Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Ajankohtaista
Konseptitesti Kysymys Sotalaivasta ammutaan yhtäaikaisesti kaksi ammusta vihollislaivoja kohti. Jos ammukset kulkevat paraabeliradalla, kumpaan laivaan osutaan ensiksi? 1. Laivaan A 2. Yhtäaikaa molempiin 3. Laivaan B 4. Tarvitaan lisää tietoa A B
Konseptitesti Kysymys Sotalaivasta ammutaan yhtäaikaisesti kaksi ammusta vihollislaivoja kohti. Jos ammukset kulkevat paraabeliradalla, kumpaan laivaan osutaan ensiksi? 1. Laivaan A 2. Yhtäaikaa molempiin 3. Laivaan B 4. Tarvitaan lisää tietoa A B
Luennon sisältö Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Liikkeen ratkaisu kiihtyvyydestä Kuinka ratkaista nopeus ja paikka, jos kiihtyvyys (ei vakio!) tunnetaan ajan funktiona? Jaetaan aikaväli t = t 2 t 1 N yhtäsuureen osaan Aikavälillä t k hiukkasen nopeuden muutos v k on a k t k. Koko välillä t vastaava muutos on a a(t) v = v 2 v 1 = NX a k t k a k t k=1 Pienentämällä välejä saadaan v = NX lim a k tk!0 k=1 t k t 1 t k t N t
Määrätty integraali Määrätyn integraalin määritelmä v = v 2 v 1 = lim tk!0 k=1 NX a k t k = Z t2 t 1 a(t) dt eli nopeus on kiihtyvyyden integraali Vastaavasti, jos tunnetaan kappaleen nopeus ajan funktiona välillä t = t 2 t 1, niin x = x 2 x 1 = ts., paikka on nopeuden integraali Z t2 t 1 v(t) dt ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Alkuehdot Jotta päästäisiin ratkaisuun, tehtävässä täytyy tietää joko nopeus tai paikka tietyllä ajanhetkellä Yleensä oletetaan, että suure tunnetaan ajanhetkellä t = 0: olkoon v(0) =v 0 ja x(0) =x 0 (ns. alkuehto). Tällöin yhtälöt saadaan muodoon a = dv dt Z t =) v = v 0 + 0 a dt ja v = dx dt Z t =) x = x 0 + 0 v dt ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Harjoitellaan Laske seuraavat laskut yksin tai parin kanssa Tehtävänanto Määritä funktio y(x) integroimalla suoraan seuraavat differentiaaliyhtälöt 1. dy dx = e 2x 2. dy dx = x e 2x 2 ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Ratkaisu
Harjoitellaan lisää Pohdi vierustoverin kanssa Tehtävänanto Auto liikkuu moottoritietä siten, että sen kiihtyvyyttä kuvaa yhtälö a = A Bt, missä A = 2.0ms 2 ja B = 0.1ms 3. Lisäksi tiedetään, että x(t = 0) =50 m ja v(t = 0) =10 m s 1. 1. Laske auton nopeus ja paikka ajan funktiona. 2. Millä ajanhetkellä auto saavuttaa maksiminopeuden?
Ratkaisu
Differentiaaliyhtälöt Edelläesitetyt yksinkertaisia esimerkkejä differentiaaliyhtälöistä Erinomainen tapa kuvata fysikaalisia ja teknistieteellisiä probleemia Joskus hieman työläitä ratkoa tietokone auttaa! Tyypillisesti tämän kurssin alkupuolella kohdattavat differentiaaliyhtälöt ovat muotoa dy dx = f (x, y) Useimmat laskuharjoitustehtävät separoituvia DY separoituva jos se on muotoa dy dx = g(x) h(y)
Separoituvan differentiaaliyhtälön ratkaiseminen DY separoituva jos se on muotoa dy = g(x) h(y) dx Yhtälö ratkaistaan kirjoittamalla se muotoon 1 dy h(y) dx = g(x) Integroidaan puolittain x:n suhteen Z Z 1 dy h(y) dx dx = g(x) dx Huomaa, että etsittävä ratkaisu on y(x), joten Z Z 1 dy h(y(x)) dx dx = g(x) dx g(b) Z f (g) dg g(a) Z b Muuttujanvaihto dt = f (g(t)) dg dt a
Separoituvan differentiaaliyhtälön ratkaiseminen Nyt ratkaistava integraalit Zy(x) y(x 0 ) dy h(y(x)) = Z x x 0 g(x) dx Integrointirajat määräytyvät ongelman asettelusta (alkuehdoista) ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Harjoitellaan Laske seuraavat laskut yksin tai parin kanssa Tehtävänanto Määritä funktio y(x) separoimalla seuraavat differentiaaliyhtälöt ja soveltamalla annettuja alkuarvoja 1. dy dx = x 3 e y, y(2) =0 2. y dy dx + x = 0, y(0) = 2 ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Ratkaisu
Harjoitellaan lisää Pohdi yksin tai parin kanssa Tehtävänanto Suoralla liikkuvan kappaleen kiihtyvyys on a(t) = Kv(t), missä vakio K > 0. Liikkeen alussa v(t = 0) =v 0. Määritä kappaleen nopeus v ajan t funktiona. 1. Muodosta differentiaaliyhtälö nopeudelle 2. Separoi saamasi differentiaaliyhtälö 3. Integroi puolittain t 0! t ja v 0! v(t) 4. Sievennä 5. Profit ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos
Ratkaisu