Satunnaismuuttujien summa ja keskiarvo

Samankaltaiset tiedostot
Satunnaismuuttujien summa ja keskiarvo

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Keskihajonta ja korrelaatio

Satunnaismuuttujan odotusarvo ja laskusäännöt

Opiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3

Satunnaismuuttujan odotusarvo ja laskusäännöt

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Bayesläiset tilastolliset mallit

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

11.1 Nollahypoteesi, vastahypoteesi ja p-arvo

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

30A02000 Tilastotieteen perusteet

Satunnaismuuttujat ja jakaumat

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

11.1 Nollahypoteesi, vastahypoteesi ja poikkeavat havainnot

Tilastomatematiikka Kevät 2008

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Liite B. Suomi englanti-sanasto

Ilkka Mellin (2008) 1/5

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

6. laskuharjoitusten vastaukset (viikot 10 11)

11 Raja-arvolauseita ja approksimaatioita

Jatkuvat satunnaismuuttujat

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

V ar(m n ) = V ar(x i ).

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Harjoitus 2: Matlab - Statistical Toolbox

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

Sovellettu todennäköisyyslaskenta B

Mat Sovellettu todennäköisyyslasku A

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyden käsite ja laskusäännöt

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

Valintahetket ja pysäytetyt martingaalit

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Moniulotteisia todennäköisyysjakaumia

Todennäköisyyslaskun kertaus. Heliövaara 1

3.6 Su-estimaattorien asymptotiikka

031021P Tilastomatematiikka (5 op) viikko 3

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

Sovellettu todennäköisyyslaskenta B

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Satunnaismuuttujien muunnokset ja niiden jakaumat

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tn-laskentaan torstai

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

Todennäköisyyden käsite ja laskusäännöt

Tilastollinen aineisto Luottamusväli

5. laskuharjoituskierros, vko 8, ratkaisut

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Todennäköisyyden ominaisuuksia

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

031021P Tilastomatematiikka (5 op) viikot 5 6

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

Mat Sovellettu todennäköisyyslasku A

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

, tuottoprosentti r = X 1 X 0

4. laskuharjoituskierros, vko 7, ratkaisut

Moniulotteiset satunnaismuuttujat ja jakaumat

ABHELSINKI UNIVERSITY OF TECHNOLOGY

4. Todennäköisyyslaskennan kertausta

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat

k S P[ X µ kσ] 1 k 2.

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä

031021P Tilastomatematiikka (5 op) viikko 7

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

3.7 Todennäköisyysjakaumia

Transkriptio:

Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 21. syyskuuta 2017 5.1 Satunnaismuuttujien summa Satunnaismuuttujien summa S n = X 1 + +X n ja keskiarvo n 1 S n ovat satunnaismuuttujia, joiden avulla mallinnetaan satunnaisotannan havaintojen esiintyvyyksiä, kohinaisten mittausten keskiarvoja sekä talouden tuotto- ja kustannuskertymiä. Silloin kun summattavat ovat stokastisesti riippumattomia ja satunnaismuuttujan X kanssa samoin jakautuneita, voidaan summan S n jakauma määrittää X:n jakaumasta. Yksinkertaisin tilanne on se, missä summattavat ovat {0, 1}-arvoisia. Tällöin summattavan jakauma voidaan esittää käyttämällä tiheysfunktiota { f(x) = (1 p) 1 x p x 1 p, x = 0, = p, x = 1, missä p = P(X = 1). Tämä on Bernoulli-jakauma parametrina p [0, 1]. Tällöin summa S n saa arvon x täsmälleen silloin, kun summattavista x saavat arvon 1 ja loput n x saavat arvon 0. Koska n:stä summattavasta voidaan valita ( ) n x tavalla x arvon 1 saavaa termiä, havaitaan että summan S n jakauma noudattaa tiheysfunktiota ( ) n f(x) = p x (1 p) n x, x = 0, 1,..., n. x Tämä on binomijakauma parametreina n 1 ja p [0, 1]. Stokastisesti riippumattomien ja samoin jakautuneiden {0, 1}-arvoisten satunnaismuuttujien summan jakauma on siis aina binomijakauma. 58

Yleisessä tapauksessa, jossa summattavat eivät ole binaariarvoisia, ovat summan jakauman määrittämiseen tarvittavat konvoluutiokaavat ovat yleensä niin monimutkaisia, että summan jakauman lauseketta ei voi kirjoittaa siistissä suljetussa muodossa. Silloin kun summattavien määrä on suuri, voidaan summan jakaumaa kuitenkin arvioida hyvin tarkasti normaali- tai Poisson-jakauman avulla. Tässä luvussa opitaan soveltamaan normaali- ja Poisson-jakaumia käytännön tilanteissa esiintyvien summien ja keskiarvojen analysoimiseen. 5.2 Summan keskihajonta Luvussa 3 esitetty suurten lukujen laki (fakta 3.3) kertoo, että keskiarvo suuresta määrästä riippumattomia X:n tavoin jakautuneita satunnaislukuja (odotusarvo µ, keskihajonta σ) on suurella todennäköisyydellä likimain 1 n n X i µ. i=1 Suurten lukujen laki ei kuitenkaan kerro sitä, miten tarkka kyseinen arvio on, eikä sitä, miten summattavien lukumäärä n ja summattavien keskihajonta σ vaikuttavat approksimaation tarkkuuteen. Approksimaation tarkkuutta voidaan mitata laskemalla summan keskihajonta ( ) ( 1 n n ) SD X i = 1 n n SD X i. i=1 i=1 Tämän auki laskemiseksi tarvitaan laskentakaava summan keskihajonnalle. Tarkastellaan ensiksi kahden muuttujan tapausta seuraavassa esimerkissä. Esimerkki 5.1 (Kahden satunnaismuuttujan summa). Mitä voidaan sanoa summan X + Y keskihajonnasta, kun tunnetaan odotusarvot µ X = 1 ja µ Y = 1 sekä keskihajonnat σ X = 2 ja σ Y = 3? Kovarianssin lineaarisuuden ja symmetrisyyden perusteella Var(X + Y ) = Cov(X + Y, X + Y ) = Cov(X, X) + Cov(Y, X) + Cov(X, Y ) + Cov(Y, Y ) = Var(X) + 2 Cov(X, Y ) + Var(Y ). Ottamalla ylläolevan yhtälön molemmilta puolilta neliöjuuret ja kirjoittamalla oikean puolen kovarianssitermi muodossa Cov(X, Y ) = ρσ X σ Y, missä ρ = Cor(X, Y ) on X:n ja Y :n korrelaatio, saadaan summan keskihajonnalle kaava σ X+Y = ( σ 2 X + 2ρσ X σ Y + σ 2 Y ) 1/2. (5.1) Summan keskihajontaa ei siis voi laskea tuntematta korrelaatiota. Soveltamalla kaavaan (5.1) korrelaation rajoja 1 ρ 1, saadaan summan keskihajonnalle kuitenkin estimaatit σ X σ Y σ X+Y σ X + σ Y, 59

jotka kysymyksenasettelun lukuarvoilla vastaavat tapausta 1 σ X+Y 5. Jos X ja Y voidaan olettaa stokastisesti riippumattomiksi, voidaan kaavaan (5.1) sijoittaa ρ = 0, jolloin σ X+Y = ( ) σx 2 + σy 2 1/2, mikä kysymyksenasettelun lukuarvoilla tuottaa σ X+Y 3.61. Ylläolevassa esimerkissä johdettu summan keskihajonnan lauseke (5.1) yleistyy melko pienellä vaivalla myös kahta useamman satunnaismuuttujan summille. Fakta 5.2. Satunnaismuuttujien X 1,..., X n summan keskihajonta saadaan kaavasta ( ) ( SD X i = σi 2 + ) 1/2, σ i σ j ρ i,j (5.2) i i i missä σ i = SD(X i ) ja ρ i,j = Cor(X i, X j ). j:j i Todistus. Kovarianssin lineaarisuudesta ( ) ( Var X i = Cov X i, ) X j i i j = Cov(X i, X j ) i j = Cov(X i, X i ) + Cov(X i, X j ) i i j:j i = σi 2 + σ i σ j ρ i,j, i i j:j i joten väite seuraa ottamalla ylläolevasta yhtälöstä neliöjuuret. Tärkeä erityistapaus ylläolevasta tuloksesta on tilanne, missä X 1,..., X n ovat korreloimattomia (ρ i,j = 0) ja samoin jakautuneita (σ i = σ), jolloin kaava (5.3) pelkistyy muotoon ( n ) SD X i = σ n. (5.3) i=1 Ylläoleva kaava on yksi stokastiikan tärkeimpiä tuloksia, sillä se kertoo tarkasti, miten riippumattomien ja samoin jakautuneiden satunnaismuuttujien summan keskihajonta käyttäytyy suhteessa summattavien lukumäärään. Erityisen merkillepantavaa on se, että suurilla n:n arvoilla on summan keskihajonta mitättömän pieni suhteessa summan odotusarvoon ( n ) E X i i=1 = µn. 60

Esimerkki 5.3 (Noppapeli). Pelataan n kierrosta noppapeliä, jossa yksittäisellä kierroksella voittaa nopan silmäluvun mukaisen määrän euroja. Laske kertyneen tuoton S = X 1 + + X n odotusarvo ja keskihajonta tapauksissa n = 10, 100, 1000. Yhden kierroksen tuoton odotusarvo on µ X = 1 6 1 + 1 6 2 + + 1 6 6 = 3.5 ja keskihajonta on kahden desimaalin tarkkuudella σ X = ( 1 6 (1 µ)2 + 1 6 (2 µ)2 + + 1 ) 1/2 (6 µ)2 = 1.71. 6 Koska pelikierrokset ovat stokastisesti riippumattomat ja samoin jakautuneet, saadaan kertyneen tuoton odotusarvoksi µ S = µ X n ja keskihajonnaksi σ S = σ X n. Tulokset eri n:n arvoilla ovat alla. n µ S σ S 10 35 5.4 100 350 17.1 1000 3500 54.0 Allaolevassa kuvassa on simuloimalla tuotettuja kertyneen tuoton S n jakaumia. Jokaisessa kuvassa havaitaan, että käytännössä kaikki simuloidut arvot sisältyvät neljän keskihajonnan sisään odotusarvosta. Chebyshevin epäyhtälön (fakta 4.6) mukaan tiedetään, että näin tapahtuu vähintään todennäköisyydellä 15 = 93.75%. 16 10 20 30 40 50 60 250 300 350 400 450 3200 3400 3600 3800 n = 10 n = 100 n = 1000 Esimerkki 5.4 (Lentoyhtiö). 300 lentolippua myydään lennolle, jossa on 290 matkustajapaikkaa. Arviolta 5% lipun ostaneista jää saapumatta lennolle, toisistaan riippumattomasti. Millä todennäköisyydellä kaikki saapujat mahtuvat lennolle? 61

Lennolle saapuvien matkustajien lukumäärä voidaan kirjoittaa satunnaismuuttujien summana T = X 1 + + X 300, missä { 1, jos lentolipun i ostaja saapuu lennolle, X i = 0, muuten. Indikaattorimuuttujan X i odotusarvo on µ X = 0.05 0 + 0.95 1 = 0.95 ja keskihajonta σ X = ( 0.05 (0 µ X ) 2 + 0.95 (1 µ X ) 2 ) 1/2 = 0.218. Koska satunnaismuuttujat X 1, X 2,... ovat stokastisesti riippumattomat ja samoin jakautuneet, saadaan saadaan satunnaismuuttujan T odotusarvoksi µ T = µ X 300 = 285 ja keskihajonnaksi σ T = σ X 300 = 3.77. Kaikki saapujat mahtuvat lennolle silloin, kun N 290. Tämän tapahtuman todennäköisyyttä voidaan Chebyshevin epäyhtälön avulla arvioida muodossa P(T 290) P(T [280, 290]) = P(T = µ T ±1.32σ T ) 1 1 1.32 2 42.6%. Näin ollen kaikki saapujat mahtuvat lennolle vähintään todennäköisyydellä 42.6%. Tämä alaraja kuulostaa hyvin pessimistiseltä arviolta. Koska T on riippumattomien ja samoin jakautuneiden {0, 1}-arvoisten satunnaismuuttujien summa, tunnetaan sen jakauma itse asiassa tarkasti. Kuten kappaleessa 5.1 todettiin, noudattaa T binomijakaumaa parametreina n = 300 ja p = 0.95. Tietokoneella voidaan laskea tarkka todennäköisyys P(T 290) = 93.5%. Binomijakaumalle Chebyshevin epäyhtälö antaa siis ylipessimistisiä arvioita 1 Alla satunnaismuuttujan T jakauman tiheysfunktiosta. Tiheysfunktion arvot ovat aidosti positiivisia kaikilla x {0, 1,..., 300}, mutta tähtitieteellisen pieniä kun x 250, joten ne eivät näy kuvassa. 0.100 0.075 0.050 0.025 0.000 0 100 200 300 1 riippumattomien satunnaismuuttujien summille saadaan tarkempia estimaatteja ns. Chernoffin epäyhtälön avulla 62

5.3 Satunnaismuuttujien keskiarvo ja suurten lukujen laki Summan keskihajonnan avulla voidaan todistaa vahvempi versio aiemmasta suurten lukujen laista (fakta 3.3). Summattavien ei tarvitse olla stokastisesti riippumattomia, vaan riittää että ne ovat korreloimattomia. Fakta 5.5. Jos satunnaismuuttujat X 1, X 2,... ovat korreloimattomia, ja kaikilla on sama odotusarvo µ ja keskihajonta σ, niin mielivaltaisen pienellä ɛ > 0, tapahtuman n n 1 X k = µ ± ɛ (5.4) k=1 todennäköisyys lähestyy ykköstä suurilla n:n arvoilla 2. Todistus. Merkitään S n = X 1 + + X n. Tällöin summan S n odotusarvo on µn ja keskihajonta σ n. Tästä seuraa, että satunnaismuuttujan M n = n 1 S n odotusarvo on µ Mn = µ ja keskihajonta σ Mn = σn 1/2. Kun merkitään k = ɛn1/2, σ voidaan tapahtuma (5.4) lausua muodossa M n = µ Mn ± kσ Mn, ja Chebyshevin epäyhtälön tämän tapahtuman todennäköisyys on vähintään P(M n = µ Mn ± kσ Mn ) 1 1 k 2 = 1 σ2 ɛ 2 n. Väite seuraa, koska ylläolevan epäyhtälön oikea puoli lähestyy ykköstä, kun n kasvaa. 5.4 Summan normaaliapproksimaatio Esimerkissä 5.3 simuloitu sadan nopanheiton summan S = S 100 ja esimerkissä 5.4 simuloitu kolmensadan indikaattorimuuttujan summa T ovat muodoltaan samankaltaiset, kuten allaoleva kuva osoittaa. 2 Tarkemmin ilmaistuna lim n P( n 1 n k=1 X k µ ɛ) = 1. 63

300 350 400 270 285 300 S = S 100 (esimerkki 5.3) T (esimerkki 5.4) Jakaumat ovat jopa yllättävän samankaltaiset, sillä noppapelin tuottokertymä S = S 100 ja lennolle saapuvien lukumäärä T liittyvät täysin erilaisiin konteksteihin. Ainoa kyseisiä satunnaismuuttujia yhdistävä tekijä on se, että molemmat voidaan tulkita stokastisesti riippumattomien satunnaismuuttujien summana. Jakaumien muotoa voi tarkemmin vertailla piirtämällä normitettujen satunnaismuuttujien S = S µ S T µ T ja T = σ S σ T jakaumat. Ne on esitetty kuvassa 5.1. Punaisella piirretty jakaumien muotoa tarkasti approksimoiva funktio on f(t) = 1 2π e t2 /2. (5.5) Kyseinen Gaussin kellokäyränä tunnettu funktio on positiivinen ja integroituu ykköseksi, joten se on erään jatkuvan jakauman tiheysfunktio. Tiheysfunktiota (5.5) vastaava jakauma on nimeltään normitettu normaalijakauma. Normitettujen jakaumien samankaltaisuus on universaali matematiikan laki, joka koskee kaikkia stokastisesti riippumattomia satunnaismuuttujien summia. Tämä stokastiikan tärkeä tulos tunnetaan nimellä keskeinen raja-arvolause. Fakta 5.6 (Keskeinen raja-arvolause). Jos summan S n = X 1 + X n termit ovat stokastisesti riippumattomia ja samoin jakautuneita satunnaismuuttujia, joilla on odotusarvo µ X ja keskihajonta 0 < σ X <, niin normitettu summa S n = S n µ Sn σ Sn, missä µ Sn = µ X n ja σ Sn = σ X n, noudattaa suurilla n arvoilla likimain normitettua normaalijakaumaa. Todistus sivuutetaan tässä yhteydessä. 64

4 2 0 2 4 4 2 0 2 4 S (esimerkki 5.3) T (esimerkki 5.4) Kuva 5.1: Normitettujen satunnaismuuttujien S ja T simuloidut jakaumat. 5.5 Normaalijakauma Yleinen normaalijakauma parametreina µ (, ) ja σ (0, ) on yhden muuttujan jatkuva jakauma, jonka tiheysfunktio on f(x) = 1 (x µ)2 e 2σ 2. 2πσ 2 Tiheysfunktiota sopivasti osittain integroimalla voidaan vahvistaa, että µ = xf(x) dx ja σ = ( 1/2 (x µ) 2 f(x) dx), joten parametri µ on normaalijakauman odotusarvo ja parametri σ sen keskihajonta. Normaalijakauman kertymäfunktiota tarkastelemalla havaitaan myös, että jos X on normaalijakautunut parametrein µ X ja σ X, niin tällöin Y = a+bx on normaalijakautunut parametrein µ Y = a + bµ X ja σ Y = b σ X. Tästä seuraa, että normitettu satunnaismuuttuja Z = X µ X σ X (5.6) 65

noudattaa normitettua normaalijakaumaa odotusarvona 0 ja keskihajontana 1. Vastaavasti mikä tahansa parametrin µ ja σ normaalijakautunut satunnaismuuttuja voidaan esittää muodossa X = µ + σz, (5.7) missä Z noudattaa normitettua normaalijakaumaa. Normaalijakauman kertymäfunktiota ei voi esittää siistissä suljetussa muodossa, joten siihen liittyvät todennäköisyydet lasketaan kertymäfunktion taulukoiden tai numeeristen ohjelmistojen avulla. Normaalijakauman taulukoissa yleensä raportoidaan vain normitetun normaalijakauman kertymäfunktion arvot, sillä muut normaalijakaumat voidaan palauttaa normitettuun tapaukseen kaavojen (5.6) (5.7) avulla. Esimerkki 5.7 (Älykkyysosamäärä). Yhdeksäsluokkalaisten älykkyysosamäärä noudattaa likimain normaalijakaumaa (µ = 100, σ = 15). Millä todennäköisyydellä satunnaisesti valitun yhdeksäsluokkalaisen älykkyysosamäärä on (a) yli 130? (b) välillä 85 115? 2% 14% 68% 14% 2% σ σ 40 55 70 85 100 115 130 145 160 Normitettu satunnaismuuttuja Z = X µ noudattaa normitettua normaalijakaumaa, joten σ ( ) X µ 130 100 P(X > 130) = P > = P(Z > 2). σ 15 Normitetun normaalijakauman symmetrian ja jatkuvuuden perusteella pätee P(Z > 2) = P(Z < 2) = P(Z 2). Vastaukseksi (a)-kohtaan saadaan normaalijakauman taulukoista P(Z 2) 0.023. Samaan tapaan ( 85 100 P(85 X 115) = P 15 = P( 1 Z 1) = P( 1 < Z 1) X µ σ = P(Z 1) P(Z 1), ) 115 100 15 66

joten (b)-kohdan vastaukseksi saadaan normaalijakauman taulukoista P(Z 1) P(Z 1) 0.683. Esimerkki 5.8 (Noppapeli). Arvioi normaalijakauman avulla, millä todennäköisyydellä esimerkin 5.3 noppapelissä 100 pelikierrokselta kertynyt tuotto on (a) välillä 316 384 EUR? (b) yli 500 EUR? Merkitään kertynyttä tuottoa S 100 = X 1 + + X 100. Koska yhden kierroksen tuoton odotusarvo ja keskihajonta (yhden desimaalin tarkkuudella) ovat µ X = 3.5 ja σ X = 1.7, ja tuotot ovat stokastisesti riippumattomat, on 100 pelikierroksen tuoton odotusarvo ja keskihajonta µ S100 = 3.5 100 = 350 σ S100 = 1.7 100 = 17. Kun normitetun tuottokertymän S 100 350 jakaumaa arvioidaan normitettua normaalijakaumaa noudattavalla satunnaismuuttujalla Z, saadaan tulokseksi 17 ( P(316 S 100 384) = P 2 S ) 100 350 2 17 P( 2 Z 2) = 1 2P(Z 2) 95.4%. ja ( S100 350 P(S 100 > 500) = P 17 P(Z > 8.82) = P(Z 8.82) 6 10 19. ) > 8.82 Esimerkki 5.9 (Lentoyhtiö). Arvioi normaalijakauman avulla, millä todennäköisyydellä esimerkissä 5.4 kaikki lennolle saapuvat matkustajat mahtuvat lennolle. Esimerkissä 5.4 johdettiin lennolle saapuvien matkustajien lukumäärän T odotusarvoksi µ T = 285 ja keskihajonnaksi σ T = 3.77. Lennolle saapuvien matkustajien normitettu lukumäärä on satunnaismuuttuja T µ T σ T = T 285 3.77. 67

Kun satunnaismuuttujan T 285 jakaumaa arvioidaan normitettua normaalijakaumaa noudattavalla satunnaismuuttujalla Z, havaitaan että kaikki matkus- 3.77 tajat mahtuvat lennolle todennäköisyydellä ( ) T 285 290 285 P(T 290) = P 3.77 3.77 ( ) T 285 = P 1.33 3.77 P(Z 1.33) = 90.8%. Hieman tarkemman arvion saa huomaamalla, kokonaislukuarvoiselle satunnaismuuttujalle T pätee P(T 290) = P(T 290.5), jolloin P(T 290) = P(T 290.5) ( ) T 285 290.5 285 = P 3.77 3.77 ( ) T 285 = P 1.46 3.77 P(Z 1.46) = 92.8%. Näin saatu ns. jatkuvuuskorjaus tuottaa hieman tarkemman arvion, sillä tapahtuman tarkka todennäköisyys on binomijakauman mukaan P(T 290) = 93.5%. 5.6 Poisson-approksimaatio Keskeinen raja-arvolause kertoo, että stokastisesti riippumattomien ja samoin jakautuneiden satunnaismuuttujien summa S n = X 1 + X n noudattaa suurilla n:n arvoilla likimain normaalijakaumaa parametrein µ X n ja σ X n, kunhan summattavien keskihajonta σ X on aidosti positiivinen ja äärellinen. Tietyissä tilanteissa tarvitaan arvioita satunnaismuuttujien summalle, jossa σ X on hyvin lähellä nollaa. Tällöin normaaliapproksimaation tarkkuus on heikko. Esimerkki 5.10. Suositun uutissivuston www-palvelimelle saapuu keskimäärin λ = 2.6 sivupyyntöä sekunnissa. Arvioi todennäköisyys, jolla seuraavan sekunnin aikana palvelimelle saapuu yli 10 sivupyyntöä. Luonnollinen malli sekunnin aikana saapuville sivupyynnöille on satunnaismuuttujien summa S n = n i=1 X i, missä n on uutissivustoa seuraavien käyttäjien lukumäärä ja X i = { 1, jos käyttäjältä i saapuu sivupyyntö, 0, muuten. 68

Summattavien indikaattorimuuttujien odotusarvo on µ X = p ja keskihajonta σ X = (p(1 p)) 1/2, missä p = P(X i = 1). Näin ollen saapuvien sivupyyntöjen odotusarvo voidaan kirjoittaa muodossa E(S n ) = np. Parametreja n ja p ei tehtävänannon pohjalta tunneta, mutta tunnetun odotusarvon λ pohjalta voidaan ratkaista p = λ. Kun uutissivustoa seuraavien käyttäjien lukumäärä n on suuri, n on summattavien keskihajonta likimain σ X = (p(1 p)) 1/2 λ 1/2 n 1/2. Koska σ X on hyvin lähellä nollaa, ei normaaliapproksimaation tarkkuudelle ole takeita. Ylläolevan esimerkin tilanteeseen sopiva approksimoiva jakauma on lukujoukon {0, 1, 2,... } diskreetti jakauma tiheysfunktiona f(x) = e λ λx, x = 0, 1, 2,... x! Tämä jakauma on Poisson-jakauma parametrina λ > 0. Jakauma on nimetty ranskalaismatemaatikko Siméon Denis Poissonin (1781 1840) mukaan. Seuraava tulos tunnetaan nimellä pienten lukujen laki. Fakta 5.11. Jos summan S n = X 1 + X n termit ovat stokastisesti riippumattomia ja samoin jakautuneita {0, 1}-arvoisia satunnaismuuttujia odotusarvona µ X λ/n, niin S n noudattaa suurilla n likimain Poisson-jakaumaa parametrina λ. Todistus. Ylläolevien oletusten vallitessa S n noudattaa binomijakaumaa parametreina n ja p = µ X, joten ( ) n P(S n = x) = p x (1 p) n x. x Kun n on suuri, yllä esiintyvä binomikerroin on likimain ( ) n x = 1 x 1 (n k) = nx x 1 ( 1 k ) x! x! n k=0 k=0 nx x!. Lisäksi kun p λ, pätee px n (1 p) n x ( λ n ( 1 λ n) n x = Yhdistämällä nämä kolme arviota havaitaan, että ) x (, ja kaavan limn 1 + x n n) = e x avulla ( 1 λ ) x ( 1 λ n e n n) λ. P(S n = x) = ( n )p x (1 p) n x nx x x! ( λ n ) x e λ λ λx = e x!. 69

Binomijakaumaa parametreina n ja p voidaan siis arvioida kahdella eri jakaumalla: (i) normaalijakauma parametrein µ = np ja σ = (np(1 p)) 1/2, tarkka silloin kun n on suuri ja p ei kovin lähellä nollaa eikä ykköstä (ii) Poisson-jakauma parametrina λ = np, tarkka silloin kun n on suuri ja p lähellä nollaa. Esimerkki 5.12. Suositun uutissivuston www-palvelimelle saapuu keskimäärin λ = 2.6 sivupyyntöä sekunnissa. Arvioi todennäköisyys, jolla seuraavan sekunnin aikana palvelimelle saapuu yli 10 sivupyyntöä. Saapuvien sivupyyntöjen lukumäärää on luonnollista arvioida binomijakaumalla parametreina n ja p λ. Faktan 5.11 mukaan suurella n kyseinen binomijakauma on likimain Poisson-jakauma parametrina λ. Kysytty todennäköisyys n on siis arviolta P(S n > 10) = 1 P(S n 10) 5.7 Yhteenveto 10 x=0 λ λx e x! 0.000087. Satunnaismuuttujien summan S n = n i=1 X i odotusarvo ja keskihajonta määräytyvät ao. taulukon kaavoista. Summan termit E( i X i) SD( i X i) Yleiset i µ i ( i σ2 i + ) 1/2 i j:j i σ iσ j ρ i,j Korreloimattomat i µ i ( i σ2 i ) 1/2 Korreloimattomat ja samoin jakautuneet µn σ n Jos satunnaismuuttujien summan S n = X 1 + X n termit ovat stokastisesti riippumattomia ja samoin jakautuneita, odotusarvona µ X ja keskihajontana σ X, niin summan odotusarvo on µ Sn = µ X n ja keskihajonta σ Sn = σ X n. Silloin kun σ X on aidosti positiivinen ja äärellinen, noudattaa normitettu summa Sn µ Sn σ Sn suurilla n likimain normitettua normaalijakaumaa, joten jakauman näkökulmasta S n µ Sn + σ Sn Z, 70

missä Z noudattaa normitettua normaalijakaumaa. Jos summattavat ovat {0, 1}- arvoisia, on summan tarkka jakauma binomijakauma parametreina n ja p = µ X. Kun p ei ole liian lähellä nollaa tai ykköstä, voidaan kyseistä binomijakaumaa arvioida yo. normaalijakaumaa käyttäen. Pienillä p λ/n arvioilla parempi arvio saadaan Poisson-jakaumasta parametrina λ > 0. 71

Hakemisto Bayesin kaava, 14 binomikerroin, 17 bitti, 42 Chebyshevin epäyhtälö, 49 eksponenttijakauma, 24 entropia, 42 ergodinen, 45 erotus, 8 esiintyvyysharha, 14 indikaattorifunktio, 25 jakauma, 20 diskreetti, 22 jatkuva, 22 kertoma, 16 kertymäfunktio, 21 keskihajonta jakauman, 47 satunnaismuuttujan, 47 kombinatoriikka, 15 komplementti, 8 korrelaatio yhteisjakauman, 50 kovarianssi yhteisjakauman, 50 leikkaus, 8 lukumäärä listat, 16 osajoukot, 17 lukumäärä, järjestykset, 16 mitallinen funktio, 33 joukko, 18 momentti, 41 osajoukko, 7 ositus, 7 osituskaava, 13 perusjoukko, 6 pistemassafunktio, 22 pistetodennäköisyysfunktio, 22 Poisson-jakauma, 23 reunajakauma diskreetti, 28 jatkuva, 28 reunatiheysfunktio diskreetti, 28 jatkuva, 28 riippumattomat satunnaismuuttujat, 29 tapahtumat, 11 satunnaismuuttuja, 19 diskreetti, 22 sigma-algebra, 18 suppeneminen stokastinen, 36 suurten lukujen laki, 36 vahva, 45 tapahtuma, 6 poissulkevat, 7 tasajakauma diskreetti, 23 jatkuva, 24 tiheysfunktio, 22 todennäköisyys aksiooma, 9 ehdollinen, 11 frekvenssitulkinta, 38 jakauma, 9 mitta, 9 82

monotonisuus, 9 summasääntö, 9 tulosääntö, 11 todennäköisyysfunktio, 22 toteuma, 6 tulojoukko, 8 tyhjä joukko, 8 varianssi jakauman, 47 satunnaismuuttujan, 47 yhdiste, 8 yhteisjakauma, 24 diskreetti, 26 jatkuva, 26 tiheysfunktio, 26 83

Kirjallisuutta [JP04] Jean Jacod and Philip Protter. Probability Essentials. Springer, second edition, 2004. [Kal02] Olav Kallenberg. Foundations of Modern Probability. Springer, second edition, 2002. [Wil91] David Williams. Probability with Martingales. Cambridge University Press, 1991. 84