MCMC-menetelmien ongelmakohtia ja ratkaisuja
|
|
- Mika Ketonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MCMC-menetelmien ongelmakohtia ja ratkaisuja Aleksi Saari 72 Lähteet: Mackay: Introduction to Monte Carlo Methods Neal: Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation
2 2 Sisältö MCMC-menetelmien ongelmakohtia: hitaus konvergoinnin mittaus ja resurssien jako Tehostettuja MCMC-menetelmiä: hybridi Monte Carlo simuloitu karkaisu (Simulated annealing ylirelaksaatio (Overrelaxation ja järjestetty ylirelaksaatio
3 3 Mistä johtuu MCMC-menetelmien hitaus? Usein jakaumassa olevia korrelaatiota ei saada poistettua Tästä seuraa että otannassa on käytettävä hyvin pieniä askelia: T (σ max /σ min 2 Menetelmät ovat alttiita satunnaiskululle (random walk Menetelmien konvergoimiseen kuluvaa aikaa on vaikea arvioida Alaraja voidaan onnistua määrittämään mutta tarkan arvion tekeminen on hankalaa Laskennan mahdollista konvergointia on vaikea mitata Esim algoritmi voi juuttua "saarekkeeseen" pitkäksi aikaa jolloin saadaan väärä vaikutelma konvergoinnista
4 4 Suurten mallien käsittely Metropolis -menetelmää voidaan muuttaa siten että yhden uuden tilan etsintään käytettävän funktion Q(x ; x sijaan käytetään useita funktiota Q (b (x ; x Tällöin (ehdollinen päivitys kohdistetaan yhteen tai useampaan muuttujaan Gibbsin -menetelmän käyttö voi tehostua jos päivitetään kerralla yhden muuttujan sijasta suurempaa muuttujien osajoukkoa: x (t+ x (t+ a P (x x a x t a+x t K x (t+ a+ x(t+ b P (x a+ x b x t b+
5 5 Näytteiden määrä ja resurssien jako Tarvittavien näytteiden määrä ei ole riippuvainen ongelman dimensiosta vaan ainoastaan mitattavan suureen varianssista σ 2 = P (x(φ(x Φ 2 dx Tällöin jo pienellä määrällä näytteitä saadaan hyvä arvaus tutkittavalle ongelmalle Esim kahdellatoista näytteellä saadaan suureen estimaatille arvo jonka tarkkuus on σ/ 2 Edustavatkaan näytteet eivät tosin paljasta kaikkea jakaumasta ja ongelman luonteesta
6 h O K i L? E? E L D E K M TWO D? E O K Q K? E I O D G I K F Y D E E G MWH I F G J K L M K G I K N R h O K C D? E? E L D E K M T A D T O D J K E O K D P J D G E D M K E O D E E O K I F L L K C D F G? Q K E V K K G E O K L K I F L P K P? D A c C K? D L K? A D C C K L R h O K P P C KXc D E OXD c c K D L? E FXQ K c F c B C D L E OXl7D L m F J I O GWlWF G E K t D L C F K u c K L E? Q K I D B? E D J P? E O G K v K G I T7F Y I D L G M On olemassa erilaisia strategioita laskea halutut näytteet samalla resurssien määrällä: Lasketaan yksi pitkä Markovin ketju josta näytteet otetaan 2 Lasketaan monta kohtalaisen pitkää ketjua joista näytteet otetaan 3 Lasketaan jokaista näytettä varten oma Markovin ketju ( (2 (3! " # # $ " $ $ % & $ # # % $ '! ( # % * + ( # $ & - ( $ $ ( " ( $ $ ( # $ / # $ # 2 ( / ' $ # % # - # $ # % & # # % 8 # # 9 & ' / ( # % 3 : 5 ; ( ( < # % $ # ' $ = # $ # $ - # $ # # ( ( < # % $ # # 3 > 5 '! $ # Pidempi Markovin ketju konvergoi todennäköisemmin oikeaan jakaumaan ja A B C D F G H I F G J Kparametrejä L M K? N E F E O K P L K P E Q B F G R G D C Ctarvitsee T U D? E O A B C D F G säätää vain kerran I F G G B K? U V K L K I F L PWE O K? E D E K J K I E F L F I I F G D C C T7? FWD? E FXI L K D E K D E F Y? E D E K? Z [ \ ] ^ _ E O D E V K O F c K D L K L F B M O C G P K c K G P K G E? D A c C K? Y L F Aed f [ g R `] mutta lyhyet Markovin a b h O K L K D L K? ketjut K J K L D C c Q C K? E L D Eovat K K? f i M B L KXj kparemmin g R rippumattomia toisistaan Kultaista keskitietä suositaan j R l7d m K F G K C F G MXL B G U F Q E G MWD C C no? D A c C K? Y L F Ap@ E R R l7d m K D Y K VA K B AqC K G M E O7L B G? E r K L K G D C I F G F G? U F Q s E G M? F A K? D A c C K? Y L F AeK D I O R k R l7d m K no? O F L E L B G? U K D I O? E D L G M Y L F AD r K L K G E L D G P F Ae@ D C I F G s F G U E O E O K F G C T? E D E K E O D L K I F L P K PXQ G M E O K i G D C? E D E K F Y K D I A B C D F G R
7 7 Hybridi Monte Carlo Soveltuu jakaumille jotka saadaan kirjoitettua muotoon P (x = e E(x Z E(x ja sen gradientti on lisäksi pystyttävä määrittämään Määritellään Hamiltonin funktio H(x p = E(x + K(p jossa K(p kuvaa kineettistä energiaa esim K(p = p T p/2 Saadaan uusi jakauma P H (x p = Z H exp[ H(x p] = Z H exp[ E(x]exp[ K(p] josta alkuperäinen jakauma saadaan yksinkertaisesti jättämällä potentiaalitermi pois Potentiaalimuuttujan p käytöstä seuraa että lopputilan etäisyys alkutilasta kasvaa lineaarisesti lasketa-ajan kasvaessa ja laskenta voi nopeutua jopa kertoimella tai
8 8 Tilamuuttujaa ja potentiaalimuuttujaa päivitetään kahdessa vaiheessa: p exp[ K(p]/Z K 2 x = p p = E(x x vaihe: otetaan uusi potentiaalimuuttuja normaalijakaumasta 2 vaihe: päivitetään tila -ja potentiaalimuuttujaa siten että Hamiltonin funktio pysyy (likimain vakiona Tilan x todennäköisyyden ollessa pieni sen muutos on suuri ja toisinpäin Lisäksi tilaa muutetaan gradientin suuntaan Mackay: 2 vaiheessa tehdään N-kappaletta (hihavakio "leap frog" -askelia ts paloittainen lineaarinen approksimaatio
9 ! " # $ % & ' ( # * &! % # + & $ & % & * - ( & * # / % & * 2 * $ 3 % 4 5 # & ( % # $ 798 : ; ; < = 5! > $! #? 3 " & % # - # ( * & % 4 #! # 5 # - * # $ = A % % $ + # B% 4 & * % % & $! 5 % &!9 % 4 & # 3 % 4 & 5 # $ % $ # * ( $ & & - & * & $ % * % 3 # * 5 5 & * * & % C & 5 % # & * + & $ & % &!9 % 4 & ( % # $ $D! $ 5 * = E 4 & * F & * * 4 # 3/% 4 & & $! - # $ % * # % 4 & * & % 3 # % C & 5 % # & * = G 5 4 % C & 5 % # 5 # $ * * % * # H I J 79K ; L ( & - # + M * % & - * 3 % 4 N O P Q R S T 798 : 8 U U = V % & & 5 4 % C & 5 % # % 4 & # & $ % W * $! # X &! = & & # % 4 % C & 5 % # & * & 5 5 & - % &! Y % 4 & & # * $ % 4 & ( % # $ $ 3 & & Z 8 : 8 K [ $! \ 8 : 8 [ & * - & 5 2 % & ( = E 4 & * & 5 # $! ] + & * 4 # 3 * 4 # 3D * & F & $ 5 & # # % C & 5 % # & * 5 # $ & + & * # $ $ % ( 5 # $! % # $ $! 5 % &! % 4 & # 3 % 4 % * $ # % 5 ( # * & % # % 4 & % - 5 ( * & % # % 4 & % + & %! * % % # $ = E 4 & % C & 5 % # - & % & * H I J $!9N O P Q R S T 3 & & $! # X &!9 # & 5 4 % C & 5 % # * $ + $ # B! * % % # $ * 3 % 4 & $ * K ; $! 8 = 8 U U & * - & 5 % & ( = E 4 & ] * % % C & 5 % # & * * % # $ & 3D* % % & \ K : U ^ \ 8 : U * ( $ & $ & + % # % 4 & ] * % * % % & = E 4 & * & 5 # $! % C & 5 % # & $ * % # & $! $ * % % & $ & & % 4 & # % % # W# % 4 & & $ & + ( $! 2 * 5 - & = & & * $ 5 & % 4 & - # % & $ % ( & $ & + 9_W * * ( ( & % 4 $ & % 5 & $ & + 9à7Bb c d e * $ & 5 & * * ( ( + & % 4 $ % 3 * % % 4 & * % % = f 4 & $ % 4 & # & $ % W * $! # X &! # % 4 & % 4! % C & 5 % # % * + $ %! & & 5 # & * 5 4 * ( ( & = V % & % 4 & # % 4 % C & 5 % # 4 * & & $ * ( % &! % 4 & * % % & - - & * % # 4 & & 5 # & % - 5 ( # % 4 & % + & %! & $ * % = 5 V $! #? 3 & % # - # ( * & % 4 #!9 * $ + * * $9- # - # * (! & $ * % 3 % 4! * * 5 4 Kuvat a ja b esittävät hybridin Monte Carlo -menetelmän kulkua kun lähtöarvaus on todennäköinen/epätodennäköinen Kuvat c ja d esittävät tavallisen Metropolis -menetelmän kulkua samoilla lähtöarvauksilla
10 Simuloitu karkaisu Soveltuu jakaumille jotka saadaan kirjoitettua muotoon E(x on pystyttävä määrittämään P (x = e E(x Z Menetelmässä otannan kohteena olevan funktion "lämpötilaa" T lasketaan vähitellen korkeasta lämpötilasta matalampaan jolloin voidaan välttää juuttuminen epäedustavaan saarekkeeseen Otanta on hieman biasoitunut mutta sen korjaamiseksi on olemassa menetelmiä Yksinkertaisin muoto: P T (x = Z(T e E(x T t + Jos E(x voidaan hajottaa siististi käyttäytyvään ja hankalaan osaan E(x = E (x + E (x voidaan käyttää muunnosta: P T (x = Z (T e E (x E (x/t t +
11 Ylirelaksaatio Ylirelaksaatio on hybridiä Monte Carlo -menetelmää vastaava menetelmä Gibbsin otannan tehostamiseen jolla pyritään vähentämään satunnaiskulkua Soveltuu menetelmille joiden ehdolliset todennäköisyysjakaumat ovat gaussisia Adlerin menetelmässä ehdollista gaussista jakaumaa biasoidaan korreloimaan negatiivisesti vanhan arvon kanssa (α on yleensä negatiivinen jos α > puhutaan alirelaksaatiosta x t+ i = µ + α(x (t i ν N( ja α [ ] µ + ( α 2 /2 σν Menetelmä ei ole tarkasti tasapainoinen (detailed balance mutta se konvergoi P (x:ään joten sitä voidaan käyttää otannassa
12 l * *! + " # / $ %'& >? * AB * B + C - D E / F G 2 3 * H = 5 / 2 7 < /8 * 8 I 3 / 9 * : +/ / ; 3 < J * 2 8 /( / * * / / 7 / = ( 3 3 +( / / ; 5 / = : 4 < 8 ( * / D G ( * * + - / AB C D E G / /( +N + * * ; 4 9P5 ( += +O / ( / L = * DF 9 G O 4 / 4 3 N +/ P 2 ( = * * * R S + T - U V / R Q9?QW D E 8 F 4L* X 4 = /+ 2 3 E F J 3 5 / ; 5 3 : 3 9 O / ; = : 2 / * / D E Y < * Z + E W B B [ F DF < \ P] ^ _ ` a b ` P c ^ d ' ^e Qf g h i j k m n o L c ^' c ^ m c p ^ ^ q o r \ m c 'p ^ ^ o P m f l 's t u v w L ^P c p o o m f l f lg h k d c L] ^ _ c ^L f l Kuvissa a esitetään Gibbsin otannan ja ylirelaksaation toimintaa kun kaksi muuttujaa ovat vahvasti korreloituneita Kuva b on suurennus ylirelaksaation kaksiosaisesta toiminnasta
13 3 Järjestetty ylirelaksaatio (Neal 998 Ylirelaksaatiomenetelmä joka soveltuu myös tapauksiin joissa ehdolliset todennäköisyydet eivät ole gaussisia Menetelmän toiminta: Generoi K riippumatonta arvoa x i :lle ehdollisesta todennäköisyysjakaumasta P (x i {x j } j i 2 Järjestä lukujoukko vanhan arvon kera järjestykseen: x ( i x ( i x r i = x i x K i jossa r on vanhan arvon indeksi ko järjestyksessä 3 Aseta uusi arvo: x i = x(k r i
14 4 Jokaisella kierroksella siis generoidaan K riippumatonta arvoa mutta useissa tapauksissa menetelmän tuoma nopeutus korvaa laskennan määrän kasvun Jos käytettävissä on kumulatiivinen ehdollinen todennäköisyysfunktio F (x ja sen käänteisfunktio F (x voidaan uusi arvo x i saada laskematta K:ta riippumatonta arvoa Lisäksi joissain tapauksissa K:n riippumattoman arvon generointi ehdollisesta todennäköisyysfunktiosta vaatii vähemmän kuin K-kertaisen resurssimäärän
15 !" # $!% % & & ' (!" # " !" # * * + * * ' '! " " -! / Ylemmässä kuvassa Gibbsin menetelmän antama arvo τ:lle ja alemmassa τ:n arvo järjestettyä ylirelaksaatiota käyttäen Oikea arvo τ:lle on !" # * * + * * ' '! " " -! /
16 Yhteenveto Perus MCMC -menetelmät ovat monissa tilanteissa liian hitaita mutta niitä voidaan nopeuttaa Sopivan menetelmän valinta riippuu tutkittavasta jakaumasta Resurssien jako on myös yksi huomioitava seikka MCMC -menetelmiä käytettäessä
The Metropolis-Hastings Algorithm
The Metropolis-Hastings Algorithm Chapters 6.1 6.3 from Monte Carlo Statistical Methods by Christian P. Robert and George Casella 08.03.2004 Harri Lähdesmäki The Metropolis-Hastings Algorithm p. 1/21 Taustaa
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Konjugaattigradienttimenetelmä
Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä
Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme
Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
Generointi yksinkertaisista diskreeteistä jakaumista
S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Moniulotteiset satunnaismuuttujat ja jakaumat
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset
Parametrin estimointi ja bootstrap-otanta
Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista
Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0
Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence
Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin
P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)
Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat
Tilastotieteen aihehakemisto
Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet
Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
Mallipohjainen klusterointi
Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Inversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Harha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin
Luento 11: Rajoitusehdot. Ulkopistemenetelmät
Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja
Osakesalkun optimointi
Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja
Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
1 Perusteita lineaarisista differentiaaliyhtälöistä
1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
x = ( θ θ ia y = ( ) x.
Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2429 Systeemien Identifiointi 5 harjoituksen ratkaisut Esitetään ensin systeemi tilayhtälömuodossa Tiloiksi valitaan
Martingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Batch means -menetelmä
S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
8.1 Ehdolliset jakaumat
8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.
v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =
Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB
Keskeiset tulokset heikko duaalisuus (duaaliaukko, 6.2.1) vahva duaalisuus (6.2.4) satulapisteominaisuus (6.2.5) yhteys KKT ehtoihin (6.2.
Duaalisuus Lagrangen duaalifunktio ja duaalitehtävä määrittely ja geometria max θ(u,v), missä θ(u,v)=inf x X ϕ(x,u,v) s.e u 0 Lagr. funktio ϕ(x,u,v)=f(x)+u T g(x)+v T h(x) Keskeiset tulokset heikko duaalisuus
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Yleistetyistä lineaarisista malleista
Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Dierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
Johdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
Yleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on ma 18.12. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 10.1.2018 klo 10-14, johon ilmoittaudutaan Oodissa (ilmoittautumisaika
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Mat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
2. Keskiarvojen vartailua
2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena
Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala
Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä
Simuloinnin taktisia kysymyksiä
Simuloinnin taktisia kysymyksiä Simuloinnilla on aina tavoite. Simuloitaessa on käytössä ohjelma, joka tilastollisesti riittävän yhtenevä alkuperäisen systeemin kanssa. Miten simulointi järjestetään niin,
Maximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto
Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin
a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0
6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Mat Dynaaminen optimointi, mallivastaukset, kierros 1
Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä
Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV
Mat-.4 Optimointiopin seminaari, syksy 999 Referaatti 7.0.999 Gaussinen vaikutuskaavio Tommi Gustafsson 45434f Tfy IV JOHDATO Ross D. Shachter a C. Robert Kenley (989) esittelevät artikkelissaan Gaussian