Parametristen mallien identifiointiprosessi
|
|
- Ismo Ranta
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Parametristen mallien identifiointiprosessi Koesuunnittelu Identifiointikoe Epäparametriset menetelmät Datan esikäsittely Mallirakenteen valinta Parametrien estimointi Mallin validointi Mallin käyttö & ylläpito
2 Näkökulmia mallintamiseen Mallin pätevyysalue: Systeemin ominaisuudet toimintapisteessä / toimintapisteen ympäristössä Identifiointikoe Validointi pätevyysalueella Mallin oikeellisuus (validity): toiminta pätevyysalueella Mallin luotettavuus (credibility): toiminta pätevyysalueen ulkopuolella Miten luoda luotettavia malleja eikä pelkästään oikeita? laajempi pätevyysalue => luotettavuus vrt. Newtonin vetovoimalaki ja Ptolemaioksen käsitys aurinkokunnasta
3 Kriittisyys mallia kohtaan Malli on oikea ja ehkä luotettava, ei koskaan oikea Pääasia on systeemi ja ongelma jota mallilla ratkaistaan, ei malli Yhteys olemassaolevaan teoriaan ei kannata keksiä pyörää uudestaan Simulointituloksia tulkittaessa muistettava mallin tarkkuus ja approksimaatioiden taso
4 Myyvä malli Tärkeä käytännön ongelma: miten tilaaja saadaan ymmärtämään malli ja uskomaan sen toiminta? Mallintajan on ymmärrettävä mallin rakenne Mallintajan on pystyttävä kommunikoimaan malli erittäin yksinkertaisella tasolla Tilaajan on ymmärrettävä malli ja miten sen tulokset syntyvät => Monimutkaisuuden oltava aidosti tarpeen oltava ymmärrettävää tuotettava lisäarvoa
5 Katsaus menneeseen systeemi mallin käyttötarkoitus, reunaehdot (fysikaalinen) mallintaminen identifiointi luonnonlait yms. kokeita + vertailu mallikandidaatti validointi päättely, mallirakenteen valinta Lähestymistavat tukevat toisiaan ylläpito malli
6 Luennot 1-6 Mallintaminen, dynaamisten systeemien mallit: Fysikaalinen mallintaminen vs. identifiointi (1) Jatkuva-aikaisen tilamalli (2), input-output kuvaus (2), siirtofunktiomalli (2) Diskreettiaikainen tilamalli (3), input-output kuvaus (3), siirtofunktiomalli (3) Lineaaristen mallien ominaisuuksia (2, 3, 4): tasapainopiste, stabiilisuus, saavutettavuus, havaittavuus Fysikaalinen mallinnusprosessi (4) Tilaestimointi: Tilaestimaattori (5) Kalman suodin (5) Säätötekniikan alkeet: PID säädin (6) Tilatakaisinkytkentä (6)
7 Luennot 7-11 Epäparametriset identifiointimenetelmät: Aikataso: implussi- ja askelvaste transientti- ja korrelaatioanalyysi (7) Taajuustaso: taajuusvaste taajuus-, Fourier- ja spektraalianalyysi (8) Parametriset mallit: Malliluokat (9) Ennustevirhemenetelmä (9) Parametriestimaattien ominaisuudet (9) Identifioituvuus (10) Parametristen mallien identifiointiprosessi: Koesuunnittelu (10) Datan esikäsittely (10) Mallirakenteiden vertailu ja valinta (11) Mallin validointi (11)
8 Jos kurssi vielä jatkuisi, niin voitaisiin tarkastella vaikkapa seuraavia teemoja... Rekursiivinen estimointi: parametriestimaattia päivitetään aina kun saadaan uutta dataa MIMO-mallit Tilamallien estimointi Suljetun silmukan systeemien identifiointi (syvällisemmin) Epälineaariset black-box mallit: esim. neuroverkot, sumeat mallit
9 Tenttivaatimukset 1. Kirja luvut 1-4, 8-10 ja 12, liitteet A, B ja C - kaavoja ei tarvitse opetella ulkoa, mutta merkitys syytä ymmärtää! - luvusta 4 ei sivuja Luennot (luentokalvot + luennolla esitetyt asiat) - ks. luentojen sisällön tarkempi kuvaus 3. Laskuharjoitukset - eli nämä Tentissä pääpaino kokonaisuuksilla ja asian ymmärtämisellä simppelit laskut syytä osata
Parametristen mallien identifiointiprosessi
Parametristen mallien identifiointiprosessi Koesuunnittelu Identifiointikoe Epäparametriset menetelmät Datan esikäsittely Mallirakenteen valinta Parametrien estimointi Mallin validointi Mallin käyttö &
Identifiointiprosessi
Identifiointiprosessi Koesuunnittelu Identifiointikoe Datan esikäsittely Mallirakenteen valinta Parametrien estimointi Diagnostiset testit Mallin validointi Mallin käyttö & ylläpito Identifiointi- ja simulointiohjelmistoja
Mat Systeemien identifiointi, aihepiirit 1/4
, aihepiirit 1/4 Dynaamisten systeemien matemaattinen mallintaminen ja analyysi Matlab (System Identification Toolbox), Simulink 1. Matemaattinen mallintaminen: Mallintamisen ja mallin määritelmät Fysikaalinen
Identifiointiprosessi II
Identifiointiprosessi II Kertaus: informaatiokriteerit ja selittäjien testaaminen Mallin validointi Filosofisia mallinnusnäkökulmia Informaatiokriteerit Hyvyyskriteerin optimiarvo vs. parametrien lukumäärä
Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot
Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
Mat-2.129 Systeemien identifiointi
Luennot: TkT, erik. op. to 16-18 U261 Harjoitukset tekn.yo Ville Koskinen pe 10-12 joko mikroluokka U352 tai U261 Kurssikirja Ljung & Glad: Modeling of Dynamic Systems, Prentice-Hall, 1994 TAI Ibid.: Modelbygge
Identifiointiprosessi
Identifiointiprosessi Koesnnittel, identifiointikoe Mittastlosten / datan esikäsittely Ei-parametriset menetelmät: - transientti-, korrelaatio-, taajs-, Forier- ja spektraalianalyysi => askel-, implssi-
Dynaamisten systeemien identifiointi 1/2
Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion
Identifiointiprosessi
Identifiointiprosessi Identifiointiprosessi Ohjauksen valinta jatkuvasti herättävyys Käytännön koenäkökulmia Mallirakenteen valinta Mallin validointi Identifiointi mallinnustyökaluna Tavoitteena hyvä malli
Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla
Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,
Automaatiotekniikan laskentatyökalut (ALT)
Ohjeita ja esimerkkejä kurssin 477604S näyttökoetta varten Automaatiotekniikan laskentatyökalut (ALT) Enso Ikonen 6/2008 Oulun yliopisto, Prosessi- ja ympäristötekniikan osasto, systeemitekniikan laboratorio
Taajuus-, Fourier- ja spektraalianalyysi
Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Kuvaus aikatasossa Taajuus- Fourier- ja spektraalianalyysi tähtäävät
Taajuus-, Fourier- ja spektraalianalyysi
Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin taajuusominaisuuksien
Taajuus-, Fourier- ja spektraalianalyysi
Taajuus-, Fourier- ja spektraalianalyysi Impulssi- ja askelvastetekniikat sekä korrelaatioanalyysi tähtäävät impulssivasteen mallintamiseen aikataso Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin
Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla
Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,
Tietokoneavusteinen säätösuunnittelu (TASSU)
Ohjeita ja esimerkkejä kurssin 470463A näyttökoetta varten Tietokoneavusteinen säätösuunnittelu (TASSU) Enso Ikonen 9/2006 Oulun yliopisto, Prosessi- ja ympäristötekniikan osasto, systeemitekniikan laboratorio
TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV Kurssikuvaukset
TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV 2007-2008 Kurssikuvaukset 25.4.2007 Yhteensä 18 kurssia. A-36.3326 Tutkimusmetodologia (5 op.) 24+0 (2+0) I-II Opettaja prof. Kimmo Lapintie,
8. kierros. 1. Lähipäivä
8. kierros 1. Lähipäivä Viikon aihe Tilaestimointi Tilasäätö Saavutettavuus, ohjattavuus Tarkkailtavuus, havaittavuus Mitoitus Kontaktiopetusta: 8 tuntia Kotitehtäviä: 4 tuntia Tavoitteet: tietää Saavutettavuus
Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit
Hyvyyskriteerit ELEC-C1230 Säätötekniikka Aikaisemmilla luennoilla on havainnollistettu, miten systeemien käyttäytymiseen voi vaikuttaa säätämällä niitä. Epästabiileista systeemeistä saadaan stabiileja,
MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA
MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu
Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002
Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty
Kon Simuloinnin Rakentaminen Janne Ojala
Kon 16.4011 Simuloinnin Rakentaminen Janne Ojala Simulointi käytännössä 1/3 Simulaatiomalleja helppo analysoida Ymmärretään ongelmaa paremmin - Opitaan ymmärtämään koneen toimintaa ja siihen vaikuttavia
3. kierros. 2. Lähipäivä
3. kierros. Lähipäivä Viikon aihe (viikko /) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin
TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV 2007-2008 Kurssikuvaukset 26.4.2007
TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV 2007-2008 Kurssikuvaukset 26.4.2007 Yhteensä 20 kurssia. A-36.3326 Tutkimusmetodologia (5 op.) 24+0 (2+0) I-II Opettaja prof. Kimmo Lapintie,
Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
Tilaesityksen hallinta ja tilasäätö. ELEC-C1230 Säätötekniikka. Luku 6: Tilasäätö, tilaestimointi, saavutettavuus ja tarkkailtavuus
Tilaesityksen hallinta ja tilasäätö ELEC-C1230 Säätötekniikka Luku 6: Tilasäätö, tilaestimointi, saavutettavuus ja tarkkailtavuus Edellisessä luvussa tarkasteltiin napoja ja nollia sekä niiden vaikutuksia
TN-IIa (MAT22001), syksy 2017
TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden
4. kierros. 1. Lähipäivä
4. kierros 1. Lähipäivä Viikon aihe Taajuuskompensointi, operaatiovahvistin ja sen kytkennät Taajuuskompensaattorit Mitoitus Kontaktiopetusta: 8 h Kotitehtäviä: 4 h + 0 h Tavoitteet: tietää Operaatiovahvistimen
1 PID-taajuusvastesuunnittelun esimerkki
Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )
T SKJ - TERMEJÄ
T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä
Tehtävä 1. Vaihtoehtotehtävät.
Kem-9.47 Prosessiautomaation perusteet Tentti.4. Tehtävä. Vaihtoehtotehtävät. Oikea vastaus +,5p, väärä vastaus -,5p ja ei vastausta p Maksimi +5,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA
Signaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
MATLAB harjoituksia RST-säädöstä (5h)
Digitaalinen säätöteoria MATLAB harjoituksia RST-säädöstä (5h) Enso Ikonen Oulun yliopisto, systeemitekniikan laboratorio November 25, 2008 Harjoituskerran sisältö kertausta (15 min) Napojensijoittelu
Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence
Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin
20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10
Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste
ELEC-C7230 Tietoliikenteen siirtomenetelmät
A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2018 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto A! Yleistä Esitiedot:
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
3. kierros. 1. Lähipäivä
3. kierros 1. Lähipäivä Viikon aihe (viikko 1/2) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin
Systeemin käyttäytyminen. ELEC-C1230 Säätötekniikka. Systeemin navat ja nollat. Systeemin navat ja nollat
Systeemin käyttäytyminen ELEC-C1230 Säätötekniikka Luku 5: Navat ja nollat, systeemin nopeus, stabiilisuus ja värähtelyt, Routh-Hurwitz-kriteeri Systeemin tai järjestelmän tärkein ominaisuus on stabiilisuus.
ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit
ELEC-C3 Säätötekniikka Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit Aikaisemmilla luennoilla on havainnollistettu, miten systeemien
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen
8. kierros. 2. Lähipäivä
8. kierros 2. Lähipäivä Viikon aihe Tilaestimointi Tilasäätö Saavutettavuus, ohjattavuus Tarkkailtavuus, havaittavuus Mitoitus Kontaktiopetusta: 8 tuntia Kotitehtäviä: 4 tuntia Tavoitteet: tietää Saavutettavuus
Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan
Mat 2.4177Operaatiotutkimuksenprojektityöseminaari Tieverkonkunnonstokastinenennustemallija sensoveltaminenriskienhallintaan Väliraportti 3/4/2009 Toimeksiantajat: PöyryInfraOy(PekkaMild) Tiehallinto(VesaMännistö)
ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä
Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2016 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto Yleistä Esitiedot: (kurssi
Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan
Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Matemaattiset menetelmät, syksy 2012 Lassi Korhonen, Oulun yliopisto, Matematiikan jaos 4.12.2012 1 Lähtökohta, opiskelijan näkökulma
Palautekysely tilastollisen signaalinkäsittelyn kurssiin
Palautekysely tilastollisen signaalinkäsittelyn kurssiin Palautteeseen ei tarvitse laittaa nimeä. Kysymyksiä on molemmilla puolilla paperia 1. Muihin kursseihin verrattuna tämä kurssi oli mielestäni Vaikein
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
Harjoitus 7: Dynaamisten systeemien säätö (Simulink)
Harjoitus 7: Dynaamisten systeemien säätö (Simulink) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Dynaamisten (=ajassa kehittyvien)
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
SÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät, Systeemitekniikka Feb 2019
Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1
Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän
Mat Työ 2: Voimalaitoksen säätö
Mat-2.4133 Työ 2: Voimalaitoksen säätö Työssä tarkastellaan voimalaitoksen höyryntuotantoa polttoprosessi => kattilan höyrynkehitys => korkeapainehöyryn tuotanto => (turbiini) => vastapainehöyrynjakelu
SÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät / systeemitekniikka Jan 019
T DATASTA TIETOON
TKK / Informaatiotekniikan laboratorio Syyslukukausi, periodi II, 2007 Erkki Oja, professori, ja Heikki Mannila, akatemiaprofessori: T-61.2010 DATASTA TIETOON TKK, Informaatiotekniikan laboratorio 1 JOHDANTO:
Matemaattisesta mallintamisesta
Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät
SaSun VK1-tenttikysymyksiä 2019 Enso Ikonen, Älykkäät koneet ja järjestelmät (IMS),
SaSun VK1-tenttikysymyksiä 2019 Enso Ikonen, Älykkäät koneet ja järjestelmät (IMS), 5.2.2019 Tentin arvosteluperusteita: o Kurssin alku on osin kertausta SäAn ja prosessidynamiikkakursseista, jotka oletetaan
Tilastollinen päättely II (MAT22003), kevät 2018
Tilastollinen päättely II (MAT22003), kevät 2018 Petteri Piiroinen 14.1.2018 Tilastollinen päättely II -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Pakollinen
ELEC-C1230 Säätötekniikka
Johdanto: Digitaalinen (diskreetti, diskreettiaikainen) säätöjärjestelmä ELEC-C1230 Säätötekniikka Luku 10: Digitaalinen säätö, perusteet, jatkuu A/D-muunnoksessa analoginen signaali näytteistetään (sampling);
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi
Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida
Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi
Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa
Y (s) = G(s)(W (s) W 0 (s)). Tarkastellaan nyt tilannetta v(t) = 0, kun t < 3 ja v(t) = 1, kun t > 3. u(t) = K p y(t) K I
Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 6. harjoituksen ratkaisut. Laplace-tasossa saadaan annetulle venttiilille W (s) W (s)
Laskuharjoitus 9, tehtävä 6
Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen 16.06.2014 Ohjaaja: Urho Honkanen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Mittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
Harjoitus 3: Matlab - Matemaattinen mallintaminen
Harjoitus 3: Matlab - Matemaattinen mallintaminen Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen matemaattiseen
Tilayhtälötekniikasta
Tilayhtälötekniikasta Tilayhtälöesityksessä it ä useamman kertaluvun differentiaaliyhtälö esitetään ensimmäisen kertaluvun differentiaaliyhtälöryhmänä. Jokainen ensimmäisen kertaluvun differentiaaliyhtälö
Yhteisöllinen mallintaminen ja hajautetut mallit Ari Jolma Aalto-yliopisto. Mallinnusseminaari 2011 Lahti. Ari Jolma 1
Yhteisöllinen mallintaminen ja hajautetut mallit Ari Jolma Aalto-yliopisto Mallinnusseminaari 2011 Lahti Ari Jolma 1 Informaatio vs aine Informaatio ei ole kuten aine, sen kopiointi ei maksa juuri mitään
DEE Sähkötekniikan perusteet 5 op
DEE-11110 Sähkötekniikan perusteet 5 op Anna Kulmala ja Antti Stenvall Kurssi-info Mallintaminen istä kehitetään malleja luonnonilmiöiden seurauksien ennustamiseksi. Mallit formalisoidaan matematiikan
Harjoitus 7: Dynaamisten systeemien säätö (Simulink)
Harjoitus 7: Dynaamisten systeemien säätö (Simulink) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Dynaamisten (=ajassakehittyvien)
MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)
MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
FyMM IIa Kertausta loppukoetta varten
Tiistai 27.2.2018 1/11 FyMM IIa Kertausta loppukoetta varten 2018 Tiistai 27.2.2018 2/11 1 Kokeesta yleisesti 2 3 4 5 6 Koealue jakaantuu neljään pääalueeseen: 1 Ensimmäisen kertaluvun ODY:t 2 Toisen kertaluvun
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Harjoitus (15min) Prosessia P säädetään yksikkötakaisinkytkennässä säätimellä C (s+1)(s+0.02) 50s+1
ENSO IKONEN PYOSYS Harjoitus (15min) Prosessia P säädetään yksikkötakaisinkytkennässä säätimellä C. 1 P(s) = -----------------(s+1)(s+0.02) C(s) = 50s+1 --------50s Piirrä vasteet asetusarvosta. Kommentoi
Suhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
Talousmatematiikan perusteet: Johdanto. Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen
Talousmatematiikan perusteet: Johdanto Kurssin tavoitteet Käytännön järjestelyt Suosituksia suorittamiseen Kurssin tavoitteet Matematiikkaa hyödynnetään monilla kauppa- ja taloustieteen osaalueilla Esim.
Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin
Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä
Kurssin sisältö. Kurssilla vähemmän. Johdatus ohjelmistotekniikkaan. Mitä on ohjelmistotekniikka? Miten ohjelmistoja suunnitellaan ja toteutetaan?
Kurssin sisältö Johdatus ohjelmistotekniikkaan 2 0 0 8 Mitä on ohjelmistotekniikka? Miten ohjelmistoja suunnitellaan ja toteutetaan? Mitä työkaluja ohjelmistoja kehitettäessä käytetään ja miten? Historiaa
Tervetuloa! Matematiikka tutuksi
Tervetuloa! Matematiikka tutuksi Tavoitteet Yritetään vastata seuraaviin kysymyksiin: Mitä matematiikassa tutkitaan ja mihin sitä tarvitaan? Mitä tarkoitetaan todistuksella ja mitä hyötyä on käsitteiden
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:
Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen
Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen 08.09.2014 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston
PHYS-A3132 Sähkömagnetismi (ENG2) ( )
PHYSA Sähkömagnetismi (NG) (060 0600). Yleisarvioni kurssista kokonaisuutena =i perusteita vastata, =Välttävä, =Tyydyttävä, =Hyvä, =rittäin hyvä, =rinomainen Number of respondents: 0 6 8 0 6 8 0 6. Tapa,
Lakkautetut vastavat opintojaksot: Mat Matematiikan peruskurssi P2-IV (5 op) Mat Sovellettu todennäköisyyslaskenta B (5 op)
KORVAVUUSLISTA 31.10.2005/RR 1 KURSSIT, jotka luennoidaan 2005-2006 : Lakkautetut vastavat opintojaksot: Mat-1.1010 Matematiikan peruskurssi L 1 (10 op) Mat-1.401 Mat-1.1020 Matematiikan peruskurssi L
ELEC-C1230 Säätötekniikka
Johdanto: Digitaalinen (diskreetti, diskreettiaikainen) säätöjärjestelmä ELEC-C1230 Säätötekniikka Luku 10: Digitaalinen säätö, perusteet, jatkuu A/D-muunnoksessa analoginen signaali näytteistetään (sampling);
Aktivoiva luento-opetus & sillanrakennus kliiniseen opetukseen
Aktivoiva luento-opetus & sillanrakennus kliiniseen opetukseen Opintori 10.5.2012 Minna Männikkö Biolääketieteen laitos Lääketieteellisen biokemian ja molekyylibiologian kurssi 15 op, 170 opiskelijaa Kemia:
Helsinki University of Technology
Helsinki University of Technology Laboratory of Telecommunications Technology S-38.211 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications (2 ov) Syksy 1997 12. Luento: Kertausta,
Hieman lisää malleista ja niiden hyödyntämisestä
Hieman lisää malleista ja niiden hyödyntämisestä Ohjelmistojen mallintaminen Kesä 2012 (Avoin yliopisto) Toni Ruokolainen, 23.8.2012 Mallit Mallit ovat todellisuuden abstraktioita, jotka on muodostettu
Pelin kautta opettaminen
Pelin kautta opettaminen Pelin kautta opettaminen Pelaamaan oppii vain pelaamalla?? Totta, mutta myös harjoittelemalla pelinomaisissa tilanteissa havainnoimista, päätöksentekoa ja toimintaa. Pelikäsitystä
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite
KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen
H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot):
ELEC-C3 Säätötekniikka 5. laskuharjoitus Vastaukset Quiz: Luennon 4 luentokalvojen (luku 4) lopussa on esimerkki: Sähköpiiri (alkaa kalvon 39 tienoilla). Lue esimerkki huolellisesti ja vastaa seuraavaan:
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)