Simuloinnin taktisia kysymyksiä

Koko: px
Aloita esitys sivulta:

Download "Simuloinnin taktisia kysymyksiä"

Transkriptio

1 Simuloinnin taktisia kysymyksiä Simuloinnilla on aina tavoite. Simuloitaessa on käytössä ohjelma, joka tilastollisesti riittävän yhtenevä alkuperäisen systeemin kanssa. Miten simulointi järjestetään niin, että tavoite saavutetaan riittävän hyvin ja ilman tarpeetonta työtä. Mitä mitataan. Miten simulointi aloitetaan/lopetetaan. Kauanko simuloidaan, onko simuloitava lisää, paljonko? 0

2 Parametrin estimointi Olkoon α tuntematon esimoitavan parametrin arvo. (esimerkiksi käyttöaste). Tavoite on estimoida α. Suoritetaan N simulointia tuloksin X i, i = 1,..., N. Näiden avulla johdetaan kaksi estimaattia: piste-estimaatti A = A(X 1,..., X N ) ja intervalliestimaatti [A 1, A 2 ]. Tavoitteena on, että α A on pieni ja α [A 1, A 2 ] suurella todennäköisyydellä. A on satunnaismuuttuja. Jos E(A) = α, A on harhaton (unbiased). Jos P ( A α > ɛ) 0, kun N, A on konsistentti. Jos α on satunnaismuuttujan X odotusarvo, A = X = 1 X i N on harhaton estimaatti. Lisäksi, jos X i :t ovat riippumattomia, V ar(a) = V ar( X) = joten A on konsistentti. 1 N 2V ar( i i X i ) = 1 N V ar(x) 0 1

3 Harhaton simulointi Miten simuloida niin, että X:n odotusarvo on α. Simulointikokeen kesto on määriteltävä estimoitavan suureen luonteen mukaisesti. Esimerkiksi käyttöaste (palveluaika/kokonaisaika) edellyttää vakioajan mittaisia toistoja. Keskimääräinen odotusaika/asiakas puolestaan vakiomäärää asiakkaita. Seurattavat suureet voi jakaa karkeasti systeemiriippuviin ja asiakasriippuviin. (mitataan aika-/asiakaskeskiarvoja). 2

4 Intervalliestimaatit Simulointeja on yleensä toistettava jotta V ar(x) voidaan estimoida. Havaittujen arvojen X i avulla on määrättävä A j (X) siten että annetulle luottamustasolle 1 β. P (A 1 (X) < α < A 2 (X)) = 1 β Jos X i : ovat normaalijakautuneita (N(α, σ)), testisuure ẑ(x) = X α N 1/2 σ on N(0, 1) jakautunut ja voidaan määrittää z 1, z 2 siten, että P (z 1 < ẑ < z 2 ) = 1 β. Käytännössä ẑ ei ole realistinen, koska σ on tuntematon. Sitä arvioidaan σ 2 s 2 = (X i X) 2 /(N 1). Testisuure z = ˆX α N 1/2 noudattaa t-jakaumaa (vapausasteella N-1). s Tälle voidaan määrätä z 1 ja z 2 vastaavasti. (z 1 = z 2 ) 3

5 Nyt P ( X (zs/n 1/2 ) < α < X + (zs/n 1/2 )) = 1 β Tämä määrittää intervalliestimaatin α:lle (luotettavuustasolla 1 β). Intervallin pituuden (2zs/N 1/2 ) lyhentäminen (tarkentaminen) tapahtuu, joko kasvattamalla N:ää (raakaa työtä) kasvattamalla β:aa (tinkimällä luotettavuudesta) pienentämällä s:ää (simuloimalla viisaammin) 4

6 Hypoteesin testaus Simuloinnin tulos on satunnainen, epävarma ja epätarkka. Miten vältetään virheelliset johtopäätökset. Esimerkki: yritetään perustella simuloinnilla investoinnin kannattavuutta. Investointi tehdään, jos ennustettu käyttöaste on riittävän suuri. Hypoteesin testauksessa tehdään kaksi hypoteesia H 0, nollahypoteesi: Systeemi ei toteuta asetettua ehtoa (tässä käyttöaste ei riittävän suuri). H 1, todistettava hypoteesi: Systeemi täyttää kriteerin (käyttöaste yli raja-arvon) H 0 hyväksytään aina, jos se on mahdollinen tulkinta simulointituloksille. H 1 hyväksytään vain, jos H 0 olisi hyvin epätodennäköinen (p < β) saatujen tulosten valossa. 5

7 Esimerkissä simuloidaan käyttöasteelle intervalliestimaatti [A 1, A 2 ]. Jos tavoite on osoittaa, että käyttöaste U > U 0, H 1 hyväksytään vain, jos A 1 > U 0, muuten hyväksytään H 0 riippumatta piste-estimaatin arvosta. Mahdollisia virhepäätelmiä on kahta lajia Tyyppi I: hylätään H 0, vaikka se on oikea tulos (tn < β). Tyyppi II: hyväksytään H 0, vaikka H 1 olisi oikea (erittäin todennäköistä, jos simulointeja vähän, vaadittu luotettavuus suuri tai systeemin tila lähellä päätösrajaa). Tyyppi II virhe merkitsee, että päätös jää tekemättä, koska simulointitulos ei ole riittävän luotettava. 6

8 Tasapainotilan simulointi Tasapainotilassa alkuehtojen (tai ympäristössä tapahtuneiden muutosten) vaikutus systeemin tilamuuttujien jakaumiin on hävinnyt. Vastakohtana transienttitila, jossa tilamuuttujien jakaumat muuttuvat ajan funktiona. (muistavat lähtötilan tai muutosta edeltäneen tilan). Tasapainotilaa tarvitaan yleensä normaalitilanteen simulointiin tai systeemin saattamiseen normaalitilaan ennen kiinnostavaa simuloitavaa tapahtumaa (esim. vikatilanne ja siitä toipuminen). Simulointiajon alussa alkutilanne vaikuttaa alkuosa tuloksista jätettävä huomiotta (tai tulos harhainen) työtä menee hukkaan useiden toistojen tekeminen alusta lähtien on kallista 7

9 Vaihtoehtona yksi pitkä simulointiajo, josta otetaan peräkkäisiä näytteitä vain yksi unohdettava alkutransientti usean toiston (näytteen) tekeminen tehokkaampaa peräkkäiset näytteet riippuvat toisistaan tulosten analyysi vaikeampaa Alkutransientin tunnistamiseen ja peräkkäisten näytteiden analyysiin tarvitaan kovarianssin ja autokorrelaation käsitteitä. Olkoon X j järjestetty jono satunnaismuuttujia, E(X j ) = α j. Määritellään Cov(X i, X j ) = E((X i α i )(X j α j )). Jos X i ja X j ovat riippumattomia, Cov(X i, X j ) = 0. 8

10 Olkoot X j :t simulointiajosta saatavia näytteitä. Tasapainotilassa X j :n jakauma ei riipu j:stä, E(X j ) = α, j. Tällöin Cov(X i, X j ) riippuu vain i j =: d:stä. Määritellään jonon X autokorrelaatio ρ d = Cov(X i, X i+d ) V ar(xi )V ar(x i+d ) Tasapainotilassa ρ d = Cov(X i,x i+d ) σ 2. Jos ρ d 0, d > d 0, alkutransientin voi katsoa hävinneen d 0 jälkeen. näytteen 9

11 Samasta simuloinnista otettujen peräkkäisten näytteiden analyysi voidaan tehdä kahdella eri tavalla Jätetään havaintoja pois näytteiden väliltä niin, että ρ 1 = ρ 2 =... = 0, ja analysoidaan riippumattomia näytteitä. Lasketaan ja huomioidaan autokorrelaatio simulointituloksissa Riippuville havainnoille X j otoskeskiarvon X varianssi on [ ] V ar( X) = σ2 N (1 d N N )ρ d Jos ρ d :t ovat positiivisia, X:n varianssi on suurempi kuin σ 2 /N, joten samaan luottamusväliin tarvitaan enemmän toistoja kuin riippumattomille havainnoille. d=1 10

12 Tasapainotilan simulointi Renewal-tekniikalla Tietyissä tapauksissa peräkkäisten näytteiden korrelaatio voidaan poistaa renewal-tekniikalla. Edellytyksenä on, että tietty tila toistuu usein (yleensä tyhjä systeemi) ja data on muistitonta (Poisson prosesseja). Jos uusi näyte aloitetaan aina samasta tilasta, peräkkäiset näytteet ovat riippumattomia (ilman, että dataa hukataan näytteiden väliltä). Yksittäisen näytteen kestoa ei voi kontrolloida, joten estimaateista tulee harhaisia. Esimerkki: yksinkertainen jonomalli (yksi jono, yksi palvelin), josta tarkastellaan keskimääräistä jonotusaikaa. Vaihdetaan näyte aina kun asiakas tulee tyhjään systeemiin. Simuloidaan n jaksoa, joissa L i asiakasta (i = 1,..., n). Yksittäiset jonotusajat w ij ja jonotusaika i:nnessä jaksossa y i = L i j=1 W ij. Simuloitu keskimääräinen odotusaika on yi w = = ȳ Li L Odotusajan oikea odotusarvo on µ = E(y) E(L) E( ȳ L ) 11

13 Harhan aiheuttaa se, että renewal-tila pakotetaan simuloinnin alkuun (alkutila ei edusta tasapainotilaa). Virhe on luokkaa 1/n. Näytteiden määrästä riippuvan harhan pienentämiseen on kehitetty ns. Jackknife-tekniikka. Olkoon ˆθ n estimaatti n näytteestä, jolle pätee n E(ˆθ n ) = θ + α i /n i Lasketaan lisäksi estimaatti ˆθ n 1 käyttäen n 1 näytettä. Tällöin n E(nˆθ n (n 1)ˆθ n 1 ) = θ + ˆα i /n 1 = θ + O( 1 n 2). i=1 i=2 (Ts. harha pienenee nopeammin n:n funktiona). Yleensä Jackknife muodostetaan poistamalla vuoronperään näyte i jolloin saadaan estimaatti ˆθ i ja korjattu estimaatti J i (ˆθ) = nˆθ (n 1)ˆθ i. Lopullinen estimaatti on 1 n i J i(ˆθ). Tekniikkaa voi käyttää, kun tuloksissa on näytteiden lukumäärästä riippuva harha. 12

14 Varianssin pienentäminen Tehokkain tapa lisätä simuloinnin tarkkuutta/luotettavuutta on pyrkiä pienentämään simuloitujen tulosten varianssia. Käsitellään neljää perustekniikkaa yhteisten satunnaislukujen käyttö antiteettiset satunnaisluvut satunnaissuureiden korvaaminen odotusarvoilla kontrollimuuttujat 13

15 Yhteiset satunnaisluvut Olkoon tavoitteena tutkia kahden systeemivariantin (A ja B) eroja. Vastaavat tulokset ovat X A ja X B. Kiinnostava suure on erotus X A X B ja sen odotusarvo α A α B. Suurelle saadaan piste-estimaatti X A X B. Jos simuloinnit ovat riippumattomia, erotuksen varianssi on V ar( X A ) + V ar( X B ) (S 2 A + S2 B )/N Jos simuloinnit ovat keskenään riippuvia, V ar( X A X B ) = V ar( X A ) + V ar( X B ) 2Cov( X A, X B ) Jos kokeet ovat keskenään positiivisesti korreloituneita, erotuksen varianssi on pienempi kuin riippumattomille kokeille. 14

16 Tähän voidaan päästä käyttämällä samoja satunnaislukuja molemmille systeemeille (tuloajat, palveluajat yms generoidaan samoja siemenlukuja käyttäen). Edellyttää sitä, että satunnaislukugeneraattoreiden käynnistys on täysin simuloijan kontrollissa jokaisessa toistossa. Toimii parhaiten, jos eri systeemivarianttien logiikka on mahdollisimman yhdenmukainen satunnaislukujen käytön osalta. Esim. arvotaan kaikki asiakkaaseen liittyvät suureet kerralla riippumatta asiakkaan tulevasta kohtalosta. Näin taataan, että helpot ja vaikeat tulevat samassa järjestyksessä. 15

17 Antitettiset muuttujat Tarkastellaan yksittäistä simulointikoetta (ei kahden kokeen erotusta). Oletetaan satunnaislukusekvenssit U i, jotka antavat N tulosta X i. tuloksin Xi. Asetetaan piste- Tehdään N lisäkoetta satunnaisluvuilla Ui estimaatiksi Tälle E(Y ) = E(X) = E(X ) ja Y = ( X + X )/2. V ar(y ) = 1 4 (V ar( X) + V ar( X ) + 2Cov( X, X ) eli 1 2 (V ar( X) + Cov( X, X )). Jos Cov( X, X ) < 0, varianssi pienenee enemmän kuin tehtäessä N riippumatonta lisäkoetta. 16

18 Negatiivista korrelaatiota voi hakea esim. korvaamalla systemaattisesti U 1 U:lla Tas(0,1) generaattorissa. vaihtamalla esim tuloaikojen ja palveluaikojen generaattoreiden siemenluvut keskenään. Menetelmällä saadaan 2N simulointiajolla N riippumatonta simulointia, joissa ääri-ilmiöt esiintyvät symmetrisemmin ja siten varianssi on yleensä pienempi. 17

19 Odotusarvoilla korvaaminen Usein havainto kiinnostavasta suureesta on summa satunnaisesta määrästä satunnaismuuttujia. Jos jonkin tulokseen vaikuttavan satunnaissuureen jakauma tai odotusarvo tunnetaan, tätä voidaan hyödyntää havainnon analyysissä. Esimerkki: käyttöasteen määrääminen. Käyttöaste on N palv i=1 s i /T missä s i on yksittäisen asiakkaan palveluaika, N palv palveltujen asiakkaiden määrä. E(s i ) tunnetaan (simulointiparametri), merkitään t s. Tällöin myös on estimaatti käyttöasteelle. N palv t s /T Tasapainossa palvellut asiakkaat = tulleet asiakkaat - hukatut asiakkaat. Tulleiden asiakkaiden jakauma/odotusarvo tunnetaan (simulointiparametri, t a aikayksikköä/asiakas). Eli N palv = T/t a N lost. Tästä käyttöaste on t s /t a N lost t s /T 18

20 Tällä on sama odotusarvo mutta yleensä pienempi varianssi kuin alkuperäisellä havainnolla. Kadotettuja asiakkaita voi vielä analysoida tarkemmin. Asiakas kadotetaan vain kun asiakas on tulossa täyteen systeemiin. Siis E(N lost ) = E(T full )/t a Voidaan siis tarkkailla aikaa, jolloin jono on täysi. Estimaatti t s /t a (1 T full /T ) Eri mittarien generointi ei edellyttänyt uusia simulointeja (vain ongelman ymmärtämistä ja analyysiä). On edullista seurata useampaa mittaria ja valita se, joka antaa luotettavimman tuloksen. 19

21 Kontrollimuuttujat Kontrollimuuttujien käyttö on usein tehokkain keino varianssin pienentämiseen. On tunnistettava havainnoitavan suureen kanssa vahvasti korreloiva suure, jonka odotusarvo tunnetaan. Tämän jälkeen havainnoidaan näiden erotusta. Olkoot tarkkailtavana havainnot X i, odotusarvo E(X i ) = α tuntematon. Lisäksi mitataan Y i, jolle E(Y i ) = β tunnetaan. Muodostetaan mitattava suure V = X + β Ȳ. Tämä on harhaton estimaatti α:lle, E(V ) = α + β β = α. V ar(v ) = V ar( X) + V ar(ȳ ) 2Cov( X, Ȳ ) Jos Cov( X, Ȳ ) > 1 V ar(ȳ ), on V tarkempi havainto kuin X (luottamusväli 2 pienempi). Kontrollimuuttuja Y voi olla yksinkertaisemman mallin simulointitulos. Edellyttää toisen mallin simulointia + analyyttistä ratkaisemista (eli voi olla kallista ja vaikeaa). Vaihtoehtoisesti Y voi olla jokin mallin data, jonka jakauma tunnetaan ja joka selittää mitattavaa suuretta hyvin (ns. concommittant muuttuja). (Ei ylimääräistä mallia tai laskentatyötä). Käyttöaste-esimerkissä esim saapuneet asiakkaat (kertaa palveluaika). 20

Simuloinnin taktisia kysymyksiä

Simuloinnin taktisia kysymyksiä Simuloinnin taktisia kysymyksiä Timo Tiihonen Tietotekniikan laitos 2010 Simuloinnin taktisia kysymyksiä Simuloinnilla on aina tavoite. Simuloitaessa on käytössä ohjelma, joka tilastollisesti riittävän

Lisätiedot

Batch means -menetelmä

Batch means -menetelmä S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

S Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(32) Teoria

S Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(32) Teoria S-38.148 Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(32) Teoria Johdanto simulointiin Simuloinnin kulku prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

S Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(37) Teoria

S Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(37) Teoria S-38.3148 Tietoverkkojen simulointi / Varianssinreduktiotekniikat 1(37) Teoria Johdanto simulointiin Simuloinnin kulku prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Simuloinnin strategisia kysymyksiä

Simuloinnin strategisia kysymyksiä Simuloinnin strategisia kysymyksiä Miten toimitaan, kun halutaan tietää enemmän kuin yhden simulointimallin tulos. Miten tulos riippuu mallin syöttötiedoista. Miten tulos riippuu mallin rakenteellisista

Lisätiedot

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Simuloinnin strategisia kysymyksiä

Simuloinnin strategisia kysymyksiä Simuloinnin strategisia kysymyksiä Timo Tiihonen Tietotekniikan laitos 2010 Simuloinnin strategisia kysymyksiä Miten toimitaan, kun halutaan tietää enemmän kuin yhden simulointimallin tulos. Miten tulos

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

2. TILASTOLLINEN TESTAAMINEN...

2. TILASTOLLINEN TESTAAMINEN... !" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...

Lisätiedot

Havaintoaineiston trimmauksen vaikutus otoskeskiarvoon

Havaintoaineiston trimmauksen vaikutus otoskeskiarvoon TEKNILLINEN KORKEAKOULU Teknillisen fysiikan ja matematiikan koulutusohjelma Mat-.108 Sovelletun matematiikan erikoistyöt 13.11.001 Havaintoaineiston trimmauksen vaikutus otoskeskiarvoon Kalle Soukka 4193W

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua 2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61 3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu 10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Prosessin reaalisaatioiden tuottaminen

Prosessin reaalisaatioiden tuottaminen Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 20/09/2004

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia

Lisätiedot

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista 6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu 5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017

Lisätiedot

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut).

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). KÄSITTEITÄ POPULAATIO Joukko, jota tutkitaan (äärellinen, ääretön). Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). Näiden välillä ei aina tehdä eroa, kun puhutaan

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

2. Uskottavuus ja informaatio

2. Uskottavuus ja informaatio 2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö

Lisätiedot

5.7 Uskottavuusfunktioon perustuvia testejä II

5.7 Uskottavuusfunktioon perustuvia testejä II 5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa

Lisätiedot