelu on kansainvälistä.

Lisätiedot

Minun tulevaisuuden lukioni. Johtaja Jorma Kauppinen Pro Lukion Lukioseminaari Helsinki

Minun tulevaisuuden lukioni. Johtaja Jorma Kauppinen Pro Lukion Lukioseminaari Helsinki Minun tulevaisuuden lukioni Johtaja Jorma Kauppinen Pro Lukion Lukioseminaari Helsinki 4.11.2016 Lyhyempää lyhyt lukiohistoria Suomen ensimmäinen lukio perustettiin 1630 Turkuun lukiokoulutuksella on pitkä,

Lisätiedot

Teknillistieteellisten alojen opintoprosessien seuraaminen, arviointi ja kehittäminen

Teknillistieteellisten alojen opintoprosessien seuraaminen, arviointi ja kehittäminen Teknillistieteellisten alojen opintoprosessien seuraaminen, arviointi ja kehittäminen Peda-forum 21.5.2008 Opintojenseuranta hanke 2005-2008 Opintoprosessien seurantahanke Mukana kaikki teknillistieteelliset

Lisätiedot

kehittämässä: -oppimäärä Arvioinnin kielitaitoa suomen kieli ja kirjallisuus

kehittämässä: -oppimäärä Arvioinnin kielitaitoa suomen kieli ja kirjallisuus Arvioinnin kielitaitoa kehittämässä: suomen kieli ja kirjallisuus -oppimäärä Minna Harmanen opetusneuvos, Opetushallitus Oppimisen arvioinnin kansallinen konfrenssi 11.4.2017, Ryhmä C4, https://urly.fi/la1

Lisätiedot

Matematiikka ja tilastotiede. Orientoivat opinnot /

Matematiikka ja tilastotiede. Orientoivat opinnot / Matematiikka ja tilastotiede Orientoivat opinnot / 27.8.2013 Tutkinnot Kaksi erillistä ja peräkkäistä tutkintoa: LuK + FM Laajuudet 180 op + 120 op = 300 op Ohjeellinen suoritusaika 3 v + 2 v = 5 v Tutkinnot

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

Pitkän matematiikan kertauskurssi *STACKjärjestelmän

Pitkän matematiikan kertauskurssi *STACKjärjestelmän Pitkän matematiikan kertauskurssi *STACKjärjestelmän avulla *System for Teaching and Assessment using a Computer algebra Kernel Mistä on kysymys? Mistä on kysymys? Mistä on kysymys? Mistä on kysymys? Järjestelmä,

Lisätiedot

Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia

Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia TAUCHI Tampere Unit for Computer-Human Interaction Plagiointi opintosuorituksissa TaY:n plagiointityöryhmän toimenpide-ehdotuksia Veikko Surakka Research Group for Emotions, Sociality, and Computing Tampere

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

Sähköiset kielentämistehtävät ja opiskelijoiden matematiikkakuva

Sähköiset kielentämistehtävät ja opiskelijoiden matematiikkakuva TAMPEREEN YLIOPISTO Pro gradu -tutkielma Silja Nieminen Sähköiset kielentämistehtävät ja opiskelijoiden matematiikkakuva Luonnontieteiden tiedekunta Matematiikka Joulukuu 2017 Tampereen yliopisto Luonnontieteiden

Lisätiedot

Kempeleen kunta Liite 1

Kempeleen kunta Liite 1 Kempeleen kunta Liite 1 Wilmassa KODIN KAAVAKE (1.-9. LK) LAPSEN NIMI 1. Miten lapsenne suhtautuu koulunkäyntiin? 2. Onko lapsellanne kavereita koulussa ja miten hän tulee toimeen kavereiden kanssa? 3.

Lisätiedot

Johnson, A Theoretician's Guide to the Experimental Analysis of Algorithms.

Johnson, A Theoretician's Guide to the Experimental Analysis of Algorithms. Kokeellinen algoritmiikka (3 ov) syventäviä opintoja edeltävät opinnot: ainakin Tietorakenteet hyödyllisiä opintoja: ASA, Algoritmiohjelmointi suoritus harjoitustyöllä (ei tenttiä) Kirjallisuutta: Johnson,

Lisätiedot

Lapsen esiopetuksen oppimissuunnitelma

Lapsen esiopetuksen oppimissuunnitelma Lapsen esiopetuksen oppimissuunnitelma 1 Kurikka lapsen nimi Kansilehteen lapsen oma piirros Lapsen ajatuksia ja odotuksia esiopetuksesta (vanhemmat keskustelevat kotona lapsen kanssa ja kirjaavat) 2 Eskarissa

Lisätiedot

JUPINAVIIKOT 2015. Ohjausta ja opetusta koskeva raportti Sosiaali- ja terveysala. Julkinen raportti. Niina Lampi & Juha Salmi. Opiskelijakunta JAMKO

JUPINAVIIKOT 2015. Ohjausta ja opetusta koskeva raportti Sosiaali- ja terveysala. Julkinen raportti. Niina Lampi & Juha Salmi. Opiskelijakunta JAMKO JUPINAVIIKOT 2015 Ohjausta ja opetusta koskeva raportti Sosiaali- ja terveysala Julkinen raportti Niina Lampi & Juha Salmi Opiskelijakunta JAMKO SISÄLLYSLUETTELO 10TUSISÄLLYSLUETTELOU10T... 2 10TUJohdantoU10T...

Lisätiedot

VIIKKI Klo 14: Najat Ouakrim-Soivio (Tutkijatohtori/ HY) Ymmärtääkö oppilas itsearviointia?

VIIKKI Klo 14: Najat Ouakrim-Soivio (Tutkijatohtori/ HY) Ymmärtääkö oppilas itsearviointia? VIIKKI Klo 14:45.- 16.00 Najat Ouakrim-Soivio (Tutkijatohtori/ HY) Ymmärtääkö oppilas itsearviointia? PUHEENVUORON SISÄLTÖ Itsearvioinnin: - tavoitteet, - rooli ja tehtävä. Itsearviointitaidot. Itsearviointimalleista:

Lisätiedot

TOIMINNALLISTA MATEMATIIKKAA OPETTAJILLE HANKE

TOIMINNALLISTA MATEMATIIKKAA OPETTAJILLE HANKE TOIMINNALLISTA MATEMATIIKKAA OPETTAJILLE HANKE Toiminnallista matematiikkaa opettajille hanke Lapin yliopiston kasvatustieteiden tiedekunnan Opetus ja kasvatusalan täydennyskoulutusyksikkö järjestää opetustoimen

Lisätiedot

SÄHKÖISEN MATEMATIIKAN TENTIN TOTEUTTAMINEN JA OPISKELIJOIDEN KOKEMUKSET SÄHKÖISESTÄ TEN- TISTÄ

SÄHKÖISEN MATEMATIIKAN TENTIN TOTEUTTAMINEN JA OPISKELIJOIDEN KOKEMUKSET SÄHKÖISESTÄ TEN- TISTÄ SÄHKÖISEN MATEMATIIKAN TENTIN TOTEUTTAMINEN JA OPISKELIJOIDEN KOKEMUKSET SÄHKÖISESTÄ TEN- TISTÄ Salla Koskinen 1, Jesse Kela 1, Simo Ali-Löytty 1 ja Jorma Joutsenlahti 2 1 Tampereen teknillinen yliopisto

Lisätiedot

Vä ritä ruutujä Kertoläsku 1-5

Vä ritä ruutujä Kertoläsku 1-5 Vä ritä ruutujä Kertoläsku 1-5 Matematiikan harjoitustehtäviä, 7-9v, 10min/sivu Nämä tehtävät auttavat lapsia ymmärtämään, kuinka 1) kertolasku toimii pienillä numeroilla, 2) kuinka kertolaskun voi ymmärtää

Lisätiedot

Vertaisohjaajat ensimmäinen vuosikurssin opiskelijoiden tukena

Vertaisohjaajat ensimmäinen vuosikurssin opiskelijoiden tukena Vertaisohjaajat ensimmäinen vuosikurssin opiskelijoiden tukena Peda-Forum, 16.-17.8.217, Vaasa Lasse Heikkinen ja Anna Kaasinen: Sovelletun fysiikan laitos Miksi? Opiskelumotivaatioon vaiku1avia tekijöitä

Lisätiedot

Liite 2: Opiskelijakysely

Liite 2: Opiskelijakysely Liite 2: Opiskelijakysely Sukupuoli ( ) Nainen ( ) Mies Ikä ( ) 18-24 ( ) 25-30 ( ) 31-44 ( ) 45-59 ( ) yli 60 Mistä maasta olet kotoisin? (pudotusvalikko, maat) Mikä on äidinkielesi? (pudotusvalikko,

Lisätiedot

Juurisyiden oivaltaminen perustuu usein matemaattisiin menetelmiin, jotka soveltuvat oireiden analysointiin.

Juurisyiden oivaltaminen perustuu usein matemaattisiin menetelmiin, jotka soveltuvat oireiden analysointiin. Juurisyiden oivaltaminen perustuu usein matemaattisiin menetelmiin, jotka soveltuvat oireiden analysointiin. Tämä pätee arkisten haasteiden ohella suuriin kysymyksiin: kestävä kehitys, talous, lääketiede,

Lisätiedot

Kansallinen seminaari

Kansallinen seminaari Kansallinen seminaari Matemaattis- luonnontieteellisten aineiden aineenopettajakoulutuksen pedagogisten opintojen tutkintovaatimukset Matemaattis- luonnontieteellisten aineiden didaktiikka luokanopettajakoulutuksessa

Lisätiedot

Yksilölliset opintopolut

Yksilölliset opintopolut Yksilölliset opintopolut Maija Koski, opettaja Työhön ja itsenäiseen elämään valmentava opetus ja ohjaus, Valmentava 2, autisminkirjon henkilöille, Pitäjänmäen toimipaikka Opetuksen ja ohjauksen suunnittelu

Lisätiedot

Aikuisten perusopetuksen uudistus Monikulttuurisuusasiain neuvottelukunta Marja Repo, aikuisopisto Hanna Kukkonen, sivistysvirasto

Aikuisten perusopetuksen uudistus Monikulttuurisuusasiain neuvottelukunta Marja Repo, aikuisopisto Hanna Kukkonen, sivistysvirasto Aikuisten perusopetuksen uudistus Monikulttuurisuusasiain neuvottelukunta 17.5.2017 Marja Repo, aikuisopisto Hanna Kukkonen, sivistysvirasto Uudistusprosessin aikataulu Eduskunta hyväksyi 29.12.2016 perusopetuslain

Lisätiedot

Kokeessa: 15 tehtävää, joista valitaan 10 ja vain kymmenen - valintaan kannattaa kiinnittää huomiota!!! (Tehtävien valintaa olemme harjoitelleet!

Kokeessa: 15 tehtävää, joista valitaan 10 ja vain kymmenen - valintaan kannattaa kiinnittää huomiota!!! (Tehtävien valintaa olemme harjoitelleet! Matematiikan yo-kirjoitukset Kokeessa: 15 tehtävää, joista valitaan 10 ja vain kymmenen - valintaan kannattaa kiinnittää huomiota!!! (Tehtävien valintaa olemme harjoitelleet!) Pitkän matematiikan kokeessa

Lisätiedot

Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen

Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen Tiina Tähkä tiina.tahka@oph.fi MAOL Pori 6.10.2012 1 Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen

Lisätiedot

Jorma Joutsenlahti, Kaisu Rättyä. Kasvatustieteen tieteenalayksikkö, Tampereen yliopisto, Hämeenlinna

Jorma Joutsenlahti, Kaisu Rättyä. Kasvatustieteen tieteenalayksikkö, Tampereen yliopisto, Hämeenlinna Joutsenlahti, J. & Rättyä, K. (2011) Matematiikan kielentämisen tutkimuksen lähtökohtia kielen näkökulmasta Sanan lasku projektissa. Teoksessa H. Silfverberg & J. Joutsenlahti (toim.) Tutkimus suuntaamassa

Lisätiedot

Lukiokokeilu (-21)

Lukiokokeilu (-21) Lukiokokeilu 2016-2020 (-21) Lukiokokeilu Munkkiniemen yhteiskoulu on mukana Opetus- ja kulttuuriministeriön lukiokoulutuksen tuntijakokokeilussa. lukiolaki (629/1998) 15 kokeilu käynnistynyt 1.8.2016

Lisätiedot

Tietoa lukio-opinnoista. Syksy 2016

Tietoa lukio-opinnoista. Syksy 2016 Tietoa lukio-opinnoista Syksy 2016 Lukion kurssimäärä Päättötodistukseen vaaditaan 75 kurssia. Pakollisia 47 (MB) tai 51 (MA) kurssia. Syventäviä kursseja tulee olla vähintään 10, loput kurssit voivat

Lisätiedot