. Suoraviivainen liike
. Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus esim x) avulla. Yksikkö: meri m
Kun kappaleen asema on x ajan hekellä ja seuraava havaino on asemasa x ajan hekellä, niin Siirymä Δx x x Keskinopeus v k on siirymä jaeuna siihen käyeyllä ajalla v k Δx Δ x x
Nopeuden yksikkö: m/s Keskinopeuden eumerkki ilmaisee keskimääräisen kulkusuunnan. Jos -, niin negaiivisen x-akselin suunaan Jos +, niin posiiivisen x-akselin suunaan Keskinopeus EI kerro minkälaisa liike on ollu ajan hekien ja välillä.
Keskivauhi u k on raaa pikin kuljeu kokonaismaka s jaeuna siihen käyeyllä ajalla. u k s Makan ja siirymän iseisarvo eivä ole yhä suure, jos liikkeen suuna vaihelee!
Tasainen liike Kappaleen liikkeen sanoaan olevan asaisa, kun kappaleen siirymä yhä pikinä aikaväleinä ova yhä suure. Kappaleen nopeus on vakio. Kuvaaja x-koordinaaisossa suora.
300 50 00 x/m 50 00 50 0 0 4 6 8 0 /s
Muuuva liike Muuuvassa liikkeessä kappaleen siirymä yhä pikinä aikaväleinä vaihelee. Kuvaaja x-koordinaaisossa käyrä, EI suora.
60 50 40 x/m 30 0 0 0 0 3 4 5 6 /s
. Hekellinen nopeus Nopeus on vekorisuure. Suoraviivaisessa liikkeessä suuna ilmoieaan eumerkin avulla. Keskinopeudesa ei selviä, mien nopeus vaihelee valiuna aikana. Hekellinen nopeus ai nopeus v ilmoiaa kappaleen nopeuden mielivalaisella hekellä.
Nopeus saadaan, kun laskeaan keskinopeus eriäin pienellä aikavälillä. v Δx lim 0 Δ Δ dx d Nopeus on paikan x derivaaa ajan suheen (paikan aikaderivaaa).
Nopeuden graafinen ulkina Nopeus voidaan selviää xkoordinaaisoon piirreysä kuvaajasa. Jos kuvaaja on suora, niin nopeus on suoran kulmakerroin. Jos kuvaaja on käyrä, niin nopeus on käyrää sivuavan suoran, angenin, kulmakerroin Δx x x v Δ
x x / m Δx x Δ / s v Δx Δ x x
Virheiden pienenämiseksi pisee (x ; ) ja (x ; ) kannaaa valia riiävälä eäisyydelä oisisaan. Nopeuden (kulmakeroimen) eumerkki keroo nopeuden suunnan. Jos +, niin posiiivisen x-akselin suunaan Jos -, niin negaiivisen x-akselin suunaan
4,5 4 V0 3,5 3 V>0 x / m,5,5 0,5 0 0 0,5,5,5 3 3,5 4 4,5 / s V<0
.3 Kiihyvyys Kiihyvyys on vekorisuure. Suoraviivaisessa liikkeessä suuna ilmoieaan eumerkin avulla. Keskikiihyvyys a k on nopeuden muuos jaeuna siihen käyeyllä ajalla a k Δv Δ v v
Kappaleen nopeuden muuuessa ei kiihyvyys ole yleensä vakio. Hekellinen kiihyvyys saadaan kuen hekellinen nopeus a lim0 Δ Δv Δ dv d Kiihyvyys on nopeuden v derivaaa ajan suheen (nopeuden aikaderivaaa).
Kiihyvyyden graafinen ulkina Kiihyvyys voidaan selviää vkoordinaaisoon piirreysä kuvaajasa. Jos kuvaaja on suora, niin kiihyvyys on suoran kulmakerroin. Jos kuvaaja on käyrä, niin kiihyvyys on käyrää sivuavan suoran, angenin, kulmakerroin a Δv Δ v v
4,5 4 a0 3,5 3 a>0 v / m/s,5,5 0,5 0 0 0,5,5,5 3 3,5 4 4,5 / s a<0
Siirymä ja nopeuden muuos pina-alana Siirymä voidaan selviää kuvaajasa, jossa on esiey nopeus ajan funkiona. Kun kappaleen nopeus on vakio, niin kuvaaja on vaakasuora viiva.
v v Δx v Δx vδ Δ
Siirymä on kuvaajan osan alle jäävän suorakulmion pina-ala (fysikaalinen pina-ala). Yleisemmin: Siirymä on nopeuskäyrän ja aika-akselin väliin jäävä pina-ala. Δx v( )d Huom. Aika-akselin alapuolinen pina-ala on negaiivinen.
Vasaavalla avalla kuin siirymä saadaan nopeuden muuos Δv kiihyvyyskäyrän ja aika-akselin väliin jäävänä pina-alana. Δv a( )d Huom. Aika-akselin alapuolinen pina-ala on negaiivinen.
.4 Tasaisesi muuuva liike Kappale on asaisessa muuuvassa suoraviivaisessa liikkeessä, jos kappaleen kiihyvyys on vakio Vapaa puoaminen Varau hiukkanen asaisessa sähkökenässä Keskikiihyvyys voidaan korvaa vakiolla a a k Δv Δ v v
Yksinkeraiseaan yhälöä sien, eä kappaleen ohiaessa origoa: 0; x 0; v v 0 Silloin voidaan valia: ; x x; v v v v0 a v v0+ a Yhälön kuvaaja v-koordinaaisossa on suora, jonka kulmakerroin on kiihyvyys
Jos ja VAIN JOS kiihyvyys on vakio Silloin kappaleen sijaini mielivalaisella hekellä x v + v v 0 k Sijoiamalla nopeuden v lauseke edelliseen v k v x + 0 + v v a 0
Edellinen yhälö kuvaajan avulla x + v a 0
Usein arviaan yhälöä, jossa ei ole mukana aikaa Tällöin saadaan yhdiselemällä edellisiä yhälöiä 0 v v + ax
Vapaa puoamisliike Kappale on vapaassa puoamisliikkeessä, kun siihen ei vaikua muia voimia kuin painovoima Puoamiskiihyvyys g 9,8 m/s laskuehävissä; miauksissa Turussa 9,8 m/s Lyhyillä makoilla voidaan g:n arvoa piää vakiona
Tasaisesi kiihyvän liikkeen yhälö ova voimassa Kiihyvyyden suuna on alaspäin: a -g v v 0 g y v 0 + v y v g 0 v v gy 0