Geogebra-appletit Scifestissä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Geogebra-appletit Scifestissä"

Transkriptio

1 Geogebra-appletit Scifestissä Raportti Henri Heiskanen Itä-Suomen yliopisto 29. huhtikuuta 2014

2 Sisältö 1 Johdanto 1 2 Pajan suunnittelu ja applettien taustateoria 1 3 Geogebra-appletit 2 4 Pohdintaa 4

3 1 Johdanto Tämä on Työpajatoimintaa matemaattisissa aineissa -kurssin raportti. Tässä dokumentissa raportoin kokemuksiani Scifest-tapahtuman Fysiikan ja matematiikan laitoksen non-stop-pajan suunnittelusta ja sen toteuttamisesta. Tämän lisäksi esittelen Geogebra-applettien taustalla olevan oppimisteoreettisen näkökulman ja pohdin pajan toimivuutta Scifest-tapahtumassa. 2 Pajan suunnittelu ja applettien taustateoria Non-stop-pajan suunnittellu käynnistyi vasta n. 2,5 viikkoa ennen Scifestin alkua. Lyhyen ajan ja pääsiäisloman seurauksena, päätimme yksissä tuumin hyödyntää jo laitoksella olemassa olevia pulmapelejä ja tehdä niiden rinnalle konstruktivistiseen oppimisteoriaan perustuvia Geogebra-appletteja. Applettien suunnittelun pohjana käytettiin Olli Karkkulaisen ja Lenni Haapasalon teosta CAS kummaa - oivallan matikkaa teknologian avulla. Teoksesta appleteiksi valikoituivat suoran, paraabelin ja ympyrän yhtälö. Tämän lisäksi päätimme hyödyntää Ainepedagogiikan perusteet -kurssilla tehtyä kolmion kulmien summaan liittyvää applettia. Appletit perustuvat Zimmermannin kahdeksaan elinvoimaiseen aktivitettiin, jotka ovat järjestää, keksiä, pelata ja leikkiä, konstruoida, soveltaa, laskea, arvioida, perustella ja järjestää (O. Karkkulainen, L. Haapasalo, 2014, CAS kummaa - oivallan matikkaa teknologian avulla, s.1). Interaktiivisten applettien tarkoitus on tarjota pajassa käyvälle henkilölle konkreettinen, motivoiva ja helposti lähestyttävä tutkimuskohde. Applettien avulla käsitteen (suoran, paraabelin ja ympyrän yhtälön) relevantit tunnusmerkit ovat helposti löydettävissä. Relevanttien tunnusmerkkien löytämistä voidaan MODEM-teorian (L. Haapasalo, 2012, Oppiminen, tieto ongelmanratkaisu ) mukaan nimittää orientaatio vaiheeksi. Parhaimmillaan applettien avulla on mahdollista päästä konseptuaalisen ja proseduraalisen tiedon samanaikaiseen aktivointiin. Samanaikainen aktivointi lähtee liikkeelle appletin perusteella tehtävistä spontaaneista havainnoista (proseduraalinen tieto) ja päätyy käsitteen relevanttien tunnusmerkkien löytämiseen (konseptuaalinen tieto). 1

4 3 Geogebra-appletit Kuva 1: Kolmion kulmien summa appletti. Kuva 2: Suoran yhtälön appletti 2

5 Kuva 3: Paraabelin yhtälön appletti Kuva 4: Ympyrän yhtälön appletti 3

6 4 Pohdintaa Geogebra-appletit eivät saavuttaneet non-stop-pajassa suurtakaan suosiota. Eniten kiinnostus heräsi pajassa vierailleilla opettajilla, jotka olivat kiinnostuneita applettien soveltamisesta opetuskäyttöön. Jopa vieraileva ranskalainen matemaatikko Eric Reyssat innostui leikkimään appleteilla pajan rakennusvaiheessa. Opetuskäytössä olenkin saanut applettien käytöstä pelkkää positiivista palautetta, niin harjoitteluissa kuin sijaisenakin toimiessa. Toisaalta ne lapset (n.3-5), jotka kokeilivat appletteja, tekivät aivan oikeita havaintoja ja ihmettelivät matematiikan helppoutta. Kokonaisuudessaan voidaan todeta, että opetuskäytössä hyvin toimivat ja oppilaiden mielestä perinteistä taululle kirjoittamista mielenkiintoisemmat appletit eivät toimi Scifestin non-stop-pajassa parhaalla mahdollisella tavalla, vaikka yritinkin muovata appletit mahdollisimman helposti lähestyttäviksi. Parempi vaihtoehto olisikin ehkä järjestää tämän tyyppinen paja joko opettajille koulutusmielessä tai oppilaille etukäteen varattavana pajana, jossa suurempana kantavana teemana olisi algebran ja geometrian välinen yhteys. Scifest-tapahtuman vapaamuotoisuudesta johtuen tämän tyyppinen koulutuksellinen ja oppimiseen tähtäävä toimintapiste ei ole paras mahdollinen. Lapset ja nuoret haluavat Scifestin tyylisessä tapahtumassa heitä itseään miellyttäviä ja viihdyttäviä toimintapisteitä, jolloin appletit on paras jättää koulumaailmaan ja matematiikan tunneille. 4

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi 1 Eri näkökulmia A Matematiikka välineenä B Matematiikka formaalina järjestelmänä C Matematiikka kulttuurina Matemaattinen ajattelu ja matematiikan

Lisätiedot

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä

Lisätiedot

Platonin kappaleet. Avainsanat: geometria, matematiikan historia. Luokkataso: 6-9, lukio. Välineet: Polydron-rakennussarja, kynä, paperia.

Platonin kappaleet. Avainsanat: geometria, matematiikan historia. Luokkataso: 6-9, lukio. Välineet: Polydron-rakennussarja, kynä, paperia. Tero Suokas OuLUMA, sivu 1 Platonin kappaleet Avainsanat: geometria, matematiikan historia Luokkataso: 6-9, lukio Välineet: Polydron-rakennussarja, kynä, paperia Tavoitteet: Tehtävässä tutustutaan matematiikan

Lisätiedot

Opetusteknologiastako apua matematiikan opiskelun reaaliaikaisessa ohjaamisessa ja arvioinnissa. Kari Lehtonen Metropolia ammattikorkeakoulu

Opetusteknologiastako apua matematiikan opiskelun reaaliaikaisessa ohjaamisessa ja arvioinnissa. Kari Lehtonen Metropolia ammattikorkeakoulu Opetusteknologiastako apua matematiikan opiskelun reaaliaikaisessa ohjaamisessa ja arvioinnissa Kari Lehtonen Metropolia ammattikorkeakoulu Sisältö Matematiikka kompastuskivenä Matematiikan osaamisprofiilin

Lisätiedot

Kimmo Koskinen, Rolf Malmelin, Ulla Laitinen ja Anni Salmela

Kimmo Koskinen, Rolf Malmelin, Ulla Laitinen ja Anni Salmela Olipa kerran köyhä maanviljelijä Kimmo Koskinen, Rolf Malmelin, Ulla Laitinen ja Anni Salmela 1 1 Johdanto Tässä raportissa esittelemme ratkaisukeinon ongelmalle, joka on suunnattu 7 12-vuotiaille oppilaille

Lisätiedot

Pelit, päättely ja ongelmat

Pelit, päättely ja ongelmat * Pelit, päättely ja ongelmat SciFest 2013: työpajan Kohtaa Matematiikka! osaraportti Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus Kurssin vastaava opettaja: Martti Pesonen Opettajat:

Lisätiedot

Mika Setälä Lehtori Lempäälän lukio

Mika Setälä Lehtori Lempäälän lukio LOPS 2016 matematiikka Mika Setälä Lehtori Lempäälän lukio Millainen on input? Oppilaiden lähtötaso edellisiin lukion opetussuunnitelmiin nähden pitää huomioida kun lukion uutta opetussuunnitelmaa tehdään.

Lisätiedot

Verkot. SciFest 2013: työpajan Kohtaa matematiikka! osaraportti. Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus

Verkot. SciFest 2013: työpajan Kohtaa matematiikka! osaraportti. Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus Verkot SciFest 2013: työpajan Kohtaa matematiikka! osaraportti Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus Kurssin vastaava opettaja: Martti Pesonen Vertaisohjaajat: Janne Valtonen

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

RAPORTTI. Pajapäivä Joensuun Steinerkoululla 20.5.2014. Joensuussa 22.5.2014 Tuuli Karhumaa

RAPORTTI. Pajapäivä Joensuun Steinerkoululla 20.5.2014. Joensuussa 22.5.2014 Tuuli Karhumaa RAPORTTI Pajapäivä Joensuun Steinerkoululla 20.5.2014 Joensuussa 22.5.2014 Tuuli Karhumaa Johdanto Työpajatoiminta matemaattisissa aineissa kurssiin kuului työskentely SciFest-tapahtumassa. Itse en päässyt

Lisätiedot

YMPYRÄ. Ympyrä opetus.tv:ssä. Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne

YMPYRÄ. Ympyrä opetus.tv:ssä. Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne YMPYRÄ Ympyrä opetus.tv:ssä Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne KAPPALEEN TERMEJÄ 1. Ympyrä Ympyrä on niiden tason pisteiden joukko, jotka ovat yhtä kaukana

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

3. Harjoitusjakso I. Vinkkejä ja ohjeita

3. Harjoitusjakso I. Vinkkejä ja ohjeita 3. Harjoitusjakso I Tämä ensimmäinen harjoitusjakso sisältää kaksi perustason (a ja b) ja kaksi edistyneen tason (c ja d) harjoitusta. Kaikki neljä harjoitusta liittyvät geometrisiin konstruktioihin. Perustason

Lisätiedot

MIKSI YLIOPISTON MATEMATIIKAN OPETUSTA PITÄÄ KEHITTÄÄ?

MIKSI YLIOPISTON MATEMATIIKAN OPETUSTA PITÄÄ KEHITTÄÄ? YLIOPISTOMATEMATIIKAN OPETTAJUUDEN KEHITTÄMINEN JORMA JOUTSENLAHTI YLIOPISTONLEHTORI (TAY), DOSENTTI (TTY), 1 2 MIKSI YLIOPISTON MATEMATIIKAN OPETUSTA PITÄÄ KEHITTÄÄ? 3 1. Opiskelijoiden lähtötaso Yliopisto-opiskelijoiden

Lisätiedot

Ajattelua monipuolisesti aktivoivat tehtävät yläkoulun suoranyhtälön opetuksessa

Ajattelua monipuolisesti aktivoivat tehtävät yläkoulun suoranyhtälön opetuksessa Ajattelua monipuolisesti aktivoivat tehtävät yläkoulun suoranyhtälön opetuksessa Henri Heiskanen Pro gradu -tutkielma Huhtikuu 2014 Fysiikan ja matematiikan laitos Itä-Suomen yliopisto i Henri Heiskanen

Lisätiedot

TYÖVALTAINEN OPPIMINEN / TOP-Laaja

TYÖVALTAINEN OPPIMINEN / TOP-Laaja TYÖVALTAINEN OPPIMINEN / TOP-Laaja tarvitsevien lasten ja perheiden kohtaaminen ja ohjaus 10ov Oikeaa työssäoppimista 4ov Teoriaopiskelua työelämässä 6 ov 1. Työprosessin hallinta tarvitseville lapsille

Lisätiedot

GeoGebra. Meeri Ensio

GeoGebra. Meeri Ensio GeoGebra Meeri Ensio GeoGebra Ilmainen dynaaminen matematiikkaohjelma Suomeksi, myös ohjekirja ja osa verkkosivuista Ei tarvitse asentaa, latautuu automaattisesti Aloita osoitteesta http://www.geogebra.org/cms/

Lisätiedot

Opetussuunnitelmasta oppimisprosessiin

Opetussuunnitelmasta oppimisprosessiin Opetussuunnitelmasta oppimisprosessiin Johdanto Opetussuunnitelman avaamiseen antavat hyviä, perusteltuja ja selkeitä ohjeita Pasi Silander ja Hanne Koli teoksessaan Verkko-opetuksen työkalupakki oppimisaihioista

Lisätiedot

Nuorten elämäntaitojen vahvistaminen 27.11.2013

Nuorten elämäntaitojen vahvistaminen 27.11.2013 Nuorten elämäntaitojen vahvistaminen 27.11.2013 Ulla Sirviö-Hyttinen, Suomen Lions liitto ry./ Lions Quest-ohjelmat Sanna Jattu, Nuorten keskus ry Anna-Maija Lahtinen, Suomen lasten ja nuorten säätiö Elämäntaidot

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Lukuvuosi Luonnontiede- ja matematiikkaluokka

Lukuvuosi Luonnontiede- ja matematiikkaluokka Mertalan koulun LuMa-luokka Lukuvuosi 2017-2018 Luonnontiede- ja matematiikkaluokka LuMa-luokka tarjoaa ylöspäin eriyttävää opetusta matematiikassa, fysiikassa ja kemiassa vahvan pohjan perusopinnoissa

Lisätiedot

Pelit matematiikan opetuksessa

Pelit matematiikan opetuksessa Pelit matematiikan opetuksessa Vadim Kulikov Helsingin Yliopisto Matematiikan ja tilastotieteen laitos Epsilonit kirjaa tutkimassa, 28.01.2012 Millaisia pelejä? pärjääminen edellyttää ongelmanratkaisukykyä,

Lisätiedot

OPS2016. Uudistuvat oppiaineet ja vuosiluokkakohtaisten osuuksien valmistelu 21.10.2015. Eija Kauppinen OPETUSHALLITUS

OPS2016. Uudistuvat oppiaineet ja vuosiluokkakohtaisten osuuksien valmistelu 21.10.2015. Eija Kauppinen OPETUSHALLITUS OPS2016 Uudistuvat oppiaineet ja vuosiluokkakohtaisten osuuksien valmistelu 21.10.2015 Eija Kauppinen OPETUSHALLITUS 1 Paikallinen opetussuunnitelma Luku 1.2 Paikallisen opetussuunnitelman laatimista ohjaavat

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

TOIMINNALLISTA MATEMATIIKKAA OPETTAJILLE HANKE

TOIMINNALLISTA MATEMATIIKKAA OPETTAJILLE HANKE TOIMINNALLISTA MATEMATIIKKAA OPETTAJILLE HANKE Toiminnallista matematiikkaa opettajille hanke Lapin yliopiston kasvatustieteiden tiedekunnan Opetus ja kasvatusalan täydennyskoulutusyksikkö järjestää opetustoimen

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Järjestelyraportti. MHK-SciFest 2011 - työpaja Koe Matematiikka! Joensuussa 22.6.2011. Tommi Sallinen

Järjestelyraportti. MHK-SciFest 2011 - työpaja Koe Matematiikka! Joensuussa 22.6.2011. Tommi Sallinen Järjestelyraportti MHK-SciFest 2011 - työpaja Koe Matematiikka! Joensuussa 22.6.2011 Tommi Sallinen Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus Kurssin vastaava opettaja: Martti

Lisätiedot

Opetuksen pyrkimyksenä on kehittää oppilaiden matemaattista ajattelua.

Opetuksen pyrkimyksenä on kehittää oppilaiden matemaattista ajattelua. Matematiikkaluokkien opetussuunnitelma 2016 Alakoulu Matematiikkaluokilla opiskelevalla oppilaalla on perustana Kokkolan kaupungin yleiset matematiikan tavoitteet. Tavoitteiden saavuttamiseksi käytämme

Lisätiedot

ADHD-LASTEN TUKEMINEN LUOKKAHUONEESSA

ADHD-LASTEN TUKEMINEN LUOKKAHUONEESSA ADHD-LASTEN TUKEMINEN LUOKKAHUONEESSA Tässä luvussa annetaan neuvoja parhaista tavoista tukea ADHD-lasta luokkahuoneessa. Lukuun on sisällytetty myös metodologiaan liittyviä ehdotuksia, joiden avulla voidaan

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

Pelit, päättely ja ongelmat

Pelit, päättely ja ongelmat Pelit, päättely ja ongelmat MHK-SciFest 2011: työpajan Koe Matematiikka! osaraportti Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus Kurssin vastaava opettaja: Martti Pesonen Opettajat:

Lisätiedot

GeoGebra Quickstart. Lyhyt GeoGebra 2.7 -ohje suomeksi

GeoGebra Quickstart. Lyhyt GeoGebra 2.7 -ohje suomeksi GeoGebra Quickstart Lyhyt GeoGebra 2.7 -ohje suomeksi Algebraikkuna GeoGebra on ilmainen matematiikan opetusohjelma. Siinä on työvälineitä dynaamiseen geometriaan, algebraan ja analyysiin. Voit piirtää

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

MATEMATIIKKA JA TAIDE II

MATEMATIIKKA JA TAIDE II 1 MATEMATIIKKA JA TAIDE II Aihepiirejä: Hienomotoriikkaa harjoittavia kaksi- ja kolmiulotteisia väritys-, piirtämis- ja askartelutehtäviä, myös sellaisia, joissa kuvio jatkuu loputtomasti, ja sellaisia,

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Äidinkielen ja kirjallisuuden syventävä kurssi

Äidinkielen ja kirjallisuuden syventävä kurssi Äidinkielen ja kirjallisuuden syventävä kurssi Kurssilla monipuolistetaan ja syvennetään äidinkielen oppimista. Oppilaat pääsevät valitsemaan itseään kiinnostavia aiheita, esimerkiksi ilmaisutaitoa/draamaa,

Lisätiedot

Sopulihyppyjä ja tonttuhäntien tähtitaivas Päiväkotilapsien luovaa mediankäyttöä Molla-hankkeessa

Sopulihyppyjä ja tonttuhäntien tähtitaivas Päiväkotilapsien luovaa mediankäyttöä Molla-hankkeessa Sopulihyppyjä ja tonttuhäntien tähtitaivas Päiväkotilapsien luovaa mediankäyttöä Molla-hankkeessa Esitys löytyy Mollan sivuilta: Molla.ejuttu.fi Molla- media, osallisuus, lapsi. Kurkistus pienten lasten

Lisätiedot

Kuva Suomen päätieverkko 1 Moottoritiet on merkitty karttaan vihreällä, muut valtatiet punaisella ja kantatiet keltaisella värillä.

Kuva Suomen päätieverkko 1 Moottoritiet on merkitty karttaan vihreällä, muut valtatiet punaisella ja kantatiet keltaisella värillä. POHDIN projekti TIEVERKKO Tieverkon etäisyyksien minimointi ja esimerkiksi maakaapeleiden kokonaismäärän minimointi sekä ylipäätään äärellisen pistejoukon yhdistäminen reitityksillä toisiinsa niin, että

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Lapsi- ja perhepalveluiden muutosohjelma Yhteiskehittämispäivien ryhmätyöt THL

Lapsi- ja perhepalveluiden muutosohjelma Yhteiskehittämispäivien ryhmätyöt THL Lapsi- ja perhepalveluiden muutosohjelma Yhteiskehittämispäivien ryhmätyöt Työskentely Puheenjohtaja ja sihteeri valittu etukäteen ja osallistujat jaettu ryhmiin Ryhmätyöskentelyn aikana dokumentointi

Lisätiedot

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4

LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 LUKUVUOSITODISTUKSEN ARVIOINTILAUSEET VUOSILUOKILLE 1 4 tuetusti / vaihtelevasti / hyvin / erinomaisesti vuosiluokka 1 2 3 4 käyttäytyminen Otat muut huomioon ja luot toiminnallasi myönteistä ilmapiiriä.

Lisätiedot

Tervetuloa esiopetusiltaan!

Tervetuloa esiopetusiltaan! Tervetuloa esiopetusiltaan! Esiopetus Järvenpäässä toimintakaudella 2010-2011 Esiopetuksen hakemusten palautus 19.2. mennessä Tiedot esiopetuspaikasta 31.5. mennessä Esiopetus alkaa 1.9.2010 ja päättyy

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Tabletit ja pilvipalvelu opettajan työkaluina lukiossa Hanna Naalisvaara ja Sari Tapola, Digabi - kouluttajat (luokka 41084)

Tabletit ja pilvipalvelu opettajan työkaluina lukiossa Hanna Naalisvaara ja Sari Tapola, Digabi - kouluttajat (luokka 41084) Lauantai 29.11.2014 pajat Klo13:00-13:45 Paja 1 Paja 2 Paja 3 Paja 4 Paja 5 Paja 6 Digabi - ohjelmistoihin tutustuminen Jussi Tyni, Digabi - kouluttaja (luokka 41032) Moodle työpaja sähköinen koe Tentti

Lisätiedot

OPPIMINEN,TIETO ONGELMANRATKAISU

OPPIMINEN,TIETO ONGELMANRATKAISU LENNI HAAPASALO OPPIMINEN,TIETO JA ONGELMANRATKAISU Kahdeksas päivitetty painos Kirjoittaja Lenni Haapasalo, professori, FT, KL Itä-Suomen yliopisto Kustantaja MEDUSA-Software Purolanraitti 2 80140 Joensuu

Lisätiedot

Johdatus matematiikkaan Tero Kilpeläinen

Johdatus matematiikkaan Tero Kilpeläinen Tero Kilpeläinen Syksy 2011 Mitä matematiikka on? Tällä kurssilla jutellaan, mitä sattuu mieleen tulemaan. Kurssin suoritusta (ja muuta oppimista) varten on syytä tutustua Petri Juutisen kirjoittamaan

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Viivan ulko- vai sisäpuolella?

Viivan ulko- vai sisäpuolella? Viivan ulko- vai sisäpuolella? Avainsanat: parillisuus, parittomuus, topologia Luokkataso: 1.-2. luokka, 3.-5. luokka Välineet: asfalttiliitua tai narua, puukeppi tai kivi tms. Kuvaus: Tehtävässä tutkitaan

Lisätiedot

Kannustusta jatkuvaan oppimiseen Optima-ympäristön avulla. Saana-Maija Huttula OpinTori Oulun yliopisto 2015

Kannustusta jatkuvaan oppimiseen Optima-ympäristön avulla. Saana-Maija Huttula OpinTori Oulun yliopisto 2015 Kannustusta jatkuvaan oppimiseen Optima-ympäristön avulla Saana-Maija Huttula OpinTori Oulun yliopisto 2015 1 Taustaa Atomifysiikka 1 on ainetason kurssi, sijoittuu 2. opiskeluvuoden syksylle Pakollinen

Lisätiedot

1. ja 2. kurssi (I-osa) Perusasiat kuntoon

1. ja 2. kurssi (I-osa) Perusasiat kuntoon 1. ja 2. kurssi (I-osa) Perusasiat kuntoon 3., 4. ja 5. kurssit (II-osa) Geometrian osuus Hippokrateen puolikuut syntyvät siten, että puoliympyrän sisään piirretään suorakulmainen kolmio ABC, jonka kateetit

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Tasapainotehta via vaakamallin avulla

Tasapainotehta via vaakamallin avulla Tasapainotehta via vaakamallin avulla Aihepiiri Luokka-aste Kesto Tarvittavat materiaalit / välineet Asiasanat Lausekkeet ja yhtälöt 7.-8. luokka 20 30 minuuttia Piirtoheitin, 2 kalvoa, erimuotoisia paloja

Lisätiedot

Haukiputaan koulun 5. ja 6. luokkien valinnaiset aineet lv

Haukiputaan koulun 5. ja 6. luokkien valinnaiset aineet lv Haukiputaan koulun 5. ja 6. luokkien valinnaiset aineet lv. 2017-2018 Piirros Mika Kolehmainen Valinnaisaineiden valinta tapahtuu Wilmassa huoltajan Wilma-tunnuksella 4. lk oppilaan huoltaja valitsee varsinaisesta

Lisätiedot

Heilurin heilahdusaika (yläkoulun fysiikka) suunnitelma

Heilurin heilahdusaika (yläkoulun fysiikka) suunnitelma Pasi Nieminen, Markus Hähkiöniemi, Jouni Viiri sekä toteutukseen osallistuneet opettajat Heilurin heilahdusaika (yläkoulun fysiikka) suunnitelma Tässä perinteistä työtä lähestytään rohkaisten oppilaita

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Symbolisen laskimen hyödyntäminen lukion pitkän matematiikan integraalilaskennan opetuksessa

Symbolisen laskimen hyödyntäminen lukion pitkän matematiikan integraalilaskennan opetuksessa Symbolisen laskimen hyödyntäminen lukion pitkän matematiikan integraalilaskennan opetuksessa Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Matematiikan

Lisätiedot

Kilpailunrajoitusvahinko. Antti Aine

Kilpailunrajoitusvahinko. Antti Aine Kilpailunrajoitusvahinko Antti Aine TALENTUM Helsinki 2016 1. painos Copyright 2016 Talentum Media Oy ja Antti Aine Yhteistyössä Lakimiesliiton Kustannus Kansi: Outi Pallari Taitto: Marja-Leena Saari ISBN

Lisätiedot

Lataa Poincaren konjektuuri - Donal O'Shea. Lataa

Lataa Poincaren konjektuuri - Donal O'Shea. Lataa Lataa Poincaren konjektuuri - Donal O'Shea Lataa Kirjailija: Donal O'Shea ISBN: 9789525697285 Sivumäärä: 320 Formaatti: PDF Tiedoston koko: 24.35 Mb Henri Poincare esitti maailmankaikkeuden rakennetta

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Matemaattisluonnontieteelliset. aineet

Matemaattisluonnontieteelliset. aineet Espoon aikuislukio Aineopiskelijan opas Lukuvuosi 2016-2017 Matemaattisluonnontieteelliset aineet Sisällysluettelo Yleistä. 2 Pitkä matematiikka.3 Laaja fysiikka.5 Laaja kemia.6 Lääketieteelliseen pyrkimässä?...7

Lisätiedot

Aineenopettajien erikoistyö Sisällönsuunnittelu, kevät 2010

Aineenopettajien erikoistyö Sisällönsuunnittelu, kevät 2010 Aineenopettajien erikoistyö Sisällönsuunnittelu, kevät 2010 Peter Hästö ja Marko Leinonen 1. joulukuuta 2009 Matemaattisten tieteiden laitos Aineenopettajien erikoistyö, 10 op yo tehtävien tarkistus, 3

Lisätiedot

Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos

Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos Rubikin kuutio ja ryhmät Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos Kehittäjä unkarilainen Erno Rubik kuvanveistäjä ja arkkitehtuurin professori 1974 Halusi leikkiä geometrisilla

Lisätiedot

Lukion opetussuunnitelman perusteet 2015 matemaattisissa aineissa Opetusneuvos Tiina Tähkä

Lukion opetussuunnitelman perusteet 2015 matemaattisissa aineissa Opetusneuvos Tiina Tähkä Lukion opetussuunnitelman perusteet 2015 matemaattisissa aineissa 14.11.2015 Opetusneuvos Tiina Tähkä MAHDOLLINEN KOULUKOHTAINEN OPS ja sen varaan rakentuva vuosisuunnitelma PAIKALLINEN OPETUSSUUNNITELMA

Lisätiedot

Värikoodit tarkoittavat opintojaksoja, joihin kyseinen sisältöalue ensisijaisesti soveltuu:

Värikoodit tarkoittavat opintojaksoja, joihin kyseinen sisältöalue ensisijaisesti soveltuu: Värikoodit tarkoittavat opintojaksoja, joihin kyseinen sisältöalue ensisijaisesti soveltuu: Oppimisen ja kehityksen perusteet Matematiikan pedagogiset perusteet Yhteisöllisen oppimisen perusteet (matematiikka)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Matematiikan didaktiikka, osa II Algebra

Matematiikan didaktiikka, osa II Algebra Matematiikan didaktiikka, osa II Algebra Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Mitä on algebra? Algebra on aritmetiikan yleistys. Algebrassa siirrytään operoimaan lukujen sijaan niiden ominaisuuksilla.

Lisätiedot

Vaikeat tilanteet esimiestyössä

Vaikeat tilanteet esimiestyössä Vaikeat tilanteet esimiestyössä Workshop esimiehille ja tiiminvetäjille 1.-3.10.2014 Suomen Yhteisöakatemia Oy Saarijärventie 5 B 14, Taitoniekantie 8 D 35 40200 Jyväskylä 40740 Jyväskylä www.sya.fi www.sya.fi

Lisätiedot

Opettajan materiaali. Kaija Hinkula Taiteilija koulussa-hanke 2011. Luova tie

Opettajan materiaali. Kaija Hinkula Taiteilija koulussa-hanke 2011. Luova tie Opettajan materiaali Kaija Hinkula Taiteilija koulussa-hanke 2011 Luova tie Maalaamaan voi oppia monin tavoin. Monet lähestymistavat ovat tarpeellisia, niin tarkat, tiettyyn teoriaan tai tekniikkaan pohjautuvat

Lisätiedot

Matematiikan osaaminen ja osaamattomuus

Matematiikan osaaminen ja osaamattomuus 1 Matematiikan osaaminen ja osaamattomuus Peda-Forum 21.8.2013 Seppo Pohjolainen Tampereen teknillinen yliopisto Matematiikan laitos 2 Esityksen sisältö Taustaa Matematiikan osaaminen ja osaamattomuus

Lisätiedot

Tiedot, taidot ja osaaminen oppivassa yhteiskunnassa

Tiedot, taidot ja osaaminen oppivassa yhteiskunnassa Tiedot, taidot ja osaaminen oppivassa yhteiskunnassa Prof. Sanna Järvelä Oulun yliopisto Oppijan taidot & oppivan yhteiskunnan haasteet Tarvitaan ehjät ja pidemmät työurat. Pään sisällä tehtävän työn osuus

Lisätiedot

Valinnaisopas Lukuvuosi

Valinnaisopas Lukuvuosi Valinnaisopas Lukuvuosi 2017 2018 7.luokka Johdanto Valinnaisina aineina voidaan opiskella yhteisten oppiaineiden syventäviä tai soveltavia oppimääriä, useasta oppiaineesta muodostettuja kokonaisuuksia,

Lisätiedot

Hyvä sivistystoimenjohtaja/rehtori

Hyvä sivistystoimenjohtaja/rehtori Hyvä sivistystoimenjohtaja/rehtori Digitaalisten oppimisympäristöjen tulo kouluihin on nopeutunut merkittävästi viimeisen kahden vuoden aikana. Tämä on johtanut opettajien tieto- ja viestintäteknisten

Lisätiedot

Tekemällä oppimista ja sisältöjen integrointia opettajan ja opiskelijan näkökulmia

Tekemällä oppimista ja sisältöjen integrointia opettajan ja opiskelijan näkökulmia Tekemällä oppimista ja sisältöjen integrointia opettajan ja opiskelijan näkökulmia koulutussuunnittelija Kaija Mattila, Pohjois-Karjalan koulutuskuntayhtymä, Ammattiopisto, Nurmes OPH 3.2.2014 2 Tekemällä

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

Kolmion kulmien summa. Maria Sukura

Kolmion kulmien summa. Maria Sukura Kolmion kulmien summa Maria Sukura Oppituntien johdanto Oppilaat kuulevat triangelin äänen. He voivat katsoa sitä ja yrittää nimetä tämän soittimen. Tutkimme, miksi triangelia kutsutaan tällä nimellä,

Lisätiedot

Lataa Matikka 3 - Tuula Pesonen. Lataa

Lataa Matikka 3 - Tuula Pesonen. Lataa Lataa Matikka 3 - Tuula Pesonen Lataa Kirjailija: Tuula Pesonen ISBN: 9789526320618 Sivumäärä: 48 Formaatti: PDF Tiedoston koko: 22.32 Mb Timanttivihko on tehty niille oppilaille, jotka haluavat perehtyä

Lisätiedot

VALINNAISET OPINNOT Laajuus: Ajoitus: Kood Ilmoittautuminen weboodissa (ja päättyy 06.03.2016.)

VALINNAISET OPINNOT Laajuus: Ajoitus: Kood Ilmoittautuminen weboodissa (ja päättyy 06.03.2016.) VALINNAISET OPINNOT Valinnaisia opintoja pedagogisten opintojen yleistavoitteiden suuntaisesti tarjoavat normaalikoulu, kasvatustiede ja ainedidaktiikka. Laajuus: 3 opintopistettä Ajoitus: Pääsääntöisesti

Lisätiedot

4.3 Kehäkulma. Keskuskulma

4.3 Kehäkulma. Keskuskulma 4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet

Lisätiedot

Aseman koulun valinnaiset aineet lukuvuonna

Aseman koulun valinnaiset aineet lukuvuonna Aseman koulun valinnaiset aineet lukuvuonna 2016-2017 Piirros Mika Kolehmainen Aseman koulun valinnaisuudesta info-tilaisuus 4.-5. lkn huoltajille ja oppilaille 6.4 klo 18 valinnat tehdään huoltajan WILMAssa

Lisätiedot

Möbiuksen nauha. Välineet: paperisuikaleita, paperiristejä (liitteenä) lyijykynä, teippiä, sakset, värikyniä, liimaa ja värillistä paperia

Möbiuksen nauha. Välineet: paperisuikaleita, paperiristejä (liitteenä) lyijykynä, teippiä, sakset, värikyniä, liimaa ja värillistä paperia Möbiuksen nauha Avainsanat: yksipuolinen paperi, kaksiulotteinen pinta, topologia Luokkataso: 1.-2. luokka, 3.-5. luokka, 6.-9. luokka, lukio Välineet: paperisuikaleita, paperiristejä (liitteenä) lyijykynä,

Lisätiedot

TAMPEREEN TEKNILLINEN LUKIO

TAMPEREEN TEKNILLINEN LUKIO TAMPEREEN TEKNILLINEN LUKIO 1.8.2012 1 Visio ja toiminta ajatus Tampereen teknillinen lukio on Suomessa ainutlaatuinen yleissivistävä oppilaitos, jossa painotuksena ovat matematiikka ja tekniikka sekä

Lisätiedot

Jyväskylän yliopisto Opetuksen ja opiskelun itsearviointi vs

Jyväskylän yliopisto Opetuksen ja opiskelun itsearviointi vs LAITOS Jyväskylän yliopisto Opetuksen ja opiskelun itsearviointi vs.201004 Tämän taulukon tarkoituksena on auttaa laitoksia kuvailemaan opetus- ja opiskelukulttuuriaan ja/tai niiden tukitoimien ominaisuuksia.

Lisätiedot

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)

Lisätiedot

5.6.3 Matematiikan lyhyt oppimäärä

5.6.3 Matematiikan lyhyt oppimäärä 5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa

Lisätiedot

INFOA: Matematiikan osaaminen lentoon!

INFOA: Matematiikan osaaminen lentoon! 1(5) INFOA: Matematiikan osaaminen lentoon! Ilmaisia koulutuksia! Opetushallitus on myöntänyt Lapin yliopistolle määrärahan koulutushankkeelle Matematiikan osaaminen lentoon: pedagogista ymmärrystä ja

Lisätiedot

Mihin tätä tarvii? - Merkityksellistä matikkaa yläkoululaisille. Jenni Räsänen 1 ja Elina Viro 2. Helsingin yliopisto. Tampereen teknillinen yliopisto

Mihin tätä tarvii? - Merkityksellistä matikkaa yläkoululaisille. Jenni Räsänen 1 ja Elina Viro 2. Helsingin yliopisto. Tampereen teknillinen yliopisto Mihin tätä tarvii? - Merkityksellistä matikkaa yläkoululaisille Jenni Räsänen 1 ja Elina Viro 2 1 Helsingin yliopisto 2 Tampereen teknillinen yliopisto Työpajan ohjelma Projektioppiminen ja muut oppimisen

Lisätiedot

Hunajakakku menossa lingottavaksi

Hunajakakku menossa lingottavaksi POHDIN projekti Hunajakenno Mehiläispesän rakentuminen alkaa kennoista. Kenno on mehiläisvahasta valmistettu kuusikulmainen lieriö, joka jokaiselta sivultaan rajoittuu toisiin kennoihin. Hunajakennot muodostavat

Lisätiedot

Kartioleikkaukset. SciFest 2015: työpajan Kohtaa matematiikka! osaraportti. Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus

Kartioleikkaukset. SciFest 2015: työpajan Kohtaa matematiikka! osaraportti. Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus Kartioleikkaukset SciFest 2015: työpajan Kohtaa matematiikka! osaraportti Fysiikan ja matematiikan laitos Itä-Suomen yliopisto Joensuun kampus Kurssin vastaava opettaja: Martti Pesonen Pääopettaja Tommi

Lisätiedot

HUOMAUTUS LUKIJALLE: Tässä on esitelty kaikkien aineiden palaute. Kysymyksestä 1. ilmenee mitä aineita oppilas on kurssilla lukenut.

HUOMAUTUS LUKIJALLE: Tässä on esitelty kaikkien aineiden palaute. Kysymyksestä 1. ilmenee mitä aineita oppilas on kurssilla lukenut. Kurssipalaute HUOMAUTUS LUKIJALLE: Tässä on esitelty kaikkien aineiden palaute. Kysymyksestä 1. ilmenee mitä aineita oppilas on kurssilla lukenut. OPPILAS 1 Vastaa seuraaviin kysymyksiin asteikolla 1 5.

Lisätiedot

Epäeuklidista geometriaa

Epäeuklidista geometriaa Epäeuklidista geometriaa 7. toukokuuta 2006 Sisältö 1 Johdanto 1 1.1 Euklidinen geometria....................... 1 1.2 Epäeuklidinen geometria..................... 2 2 Poincarén kiekko 2 3 Epäeuklidiset

Lisätiedot

Lataa Matemaattinen mallinnus. Lataa

Lataa Matemaattinen mallinnus. Lataa Lataa Matemaattinen mallinnus Lataa ISBN: 9789510354087 Sivumäärä: 272 Formaatti: PDF Tiedoston koko: 17.27 Mb Tietokoneiden, ohjelmistojen ja informaatioteknologian nopea kehitys vahvistaa laskennallisen

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot