Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava
|
|
- Tarja Ahonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että e w = z kaikilla n. Logaritmin päähaaraksi sanotaan valintaa n = 0 ja 0 θ < π: lnz = ln r + iθ, 0 θ < π Jos nyt z R, ja z on positiivinen > 0): lnz = ln r Jos taas z on negatiivinen reaaliluku, lnz = ln r + iπ Esim. päähaara-arvot): ln 1) = ln e iπ ) = iπ ln i = ln e iπ/ = i π ln1 + i) = ln e iπ/4 ) = 1 ln + i π 4 6. Differentiaaliyhtälöistä Newtonin toisen lain mukaan kappaleeseen vaikuttava voima on yhtäsuuri kuin kappaleen massa kerrottuna sen kiihtyvyydellä. Korkeudella h putoamisliikkeessä olevan kappaleen kiihtyvyys on d h ja siihen vaikuttava dt gravitaatiovoima mg, kun kappaleen massa on m. Newtonin lain mukaan on siis tai m d h dt d h dt = mg = g. Tämä on korkeutta h hallitseva differentiaaliyhtälö, ts. siinä esiintyy tuntemattoman funktion derivaattoja. Differentiaaliyhtälön ratkaisemisella tarkoitetaan yhtälön toteuttavan funktion etsimistä. Putoamisliikkeen tapauksessa ratkaisu on helppo löytää. Integroidaan differentiaaliyhtälön d h dt = g molemmat puolet, jolloin saadaan dh dt = gt + c 1. Tämä on edelleenkin differentiaaliyhtälö ja edelleenkin voimme integroida sen puolittain. Päämme ratkaisuun h = 1 gt + c 1 t + c. 38 Terminologiaa Putoamisliikkeen ratkaisussa on kummastakin integroinnista aiheutuneet integrointivakiot otettu mukaan. Vakioiden arvot määräytyvät alkuehdoista. Tässä tapauksessa tieto kappaleen korkeudesta ja nopeudesta alkuhetkellä t = 0 riittää. Kun yhtälössä on jonkin muuttujan derivaattoja jonkin toisen muuttujan suhteen, sanotaan edellistä muuttujaa riippuvaksi ja jälkimmäistä riippumattomaksi vapaaksi). Riippuva muuttuja on siis sama kuin funktio mikä halutaan ratkaista. Jos differentiaaliyhtälössä esiintyy derivaattoja vain yhden riippumattoman muuttujan suhteen, puhutaan tavallisesta differentiaaliyhtälöstä. Jos yhtälössä on osittaisderivaattoja useamman kuin yhden vapaan muuttujan suhteen, kyseessä on osittaisdifferentiaaliyhtälö. Esimerkiksi differentiaaliyhtälö d x dt + a dt + kx = 0
2 on tavallinen. Sen riippuva muuttuja on x ja riippumaton t. Yhtälö u x + u y = x 3y on puolestaan osittaisdifferentiaaliyhtälö, jonka riippumattomat muuttujat ovat x ja y. u on tämän yhtälön riippuva muuttuja. Yhtälön kertaluku on korkein siinä esiintyvien derivaattojen kertaluvuista. Esimerkiksi yhtälön d h dt = g kertaluku on. Differentiaaliyhtälö on lineaarinen, jos riippuva muuttuja y) ja sen derivaatat esiintyvät yhtälön kaikissa termeissä joko ensimmäisessä potenssissa tai ei ollenkaan. Jos differentiaaliyhtälö ei ole lineaarinen, sen sanotaan olevan epälineaarinen. Esimerkiksi yhtälö on lineaarinen mutta yhtälöt d y + sin y = 0, y d y + y = x4 + yy = 0 ja y = x y ovat epälineaarisia. Mikä tahansa kertaluvun n tavallinen differentiaaliyhtälö on kirjoitettavissa muotoon F x, y, ),..., dn y n = 0. Olkoon I jokin lukuväli a, b), [a, b],...). Jos sijoitettaessa y = fx) yhtälöön F x, y, ),..., dn y n = 0 se toteutuu kaikilla x I, sanotaan että fx) on ko. yhtälön ratkaisu välillä I. Esim. Yhtälön y x y = 0 ratkaisu on fx) = x x 1 Nyt derivaatat f x) = x + x ja f x) = x 3 ovat määriteltyjä aina kun x 0. Sijoitetaan f yhtälöön, jolloin saadaan x 3 ) x x x 1 ) = x 3 ) x 3 ) = 0. Yhtälö siis toteutuu kun x 0 fx) = x x 1 on yhtälön ratkaisu alueissa, 0) ja 0, ). Esim. φx) = c 1 e x + c e x on yhtälön y y y = 0 ratkaisu Nyt φ x) = c 1 e x + c e x ja φ x) = c 1 e x + 4c e x. Sijoitetaan nämä yhtälöön, jolloin c 1 e x + 4c e x ) c 1 e x + c e x ) c 1 e x + c e x ) = c 1 + c 1 c 1 )e x + 4c c c )e x = 0. Tämä on ilmeisestikin voimassa koko reaaliakslla, joten φx) = c 1 e x + c e x on yhtälön ratkaisu välillä, ) olivatpa c 1 ja c mitä tahansa vakioita. Esim. Yhtälön 1 + xe xy ) yexy = 0 ratkaisu määräytyy yhtälöstä x + y + e xy = 0 Suoraviivainen menettely olisi ratkaista y yhtälöstä x + y + e xy = 0 ja sijoittaa tämä differentiaaliyhtälöön. Valitettavasti vain emme osaa tätä ratkaisua muodostaa. Derivoidaan sen sijaan yhtälö x + y + e xy = 0 implisiittisesti, jolloin exy y + x ) = 0. Uudestaan ryhmittäen voidaan kirjoittaa 1 + xe xy ) yexy = 0, joten yhtälö x + y + e xy = 0 todellakin määrää implisiittisesti ko. differentiaaliyhtälön ratkaisun. Osoittautuu, että kertalukua n olevien differentiaaliyhtälöiden ratkaisuihin liittyy aina n mivaltaista vakiota. Useimmissa tapauksissa vakiot ovat määrättävissä, jos tunnetaan funktio ja sen n 1 ensimmäisen derivaatan arvot jossakin ratkaisuvälin I pisteessä. Differentiaaliyhtälöön F x, y, ),..., dn y n = 0 liittyvä alkuarvoprobleema kuuluu: Etsi välillä I se differentiaaliyhtälön ratkaisu, joka pisteessä x 0 I toteuttaa n ehtoa yx 0 ) = y 0 x 0) = y 1. d n 1 y n 1 x 0) = y n 1, missä suureet y 0, y 1,..., y n 1 ovat vakioita. Nimitys alkuarvo on peräisin mekaniikasta, missä yx 0 ) = y 0 tarkoittaa usein kappaleen paikkaa alkuhetkellä x 0 ja y x 0 ) = y 1 sen nopeutta samalla hetkellä. 39
3 Esim. Määrää se yhtälön y y y = 0 ratkaisu, joka toteuttaa alkuehdot y0) = ja y 0) = 3 Aiemmin näimme, että φx) = c 1 e x + c e x on ko. yhtälön ratkaisu olivatpa vakiot c 1 ja c mitä tahansa. Määrätään nämä kertoimet siten, että alkuehdot toteutuvat: φ0) = c 1 e 0 + c e 0 = φ 0) = c 1 e 0 + c e 0 = 3, c 1 + c = c 1 + c = 3. Yhtälöryhmän ratkaisuna saadaan c 1 = 7/3 ja c = 1/3. Alkuarvot toteuttava ratkaisu on siis φx) = 7 3 e x 1 3 ex. tavallisimmat differentiaaliyhtälöt: Seuraavat differentiaaliyhtälöt esiintyvät usein fysiikassa ja muissa sovelluksissa: = ay, a R y = Ceax d y = a y, y = C 1 e ax + C e ax d y = a y, y = C 1 cosax) + C sinax) = D 1 e iax + D e iax Viimeinen yhtälö on esim. harmonisen värähtjän yhtälö: jos kappale liikkuu x-aksa pitkin voiman F = kx vaikutuksessa, Newtonin lain mukaan F = ma) F = kx = d x dt 6.1 Ensimmäisen kertaluvun yhtälöt Ensimmäisen kertaluvun differentiaaliyhtälöille voidaan todistaa olemassaolo- ja yksikäsitteisyyslause: Olkoot funktio fx, y) ja sen osittaisderivaatta f x x, y) jatkuvia pisteen x 0, y 0 ) sisältävässä suorakaiteessa R = {x, y) a < x < b, c < y < d}. Silloin alkuarvoprobleemalla = fx, y), yx 0) = y 0 on yksikäsitteinen ratkaisu φx) jollakin välillä x 0 h < x < x 0 + h, missä h > 0. Vastaavanlaisia lauseita on olemassa myös korkeamman kertaluvun differentiaaliyhtälöille. Lause siis kertoo, milloin ratkaisu on löydettävissä ja että ratkaisun löyttyä ei tarvitse etsiä muita ratkaisuja koska niitä ei ole olemassa. Graafisesti olemassaolo tarkoittaa, että lauseen suorakaiteen jokaisen pisteen kautta kulkee jokin ratkaisu ja yksikäsitteisyys sitä, että kunkin pisteen x 0, y 0 ) kautta kulkee täsmälleen yksi ratkaisu. Tästä johtuen ratkaisujen kuvaajat eivät koskaan leikkaa toisiaan. Valitettavasti lause kertoo vain että ratkaisu on olemassa pisteen x = x 0 ympäristössä, mutta ei kerro tämän ympäristön suuruutta. Fysiikan mallintamisessa alkuarvotehtävän ratkaisun olemassaolo ja yksikäsitteisyys ovat ensiarvoisen tärkeitä. Ensinnäkin todellisessa maailmassa jotakin tapahtuu joten mallinnettaessa maailmaa aluarvoprobleemoina olisi ratkaisujen syytä olla olemassa. Toiseksi, jos saman kokeen toisto samoilla ehdoilla johtaa aina samaan tulokseen, täytyy kokeeseen liittyvän mallinkin olla yksikäsitteinen. Mekaniikka on hyvä esimerkki deterministisestä mallista: tulevaisuus määräytyy tarkasti jos alkutila tunnetaan tarkasti Separoituvat yhtälöt Jos differentiaaliyhtälö voidaan kirjoittaa muodossa = qx)py) 6.1) ts. oikea puoli on kirjoitettavissa kahden funktion tulona, joista toinen riippuu vain muuttujasta x ja toinen vain muuttujasta y, sanotaan että yhtälö on separoituva tai että yhtälön muuttujat ovat erotettavissa. Luonnollisesti myös muotoa ovat separoituvia. Separoituva yhtälö = qx) py) tai = qx) py) = py) qx) ratkeaa muuttujien separoinnilla: kerrotaan molemmat puolet funktiolla py) ja differentiaalilla, jolloin py) = qx), 6.) ja integroimalla näin saatu yhtälö, py) = qx). 6.3) Jos integraalit osataan laskea, voidaan ratkaista y = fx). Näytetään että 6.3) antaa oikean ratkaisun: Olkoot P y) ja Qx) funktioiden py) ja qx) integraalifunktioita, ts. P y) = py), Q x) = qx) 40
4 Tälloin yhtälö 6.3) on ekvivalentti yhtälön P y) = Qx) + C kanssa. Kirjoittamalla y = yx) ja derivoimalla x:n suhteen saamme d P yx)) = P yx))y x) = d Qx) py)y = qx) mikä oli alkuperäinen differentiaaliyhtälö. Esim. Ratkaise = x 5 y Kerrotaan yhtälö puolittain tekijällä y, jolloin saadaan y = x 5). Integrointi molemmin puolin antaa y = x 5) Ratkaistaan y: y 3 3 = x 5x + C. 3x y = ) 1/3 15x + 3C. Koska vakio C voi olla mivaltainen reaaliluku niin sellainen on myös 3C. Voimme siis aivan hyvin korvata sen vaikkapa symbolilla K: ) 3x 1/3 y = 15x + K. Esim. Ratkaise alkuarvotehtävä = y 1 x+3 kun y 1) = 0 Muuttujien erottaminen johtaa yhtälöön Tämän integrointi antaa y 1 = x + 3. ln y 1 = ln x C. Eksponentioidaan yhtälön molemmat puolet ja saadaan e ln y 1 ln x+3 +C = e y 1 = e C x + 3 = K x + 3, missä olemme merkinneet K = e C > 0. Riippuen muuttujien y ja x arvoista on y 1 = ±y 1) ja x + 3 = ±x + 3). Voimme siis kirjoittaa y 1 = ±Kx + 3) tai y = 1 + ±K)x + 3). Merkitään vakiota ±K jälleen symbolilla C, joka voi nyt siis olla mivaltainen reaaliluku. Saamme silloin differentiaaliyhtälön ratkaisuksi y = 1 + Cx + 3). Alkuehto oli y 1) = 1 + C 1 + 3) = 0 C = 1/. Alkuarvotehtävän siis ratkaisee funktio y = 1 1 x Lineaariset yhtälöt Ensimmäisen kertaluvun lineaarinen yhtälö on muotoa a 1 x) + a 0x)y = bx), 6.4) missä kertoimet a 1 x), a 0 x) ja oikea puoli bx) voivat riippua vain vapaasta muuttujasta x mutta eivät riippuvasta muuttujasta y. Esimerkiksi yhtälö x sin x cos x)y = sin x) on selvästikin lineaarinen. Yhtälö y + sin x)y3 = e x + 1 sen sijaan ei ole lineaarinen, sillä sen lisäksi että derivaatan kertoimena on riippuva muuttuja y esiintyy yhtälössä muuttujan y kuutiollinen termi. Olettaen, että kerroin a 1 x) yhtälössä 6.4) on tarkasteltavalla välillä nollasta poikkeava, ensimmäisen kertaluvun yhtälö on kirjoitettavissa standardimuotoon + px)y = qx). 6.5) Jos asetetaan qx) = 0 yhtälöä sanotaan homogeeniseksi, alkuperäistä täydelliseksi. Homogeenisen yhtälön kaikissa termeissä esiintyy siis ainoastaan y:n tai y ensimmäistä potenssia. Ratkaisussa kannattaa lähteä liikkeelle homogeenisen yhtälön ratkaisusta: I) Homogeeninen yhtälö HY): Ratkeaa separoimalla: + px)y = 0 y = px) ln y = px) + A [ ] y = C exp px) missä C = ±e A on integroimisvakio. Tämä on HY:n yleinen ratkaisu. 41
5 II) Täydellinen yhtälö TY): Nyt riittää löytää joku ratkaisu TY:lle, olkoon se y 0 x). Tällöin TY:n yleinen ratkaisu on HY:n ja TY:n ratkaisujen summa, y TY x) = y HY x) + y 0 x) missä y HY on yllä lasketty HY:n yleinen ratkaisu. Todistus: 1. y TY x) on selvästi TY:n ratkaisu. Olkoon y 1 x) TY:n mivaltainen ratkaisu. Tällöin y 1 x) y 0 x) on selvästi HY:n joku ratkaisu, joten y 1 x) = y HY x) + y 0 x). Kuinka TY:n ratkaisu löydetään? Arvaus: toimii usein, mutta pitää keksiä! Esim. y + xy = x: selvästi yksi TY:n ratkaisu on y = 1. Vakion variointi: Etsitään ratkaisua niin että HY:n ratkaisun vakio ylennetään x:n funktioksi: y = Cx)e px) y = C e p Cpe p = C e p py Sijoitetaan tämä TY:hyn: C e p py + py = q C p = qe C = qe p Siis TY:n yleinen ratkaisu saadaan muotoon [ ] yx) = e p C + qe p 6.6) Tässä C -termi on HY:n yleinen ratkaisu. Tätä muotoa ei kannata muistaa, menetelmä kyllä! Esim. Etsi yhtälön 1 x y x = x cos x yleinen ratkaisu Yhtälö on lineaarinen, joten kirjoitetaan se ensin standardimuotoon kertomalla se tekijällä x: x y = x cos x. Nyt homogeeninen yhtälö on siis y xy = 0, joka ratkeaa separoimalla: y = ln y = ln x + A y = Cx x Täydellinen yhtälö ratkeaa vakion varioinnilla: y = Cx y = C x + Cx Siis TY:n yleinen ratkaisu on siis näiden kahden ratkaisun summa: y = C + sin x)x Vakio C määräytyy nyt alkuehdosta. Esim. Etsi yhtälön y y = yleinen ratkaisu Yhtälö on lineaarinen: HY: y = 0 y = ln y = x + A y = Ce x TY: Täydellisen yhtälön ratkaisu voidaan etsiä vakion varioinnilla, mutta tässä tapauksessa nähdään helposti että y = 1 toteuttaa TY:n. Siis yleinen ratkaisu on y = Ce x 1. Esim. Putoava kappale:kappale jonka massa on m putoaa ilmassa maan vetovoiman vaikutuksesta. Hetkellä t = 0 kappale on levossa. Mikä on kappaleen nopeus ajan funktiona? Kappaleeseen vaikuttavat voimat: maan vetovoima: mg ilmanvastus: kv pitää paikkansa jos nopeus v on pieni). Newtonin liikelaki F = ma m dv dt = mg kv Kyseessä on lineaarinen 1. kertaluvun differentiaaliyhtälö. HY on mv = kv 1 v dv = k m dt ln v = k m t + A v = Ce kt/m TY:n yksittäisratkaisu saadan vakion varioinnilla, tai jälleen arvaamalla: selvästi v = mg/k toteuttaa TY:n, joten yleinen ratkaisu on vt) = Ce kt/m + mg/k Hetkellä t = 0 nopeus v0) = 0 C = mg/k, joten alkuehdon toteuttava ratkaisu on vt) = mg k 1 e kt/m ) Kun t on pieni t m/k), kappaleen nopeus v gt, mutta kun t, nopeus lähestyy raja-arvoa mg/k. ja TY: C x + Cx x Cx = x cos x C = cos x C = sin x 4
Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).
6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
Lisätiedot2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
Lisätiedot3 TOISEN KERTALUVUN LINEAARISET DY:T
3 TOISEN KERTALUVUN LINEAARISET DY:T Huomautus epälineaarisista. kertaluvun differentiaaliyhtälöistä Epälineaarisen DY:n ratkaisemiseen ei ole yleismenetelmää. Seuraavat erikoistapaukset voidaan ratkaista
LisätiedotBM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
Lisätiedota 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0
6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun
LisätiedotEnsimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 17. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Lisätiedot4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
LisätiedotLuento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
LisätiedotSARJAT JA DIFFERENTIAALIYHTÄLÖT
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin
LisätiedotLineaarinen toisen kertaluvun yhtälö
Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
LisätiedotDierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 14. helmikuuta 2011 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun olemassaolosta ja yksikäsitteisyydestä...........
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Lisätiedot1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
Lisätiedot4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
Lisätiedot4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt
4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
Lisätiedoty + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
Lisätiedotw + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
LisätiedotOsa 11. Differen-aaliyhtälöt
Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
Lisätiedot3 Toisen kertaluvun lineaariset differentiaaliyhtälöt
3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)
LisätiedotLuoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13
4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt
LisätiedotLuento 3: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka
LisätiedotMat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja
Lisätiedot12. Differentiaaliyhtälöt
1. Differentiaaliyhtälöt 1.1 Johdanto Differentiaaliyhtälöitä voidaan käyttää monilla alueilla esimerkiksi tarkasteltaessa jonkin kohteen lämpötilan vaihtelua, eksponentiaalista kasvua, sähkölatauksen
LisätiedotMatemaattinen Analyysi
Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo
LisätiedotBM20A0300, Matematiikka KoTiB1
BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja
LisätiedotMS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko
MS-A0107 - Differentiaali- integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko 1 Tehtävä Etsi seuraavien yhtälöiden yleiset ratkaisut: Ratkaisu: a) y y 2y = 4x, b) y + 4y = sin 3x, c) y + 2y + 5y = e x
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 406 6 laskuharjoituksien esimerkkiratkaisut Ratkaistaan differentiaaliyhtälö y = y () Tässä = d dy eli kyseessä on lineaarinen kertaluvun differentiaaliyhtälö: Yhtälön () homogenisoidulle
Lisätiedot10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 5.4.06 5. laskuharjoituksien esimerkkiratkaisut. Etsitään homogeenisen vakiokertoimisen lineaarisen differentiaaliyhtälön kaikki ratkaisut (reaalisessa muodossa). y (5) +4y (4)
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotYhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt
Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
LisätiedotRatkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
LisätiedotNumeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Lisätiedot1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
LisätiedotDifferentiaaliyhtälöt
Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
LisätiedotDifferentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Lisätiedotk=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
LisätiedotOsoita, että eksponenttifunktio ja logaritmifunktio ovat differentiaaliyhtälön
3. Lineaariset differentiaaliyhtälöt 3.1. Lineaariyhtälöiden teoriaa 99. Onko differentiaaliyhtälö y + x(y y )=y + 1 a) lineaarinen, b) homogeeninen? 100. Olkoot funktiot f (x) ja g(x) jatkuvasti derivoituvia
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotLuento 4: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-
LisätiedotMatemaattiset apuneuvot II, harjoitus 2
Matemaattiset apuneuvot II, harjoitus 2 K. Tuominen 9. marraskuuta 2017 Palauta ratkaisusi Moodlessa.pdf tiedostona maanantaina 13.11. kello 10:15 mennessä. Merkitse vastauspaperiin laskuharjoitusryhmäsi
LisätiedotHarjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
LisätiedotToisen ja korkeamman kertaluvun lineaarisista differentiaaliyhtälöistä
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Riikka Sjögren Toisen ja korkeamman kertaluvun lineaarisista differentiaaliyhtälöistä Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 2010 Tampereen
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
LisätiedotDifferentiaaliyhtälöt I Ratkaisuehdotuksia, 2. harjoitus, kevät Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d
Differentiaaliyhtälöt I Ratkaisuehdotuksia,. harjoitus, kevät 016 1. Etsi seuraavien yhtälöiden yleiset ratkaisut (Tässä = d dx ): (a) y + xy = xe x, (b) (1 + x ) y xy = (1 + x ), (c) y sin x y = 1 cos
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön
4 Differentiaaliyhtälöryhmät 41 Ryhmän palauttaminen yhteen yhtälöön 176 Ratkaise differentiaaliyhtälöryhmät a) dt = y +t, b) = y z + sinx x 2 dt = x +t, c) + z = x2 = y + z + cosx + 2y = x a)x = C 1 e
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotDifferentiaaliyhtälöt I, kevät 2017 Harjoitus 3
Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Lisätiedot5 DIFFERENTIAALIYHTÄLÖRYHMÄT
5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Ensimmäisen kl:n DY-ryhmät Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Useimmat voidaan mallintaa ensimmäisen kertaluvun DY-ryhmien avulla. Ensimmäisen kl:n
LisätiedotVEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää
Lisätiedot800345A Differentiaaliyhtälöt I. Seppo Heikkilä, Martti Kumpulainen, Janne Oinas
800345A Differentiaaliyhtälöt I Seppo Heikkilä, Martti Kumpulainen, Janne Oinas 2. maaliskuuta 2009 Sisältö 1 Ensimmäisen kertaluvun differentiaaliyhtälöt 2 1.1 Merkintöjä ja nimityksiä...........................
LisätiedotKaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
Lisätiedot2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =
BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
LisätiedotMatematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
LisätiedotH5 Malliratkaisut - Tehtävä 1
H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa
LisätiedotTalousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä
Talousmatematiikan perusteet: Luento 16 Integraalin käsite Integraalifunktio Integrointisääntöjä Integraalin käsite Tarkastellaan auton nopeusmittarilukemaa v(t) ajan t funktiona aikavälillä klo 12.00-17.00
LisätiedotTAVALLISET DIFFERENTIAALIYHTÄLÖT
MAT-33500 Differentiaaliyhtälöt Kesä 00 Risto Silvennoinen TAVALLISET DIFFERENTIAALIYHTÄLÖT Peruskäsitteitä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on
Lisätiedot= 9 = 3 2 = 2( ) = = 2
Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot2. Tavallisen differentiaaliyhtälön yleisiä ratkaisumenetelmiä. y = 2xy, Piirrä muutama yleisen ratkaisun kuvaaja. Minkä nimisistä käyristä on kyse?
2. Tavallisen differentiaaliyhtälön yleisiä ratkaisumenetelmiä 2.1. Ensimmäisen kertaluvun yhtälöt 30. Ratkaise alkuarvotehtävä y = 2xy, y(0)=1. Piirrä muutama yleisen ratkaisun kuvaaja. Minkä nimisistä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotNumeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Lisätiedotx + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
Lisätiedot