MS-A0402 Diskreetin matematiikan perusteet

Samankaltaiset tiedostot
MS-A0401 Diskreetin matematiikan perusteet


MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

Diskreetin matematiikan perusteet Laskuharjoitus 5 / vko 41

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

Esko Turunen MAT Algebra1(s)

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

Algebra I, Harjoitus 6, , Ratkaisut

Symmetrisistä ryhmistä symmetriaryhmiin

MS-A0402 Diskreetin matematiikan perusteet

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Algebra I, harjoitus 8,

a b 1 c b n c n

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

4. Ryhmien sisäinen rakenne

6. Tekijäryhmät ja aliryhmät

Ryhmäteoriaa. 2. Ryhmän toiminta

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

Johdatus matematiikkaan

HN = {hn h H, n N} on G:n aliryhmä.

1 Lineaariavaruus eli Vektoriavaruus

MS-A0402 Diskreetin matematiikan perusteet

DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet

Miten osoitetaan joukot samoiksi?

802320A LINEAARIALGEBRA OSA I

5 Platonin kappaleet ja niiden symmetriaryhmät

Kuvaus. Määritelmä. LM2, Kesä /160


Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät sivua Heikki Koivupalo ja Rami Luisto

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

H = H(12) = {id, (12)},

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Vektorit, suorat ja tasot

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

Alternoivien ryhmien ominaisuuksista

Koodausteoria, Kesä 2014

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Ryhmäteoria. Jyrki Lahtonen. Turun yliopisto, helmikuu 2019 keskeneräinen versio

ja siten kyseisen symmetriaryhmä on toinen dihedraaliryhmä (D 2 )

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

MS-A0401 Diskreetin matematiikan perusteet

MS-C1340 Lineaarialgebra ja

Eräitä ratkeavuustarkasteluja

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

a) Mitkä reaaliluvut x toteuttavat yhtälön x 2 = 7? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön 5 4 x

MS-C1340 Lineaarialgebra ja

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

a b c d

Pythagoraan polku

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014

σ = σ = ( ).

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Esko Turunen Luku 3. Ryhmät

MS-C1340 Lineaarialgebra ja

14 Monikulmiot 1. Nimeä monikulmio. a) b) c) Laske monikulmion piiri. a) 30,8 cm 18,2 cm. Laske sivun x pituus, kun monikulmion piiri on 25,0 cm.

Kenguru 2017 Student lukio

Transkriptio:

MS-A0402 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto

Ryhmät ja permutaatiot

Väritysongelma Jos meillä on 6 palloa, monellako tavalla voimme värittää 2 niistä vihreiksi ja muut valkoisiksi? Jos pallot ovat identtiset on vain yksi tapa, 2 väritetään vihreiksi ja 4 valkoisiksi. Jos pallot on numeroitu niin on ( 6 2) = 15 tapaa valita ne, jotka väritetään vihreiksi ja loput valkoisiksi. Jos pallot ovat säännöllisen 6-kulmion kulmissa ja tätä 6-kulmiota voi kiertää ja kääntää niin on 3 vaihtoehtoa: Mutta miten ratkaistaan monimutkaisemmat tämäntyyppiset ongelmat? 1 / 38 R. Kangaslampi MS-A0402

Permutaatio (kertaus) Määritelmä 1 Äärellisen joukon A permutaatio on bijektio A A. Kun A = {1,..., n}, niin joukon A kaikkien permutaatioiden joukkoa merkitään S n. Huomaa S n = n!. Kahdelle permutaatiolle f, g S n määritellään kertolasku asettamalla fg = f g. Huom. (fg)(x) = f ( g(x) ) eli kertominen tapahtuu oikealta vasemmalle. 2 / 38 R. Kangaslampi MS-A0402

Permutaatio (kertaus) Esimerkki 2 (matriisiesitys) Joukon {1, 2, 3} permutaatioille ( ) 1 2 3 f = 3 2 1 ( ) 1 2 3 ja g = 2 1 3 pätee Lisäksi tässä ( ) ( ) 1 2 3 1 2 3 gf =, fg =. 3 1 2 2 3 1 f 1 = f ja g 1 = g, mutta tällainen ei päde yleisesti, esimerkiksi yllä (fg) 1 fg. 3 / 38 R. Kangaslampi MS-A0402

Permutaatio Permutaatiot voidaan esittää myös syklinotaatiolla. Esimerkki 3 ( ) 1 2 3 4 5 6 7 α =. 2 4 1 3 5 7 6 Nyt ( näemme, ) että 1 2 4 3 1 ja tästä saamme syklin 1 2 4 3. Koska α(5) = 5, saamme syklin (5), joskin yhden pituista sykliä tosin ei ole tapana ottaa merkintään mukaan. ( ) Lopuksi näemme, että 6 7 6 joten saamme syklin 6 7. Syklinotaatiolla voimme nyt kirjoittaa ( ) ( ) α = 1 2 4 3 6 7. On myös ( muita ) ( esitystapoja ) syklien tuloina, esim. α = 7 6 4 3 1 2. 4 / 38 R. Kangaslampi MS-A0402

Ryhmä Ryhmä on pari [G, ] missä G on joukko ja on funktio G G G, jolla on seuraavat ominaisuudet: Sulkeutuneisuus: a b G jos a ja b G. Liitännäisyys: (a b) c = a (b c) jos a, b ja c G. Neutraalialkio: On olemassa alkio e G siten, että e a = a e = a jos a G. Käänteisalkio: Jos a G, niin on olemassa alkio a 1 G siten, että a a 1 = a 1 a = e. 5 / 38 R. Kangaslampi MS-A0402

Ryhmä Esimerkki 4 Joukko S n varustettuna permutaatioiden kertolaskulla toteuttaa ryhmäaksioomat: sulkeutuneisuus: jos f, g S n, niin fg S n liitännäisyys: (fg)h = f (gh) pätee kaikille f, g, h S n neutraalialkion ( ) olemassaolo: identtiselle permutaatiolle 1 2 3 e := pätee ef = fe = f kaikille f S n 1 2 3 käänteisalkion olemassaolo: kaikilla f S n löytyy käänteisalkio g S n, jolle fg = gf = e. 6 / 38 R. Kangaslampi MS-A0402

Ryhmä Huomioita Käänteisalkion yksikäsitteisyys todistetaan kuten joukossa Z m. Siten on oikeutettua merkitä f :n käänteisalkiota f 1 :llä. Kun p on alkuluku, niin joukko (Z p \ {0}, ) eli Z p \ {0} varustettuna kertolaskulla on ryhmä, neutraalialkio on 1. Joukko (Z m, +) eli Z m varustettuna yhteenlaskulla on ryhmä kaikilla m N +, neutraalialkio on 0. Permutaatioiden ryhmä S n on ryhmistä tärkein, sillä voidaan osoittaa (Cayleyn lause), että jokainen äärellinen ryhmä on miellettävissä permutaatioryhmänä tai sellaisen aliryhmänä. 7 / 38 R. Kangaslampi MS-A0402

Ryhmän toiminta Esimerkki 5 Tarkastellaan tasasivuista kolmiota M kolmiulotteisessa avaruudessa. Kolmiota M voidaan kiertää kuudella eri tavalla siten, että M:n asento ei muutu: 1 1 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3 8 / 38 R. Kangaslampi MS-A0402

Ryhmän toiminta Esimerkki 5 (jatkuu) Merkitään kiertoja seuraavasti: e = ei tehdä mitään r = kierretään kulman 2π/3 (120 ) verran vastapäivään sen akselin ympäri, joka on kohtisuorassa kolmion tasoa vastaan ja kulkee kolmion keskipisteen kautta s = kierretään kulman π (180 ) verran sen akselin ympäri, joka on kolmion tasossa ja puolittaa kulman paikassa 1. 9 / 38 R. Kangaslampi MS-A0402

Ryhmän toiminta Esimerkki 5 (jatkuu) 1 1 1 2 3 e 2 3 r 2 3 r 2 1 1 1 2 3 s 2 3 rs 2 3 r 2 s 10 / 38 R. Kangaslampi MS-A0402

Ryhmän toiminta Esimerkki 5 (jatkuu) Edellä siis: Kiertojen kertolasku tapahtuu suorittamalla kierrot peräkkäin (merkinnöissä oikealta vasemmalle). Valitut kaksi kiertoakselia pysyvät avaruudessa paikallaan. Kolmion kierrot voidaan samaistaa joukon {1, 2, 3} permutaatioihin. Esimerkiksi permutaatio (1)(23) tulkitaan siten, että kolmion kärki avaruuden paikassa numero 1 pysyy paikallaan ja kärjet paikoissa 2 ja 3 vaihtavat paikkaa. 11 / 38 R. Kangaslampi MS-A0402

Ryhmän toiminta Edellä sanotaan, että ryhmä S 3 toimii kolmiossa M. Jokainen ryhmän S 3 permutaatio voidaan tulkita kolmion symmetrian säilyttäväksi kierroksi kolmiulotteisessa avaruudessa. Sama ei päde neliölle, esimerkiksi permutaatio (123)(4) rikkoisi neliön eikä siten olisi kierto. Säännöllisen n-kulmion kaikkien kiertojen ryhmää sanotaan diedriryhmäksi ja merkitään D n. 12 / 38 R. Kangaslampi MS-A0402

Ryhmän toiminta Diedriryhmässä on 2n alkiota (taululla n = 4): Merkitään r:llä kiertoa kulman 2π/n verran sen akselin ympäri, joka on kohtisuorassa monikulmion tasoa vastaan ja kulkee monikulmion keskipisteen kautta. Tällöin r n = e ja kierron r monikertoja on n kappaletta: e, r, r 2,..., r n 1. Lisäksi voidaan kiertää kulman π verran minkä tahansa monikulmion lävistäjän tai sivun kohtisuoran puolittajan suhteen, näin saadaan n kiertoa lisää. Osoittautuu, että jälkimmäiset n kiertoa saadaan, kun valitaan vain yksi lävistäjä tai puolittaja (mikä tahansa) ja merkitään π-kiertoa sen suhteen s; sen jälkeen muut n 1 ovat rs, r 2 s,..., r n 1 s. Pätee myös rs = sr 1. 13 / 38 R. Kangaslampi MS-A0402

Ryhmän toiminta Diedriryhmä voidaan samaistaa permutaatioryhmän S n aliryhmän kanssa. (Lisää hetken kuluttua.) D n generoituu kierroista r ja s, ts D n = {r j s k : j, k Z}, merkitään D n = r, s. Yllä s 2 = e ja r n = e eli joukossa D n on 2n alkiota. 14 / 38 R. Kangaslampi MS-A0402

Aliryhmät ja Lagrangen lause Neliön kiertoryhmä (taululla, s on lävistäjä 1 3, pysyy avaruudessa paikallaan): D 4 = r, s = {e, r, r 2, r 3, s, rs, r 2 s, r 3 s}. Jos samaistetaan ryhmän D 4 alkiot joukon {1, 2, 3, 4} permutaatioihin, niin D 4 = { (1)(2)(3)(4), (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1)(3)(2 4), (1 2)(3 4), (1 3)(2)(4), (1 4)(3 2) }. Tämä on joukon S 4 aliryhmä, sillä D 4 S 4 ja D 4 muodostaa itsessään ryhmän, jolla on sama neutraalialkio kuin S 4 :llä. 15 / 38 R. Kangaslampi MS-A0402

Aliryhmät ja Lagrangen lause Lause 6 (Lagrange) Jos G on äärellinen ryhmä ja H on sen aliryhmä, niin H on G :n tekijä. Esimerkiksi S 4 = 24 ja D 4 = 8, joka on 24:n tekijä. Todistus. Määritellään alkion g G sivuluokka: gh = {gh : h H} G. Voidaan osoittaa (osoittamalla, että funktio H gh, h gh on bijektio), että sivuluokat ovat yhtäsuuria; lisäksi ne jakavat G:n erillisiin osiin. Siten, koska eh = H on yksi sivuluokka, niin G :n on oltava H :n monikerta. 16 / 38 R. Kangaslampi MS-A0402

Rata Määritelmä 7 Olkoon G S n ryhmä, joka toimii joukossa M (esim. kolmion kärjet). Pisteen x M rata on [x] G := {g(x) : g G} M. Usein merkitään vain [x]. Voidaan osoittaa, että joukon M relaatio x y x [y] G on ekvivalenssi, joten radat jakavat M:n erillisiin luokkiin. Esimerkki 8 Jos M = {1, 2,..., 6}, f = (1 2)(3 4 5 6) S 6 ja G = f, niin G:n määräämät radat joukossa M ovat [1] = [2] = {1, 2} ja [3] = [4] = [5] = [6] = {3, 4, 5, 6}. 17 / 38 R. Kangaslampi MS-A0402

Kiinnittäjäaliryhmä Määritelmä 9 Jos ryhmä G toimii joukossa M ja jos x M, niin pisteen x kiinnittäjäaliryhmä on G x := {g G : g(x) = x} G. Kiinnittäjä todellakin on aliryhmä, joten Lagrangen lauseen nojalla G x jakaa G :n kaikilla x M. 18 / 38 R. Kangaslampi MS-A0402

Kiinnittäjäaliryhmä Esimerkki 10 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)(3 4 5 6) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)(3 6 5 4) }, niin kiinnittäjäaliryhmät ovat ovat G 1 = G 2 = {e, f 2 } ja G 3 = G 4 = G 5 = G 6 = {e}. Näiden koot (2 ja 1) jakavat luvun G = 4. 19 / 38 R. Kangaslampi MS-A0402

Kiintopistejoukko Määritelmä 11 Jos ryhmä G toimii joukossa M ja jos g G, niin permutaation g kiintopistejoukko on M g := {x M : g(x) = x} M. Esimerkki 12 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)(3 4 5 6) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)(3 6 5 4) }, niin kiintopistejoukot ovat M e = M, M f = M f 3 = ja M f 2 = {1, 2}. 20 / 38 R. Kangaslampi MS-A0402

Radan koko Lause 13 Jos ryhmä G toimii joukossa M ja jos x M, niin radan [x] koko saadaan laskettua kaavasta [x] = G / G x. Todistus. Merkitään G x = H (aliryhmä) ja merkitään kaikkien H:n sivuluokkien joukkoa G/H. Tällöin funktio G/H [x] G, gh gx on bijektio, joten joukon [x] G koko on sama kuin sivuluokkien lukumäärä, joka puolestaan saadaan jakamalla G:n koko H:n koolla (kaikki sivuluokat olivat yhtä suuria). 21 / 38 R. Kangaslampi MS-A0402

Radan koko Esimerkki 14 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)(3 4 5 6) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)(3 6 5 4) }, niin aiemmin saimme radoiksi [1] = [2] = {1, 2} ja [3] = [4] = [5] = [6] = {3, 4, 5, 6} ja kiinnittäjäaliryhmiksi G 1 = G 2 = {e, f 2 } ja G 3 = G 4 = G 5 = G 6 = {e}. Lause toimii; esimerkiksi [1] = G / G 1. 22 / 38 R. Kangaslampi MS-A0402

Ratojen lukumäärä Lause 15 (Burnsiden lemma) Jos ryhmä G toimii joukossa M, niin ratojen lukumäärä on kiintopistejoukkojen kokojen keskiarvo: 1 M g. G g G 23 / 38 R. Kangaslampi MS-A0402

Ratojen lukumäärä Todistus Merkitään n = { (g, x) G M : gx = x }. Permutaatiota g G vastaavien parien (g, x) lukumäärä on M g, joten n = M g. g G Toisaalta alkiota x M vastaavien parien (g, x) lukumäärä on G x, joten n = G x, x M 24 / 38 R. Kangaslampi MS-A0402

Ratojen lukumäärä Todistus (jatkuu) saadaan M g = G x. g G x M Radan [x] G koko on G / G x ja rata on sama kaikille y [x] G, joten G y = [x] G G x = G. y [x] G Merkitään ratojen lukumäärää k:lla, jolloin ylläolevan nojalla G x = k G, x M ja jakamalla G :llä ollaan valmiita. 25 / 38 R. Kangaslampi MS-A0402

Ratojen lukumäärä Esimerkki 16 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)(3 4 5 6) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)(3 6 5 4) }, niin aiemmin saimme radoiksi {1, 2}, {3, 4, 5, 6} ja kiintopistejoukoiksi M e = M, M f = M f 3 =, M f 2 = {1, 2}. Kiintopistejoukkojen kokojen keskiarvo on 1 4 ( M e + M f + M f 2 + M f 3 ) = 1 (6 + 0 + 2 + 0) = 2 4 eli sama kuin ratojen lukumäärä. 26 / 38 R. Kangaslampi MS-A0402

Sykli-indeksi

Sykli-indeksi Jos a on joukon X permutaatio niin a:n sykli-indeksi on monomi ζ a,x (t 1,..., t n ) = t j 1 1 t j 2 2... tn jn missä j k on a:n k-pituisten ratojen lukumäärä. Jos G on ryhmä joukon X permutaatiota niin G:n sykli-indeksi on ζ G,X (t 1,..., t n ) = 1 G ζ a,x (t 1,..., t n ). a G 27 / 38 R. Kangaslampi MS-A0402

Sykli-indeksi Esimerkki 17 Olkoon G ryhmä, joka muodostuu kaikista alla olevan verkon solmujen sellaisista permutaatioista f, että jos solmujen a ja b välillä on kaari, niin myös solmujen f (a) ja f (b) välillä on kaari. 1 2 3 4 5 6 Koska solmuilla 3 ja 4 on 3 naapuria niin joko f (3) = 3 ja f (4) = 4 tai f (3) = 4 ja f (4) = 3. Solmut 1 ja 2 kuvautuvat solmun f (3) naapureille ja samoin solmut 5 ja 6 kuvautuvat solmun f (4) naapureille. 28 / 38 R. Kangaslampi MS-A0402

Sykli-indeksi Esimerkki 17 1 2 3 4 5 6 Näin ollen kyseiset permutaatiot ovat: (1), (1 2), (5 6), (1 2)(5 6), (3 4)(1 5)(2 6), (3 4)(1 6)(2 5), (3 4)(1 5 2 6) ja (3 4)(1 6 2 5). Seuraavaksi on laskettava näiden permutaatioiden ratojen pituudet: 29 / 38 R. Kangaslampi MS-A0402

Sykli-indeksi Esimerkki 17 (jatkuu) (1) : 6 rataa, joissa on 1 alkio. (1 2), (5 6) : 4 rataa, joissa on 1 alkio, 1 rata, jossa on 2 alkiota. (1 2)(5 6) : 2 rataa, joissa on 1 alkio, 2 rataa, joissa on 2 alkiota. (3 4)(1 5)(2 6), (3 4)(1 6)(2 5) : 3 rataa, joissa on 2 alkiota. (3 4)(1 5 2 6), (3 4)(1 6 2 5) : 1 rata, jossa on 2 alkiota, 1 rata, jossa on 4 alkiota. Näin ollen sykli-indeksi on ζ G,X (t 1, t 2, t 3, t 4 ) = 1 ) (t1 6 + t 2 8 1t2 2 + 2t1t 4 2 + 2t2 3 + 2t 2 t 4 30 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause

Pólyan värityslause Olkoon G ryhmä joukon X permutaatioita ja olkoon K = {v 1, v 2,..., v r } joukko värejä, joilla X :n alkioita väritetään. Silloin termin v i 1 1 v i 2 2... v r ir, kerroin polynomissa ζ G,X (v 1 1 +... + v 1 r, v 2 1 +... + v 2 r,..., v n 1 +... + v n r ) on niiden X :n väritysten lukumäärä, joissa väriä v j käytetään täsmälleen i j kertaa ja jotka eivät ole ekvivalentteja G:n toiminnassa. Jos käytetään r väriä mutta, muita rajoituksia ei ole, niin ζ G,X (r, r,..., r) on niiden X :n väritysten lukumäärä, jotka eivät ole ekvivalentteja G:n toiminnassa. 31 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause Esimerkki 18 (Nelikulmion symmetriat) 0 1 3 2 Olkoon X = {0, 1, 2, 3} ja tarkastellaan yo. nelikulmion symmetrioita. Meillä on siis seuraavat permutaatiot syklinotaatiolla: (0)(1)(2)(3), (0)(1 3)(2), (0 1 2 3), (0 1)(2 3), (0 2)(1 3), (0 2)(1)(3), (0 3 2 1) ja (0 3)(1 2), joista 4 on rotaatioita ja 4 peilauksia. Näiden permutaatioiden muodostama ryhmähän on diedriryhmä D 4. 32 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause Esimerkki 18 (Nelikulmion symmetriat jatkuu) Monellako tavalla voidaan värittää solmut niin, että yksi on musta, yksi valkoinen ja kaksi punaista? Kaksi väritystä ovat samoja, jos rotaatiolla ja/tai peilauksella saadaan toinen toisesta. Ryhmän D 4 sykli-indeksi saadaan permutaatioiden sykli-indeksien keskiarvona, ja permutaation sykli-indeksi on t j 1 1 t j 1 2... tn jn jos permutaatiolla on j k rataa, joiden pituus on k, k = 1, 2,..., n. Tässä tapauksessa sykli-indeksiksi tulee ζ D4,X (t 1, t 2, t 3, t 4 ) = 1 8 ( t 4 1 + t1t 2 2 + t 4 + t2 2 + t2 2 + t1t 2 2 + t 4 + t2 2 ). 33 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause Esimerkki 18 (Nelikulmion symmetriat jatkuu) Erilaisten väritysten lukumäärä on nyt termin mvp 2 (m=musta, v=valkoinen, p=punainen, näitä kaksi) kerroin polynomissa ζ D4,X (m + v + p, m 2 + v 2 + p 2, m 3 + v 3 + p 3, m 4 + v 4 + p 4 ) = 1 8 (m + v + p)4 + 1 4 (m + v + p)2 (m 2 + v 2 + p 2 ) + 3 8 (m2 + v 2 + p 2 ) 2 + 1 4 (m4 + v 4 + p 4 ) = m 4 + m 3 p + 2m 2 p 2 + mp 3 + p 4 + m 3 v + 2m 2 pv + 2mp 2 v +p 3 v + 2m 2 v 2 + 2mpv 2 + 2p 2 v 2 + mv 3 + pv 3 + v 4 eli 2. (Tarkistus ajattelemalla: Kaksi punaista voivat olla vierekkäin tai vastakkain. Tämän valinnan jälkeen on sama miten päin musta ja valkoinen valitaan, peilaamalla ne vaihtavat paikkaa.) 34 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause Esimerkki 19 (Pólyan lause ja ristinolla) Meillä on 3 3-ruudukko ja olemme kirjoittaneet kahteen ruutuun x:n, kahteen o:n ja 5 ruutua on tyhjinä. Tämä on tehtävissä ( 9 2,2,5) = 756:lla eri tavalla, jos paperi pidetään paikallaan. Jos voimme kiertää paperia kulman 0, π 2, π tai 3π 2 verran keskipisteen ympäri, niin näiden vaihtoehtojen lukumäärä pienenee. Ensin pitää selvittää miten π 2 kulman rotaation generoima ryhmä toimii ruudukolla ja erityisesti mikä on tämän toiminnan sykli-indeksi. Eli pitää määrittää erilaisten ratojen pituudet. Tulokset ovat seuraavanlaiset: Identiteettifunktiolla (rotaatio 0) on 9 rataa, joihin kaikkiin kuuluu 1 ruutu. 35 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause Esimerkki 19 (Pólyan lause ja ristinolla, jatk.) Kierrolla kulman π 2 verran on 2 rataa, joilla molemmilla on 4 ruutua (toinen sisältää kulmaruudut, toinen niiden välillä olevat ruudut) ja 1 rata johon kuuluu 1 ruutu (ruutu keskellä). Sama pätee jos kierretään kulman 3π 2 verran. Jos kiertokulma on π, niin saamme 4 rataa, joilla molemmilla on 2 ruutua (vastakkaiset kulmat ja vastakkaiset ruudut niiden välillä) sekä 1 rata johon kuuluu 1 ruutu. Sykli-indeksiksi saamme näin ollen ζ G,X (t 1, t 2,..., t 9 ) = 1 4 (t9 1 + 2t 1 t 2 4 + t 1 t 4 2). 36 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause Esimerkki 20 (Pólyan lause ja ristinolla, jatk.) Jotta voisimme laskea ei-ekvivalenttien väritysten lukumäärän, korvaamme muuttujan t j lausekkeella x j + o j + t j. Tällöin termin x 2 o 2 t 5 kerroin on ei-ekvivalenttien väritysten lukumäärä, kun ruudukossa on kaksi kertaa x ja o ja viisi ruutua tyhjänä (t). Termin x 2 o 2 t 5 kerroin lausekkeessa (x + o + t) 9 on ( 9 2,2,5), lausekkeesta 2(x + o + t)(x 4 + o 4 + t 4 ) 2 ei tule yhtään x 2 o 2 t 5 -termiä ja termin x 2 o 2 t 5 kerroin lausekkeessa (x + o + t)(x 2 + o 2 + t 2 ) 2 on ( 4 1,1,2). Vaihtoehtojen lukumääräksi tulee siis 1 4 (( 9 2, 2, 5 ) ( )) 4 + 0 + = 1 (756 + 12) = 192. 1, 1, 2 4 37 / 38 R. Kangaslampi MS-A0402

Pólyan värityslause Resepti väritysten lukumäärien etsimiseen on siis seuraava: Selvitä tarkasteltavalla joukolla toimivan permutaatioryhmän permutaatiot ja niiden radat. Määrää permutaatioiden sykli-indeksit ja niiden keskiarvona ryhmän sykli-indeksi. Sijoita ryhmän sykli-indeksin lausekkeeseen muuttujan t j tilalle haluamasi värit potenssiin j, eli t j = v j 1 + v j 2 +... v j k, kun v i ovat käytössä olevat värit Termin v n 1 1 v n 2 2... v n k k kerroin kertoo, montako sellaista väritystä on, jossa esiintyy täsmälleen n i kertaa väri v i. Pólyan värityslauseen todistus löytyy esim. MyCourses-sivulla annetusta lisämateriaalista. 38 / 38 R. Kangaslampi MS-A0402