Gaussian type orbitals (GTO) basis functions assume the radial part e αr2. Sc. cartesian GTO functions take the form

Samankaltaiset tiedostot
9. Elektronirakenteen laskeminen

9. Elektronirakenteen laskeminen

Capacity Utilization

FYSA235, Kvanttimekaniikka I, osa B, tentti Tentin yhteispistemäärä on 48 pistettä. Kaavakokoelma ja CG-taulukko paperinipun lopussa.

Efficiency change over time

Laskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka

Alternative DEA Models

Bounds on non-surjective cellular automata

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

J 2 = J 2 x + J 2 y + J 2 z.

The Viking Battle - Part Version: Finnish

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

The CCR Model and Production Correspondence

Kvanttilaskenta - 2. tehtävät

make and make and make ThinkMath 2017

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Other approaches to restrict multipliers

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Information on preparing Presentation

Luento5 8. Atomifysiikka

Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia

16. Allocation Models

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Gap-filling methods for CH 4 data

PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45

anna minun kertoa let me tell you

Land-Use Model for the Helsinki Metropolitan Area

Results on the new polydrug use questions in the Finnish TDI data

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Returns to Scale Chapters

Strict singularity of a Volterra-type integral operator on H p

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Tietorakenteet ja algoritmit

Choose Finland-Helsinki Valitse Finland-Helsinki

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

AYYE 9/ HOUSING POLICY

Valuation of Asian Quanto- Basket Options

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

MEETING PEOPLE COMMUNICATIVE QUESTIONS

Kvanttilaskenta - 1. tehtävät

2m 2 r + V (r) ψ n (r) = ɛ n ψ n (r)

C++11 seminaari, kevät Johannes Koskinen

Use of spatial data in the new production environment and in a data warehouse

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Topologies on pseudoinnite paths

LYTH-CONS CONSISTENCY TRANSMITTER

21~--~--~r--1~~--~--~~r--1~

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Statistical design. Tuomas Selander

HARJOITUS- PAKETTI A

Kvanttimekaniikkaa yhdessä ulottuvuudessa

7. Atomien rakenne ja spektrit

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi Peter Michelsson Wallstreet Asset Management Oy

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

Guidebook for Multicultural TUT Users

FETAL FIBROBLASTS, PASSAGE 10

Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä

1. Liikkuvat määreet

Alternatives to the DFT

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) ( (Finnish Edition)

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

S Fysiikka III (EST) Tentti ja välikoeuusinta

SIMULINK S-funktiot. SIMULINK S-funktiot

TEOREETTINEN FYSIIKKA TEKNIIKAN TUKENA

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

Operatioanalyysi 2011, Harjoitus 4, viikko 40

812336A C++ -kielen perusteet,

I. AES Rijndael. Rijndael - Internal Structure

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Curriculum. Gym card

A DEA Game I Chapters

4x4cup Rastikuvien tulkinta

MALE ADULT FIBROBLAST LINE (82-6hTERT)

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

KMTK lentoestetyöpaja - Osa 2

Akateemiset fraasit Tekstiosa

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

Miksi Suomi on Suomi (Finnish Edition)

TONI YLENIUS VAN DER WAALS -VUOROVAIKUTUS ELEKTRONIRAKEN- NETEORIASSA: LASKUMENETELMIEN VERTAILU. Diplomityö

2_1----~--~r--1.~--~--~--,.~~

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

FYSA2031 Potentiaalikuoppa

Exercise 1. (session: )

7.4 Variability management

Nonadiabatic Charge Pumping in Superconducting Circuits

Capacity utilization

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Rekisteröiminen - FAQ

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

Transkriptio:

QTMN, 2016 173 9.4. STO and GTO basis sets For an accurate, but easy presentation of molecular orbitals a good basis set is needed. In general, a complete basis consists of an infinite numer of basis functions, M =. The solution in a complete basis set is called as Hartree Fock limit and the difference from that is called as the basis-set truncation error. In the basis set Slater type orbitals (STO) the radial part is e ζr, where ζ is orbital exponent, see sec 7.14. The infinite set {e ζr } ζ is complete, if ζ R, but in practice, only a limited number of ζ l are chosen by fitting to STO. STO is not very popular, because evaluation of two-electron integrals in STO is laborious. Gaussian type orbitals (GTO) basis functions assume the radial part e αr2. Sc. cartesian GTO functions take the form g ijk (r) = N x i y j z k e αr2, (9.20) where r = r q r c = x ^i + y ^j + z ^k, i, j and k are nonnegative integers, r c is position of the "center", usually the nucleus, and r q is position of the electron q. Now, l = i + j + k, and therefore, l = 0, 1, 2,... are s, p, d,... type GTO functions. If x i y j z k are replaced by spherical harmonics Y l ml, we have sc. "spherical gaussians" basis set. The size of the Fock matrix to be diagonalized can be reduced by contraction of the basis {g i } i to a smaller "contracted GTO basis" {χ j } j by QTMN, 2016 174 χ j = Σ i d ji g i, (9.21) where the contracted function χ j is a sum of primitive GTOfunctions g i. The coefficients d ji are determined by fitting χ j to atomic orbitals. Molecular orbitals are then written in the form Fig. 9.4. ψ i = Σ j c ji χ j for the coefficients c ji to be searched.

The contraction schemes of GTO are many, e.g.: minimal basis set DZ, double zeta basis set TZ, triple zeta basis set SV, split valence basis set DZP, double zeta basis set plus polarization STO NG, e.g. STO 3G (4s)/[2s], (9s5p)/[3s2p] 3 21G, 6 31G*, 6 31G** An incomplete basis set implies errors or deficiencies in the solution. One of these is sc. "basis set superposition error", which can be corrected by sc. "counterpoise correction". QTMN, 2016 175 Table 9.3. HF SCF energies (in units Hartree = 27.21165 ev = 4.35975 aj Table 9.4. HF SCF bondlengths (in units Bohr = 0.529177 Å) Electron correlation HF theory includes the Coulombin repulsion between electrons in an average way, in form of Hartree potential, only. This means, that the HF theory does not include the manybody effects or correlations. This is the "definition of correlations" in the first-principles methods. 9.5. Configuration state functions (CSF) Assuming the number of basis functions is n, then we have 2n spin-orbitals, which can be occupied with N electrons in different ways. Let us denote the ground state Slater determinant as Φ o and once excited determinant as Φ a p and twice excited one as Φ ab pq, etc. Now, the configuration state function (CSF) is any of these determinats or a linear combination of those, which is an eigenfunction of the hamiltonian and all operators commuting with the hamiltonian, e.g. the operator S 2. QTMN, 2016 176 Fig. 9.5.

9.6. Configuration interaction (CI) The exact N electron many-body wavefunction can be written as Ψ = C 0 Φ 0 + Σ a,p C a p Φ a p + Σ a<b,p<q C ab pq Φ ab pq + Σ a<b<c,p<q<r C abc pqr Φ abc pqr +..., i.e., as a linear combination of the CSFs defined above, and assuming that the one-electron basis set is complete. This means, that the CSFs or N-electron determinants form a complete CSF-basis for N-electron wavefunctions. The excat many-body wavefunction Ψ does not represent the one-electron picture of Hartree Fock theory, i.e., occupation configuration of one-electron orbitals, but instead, a superposition of those. Therefore, this is called configuration mixing or configuration interaction (CI). The concepts "full CI" and "basis set correlation energy" are definend in Fig. 9.6. Correlation phenomena can also be called structural/ static or dynamic depending on the interpretation of the case. QTMN, 2016 177 (9.23) Fig. 9.6. 9.7. CI calculations Kertoimet C tilan Ψ CSF-sarjakehitelmään (9.31) saadaan samoin kuin edellä kertoimet c spin-orbitaalin ψ i sarjakehitelmään (9.14) diagonalisoimalla hamiltonin matriisi. Matriisielementeistä useat häviävät ja tärkeimmät CSF-kantafunktiot ovat Φ 0 ja kahdesti viritetyt Φ ab pq. Brillouinin teoreeman mukaan esim. Φ 0 H Φ a p = 0. Sen mukaan kuinka kehitelmä (9.31) katkaistaan (engl. limited CI) voidaan nimetä mm. seuraavia CI-tasoja: DCI SDCI SDTQCI Katkaistulta CI-menetelmältä puuttuu ns. "size-consistency". 9.8. MCSCF and MRCI QTMN, 2016 178 CI-menetelmässä kaikki CSF-funktiot on "rakennettu" samoilla Φ 0 -konfiguraatiolle HF-menetelmällä optimoiduilla spin-orbitaaleilla. Jos myös kertoimet c kehitelmässä (9.14) ψ = Σ j Mc ji θ j optimoidaan samalla kun kertoimet C kehitelmässä (9.31), on kyseessä "multiconfiguration SCF" (MCSCF) -menetelmä. MCSCF-aaltofunktiossa ei välttämättä ole yhtä ainoaa peruskonfiguraatiota Φ 0, jota "parannetaan" viritetyillä tiloilla. "Complete active-space SCF" (CASSCF) on MCSCF-menetelmä, jossa yksi-elektroniorbitaalit jaetaan kolmeen ryhmään (inactive, active, virtual) sen mukaan kuinka niiden virityksiä otetaan mukaan CSF-tiloissa. "Multireference CI" (MRCI) on CI- ja MCSCF-menetelmien välimuoto, joka kuvaa hyvin kor-

9.9. Møller Plesset many-body perturbation theory Monihiukkashäiriöteoria (engl. many-body perturbation theory, MBPT) on toinen vaihtoehto HF-teorian parantamiseksi systemaattisella tavalla. Häiriöteoria ei nojaudu variaatioteoreemaan, mutta sen etuna on "size consistency". Møller Plesset-häiriöteoriassa valitaan vertailutilan operaattoriksi yksi elektroni-fock-operaattoreiden summa (9.27) H (0) = Σ i f i. HF-aaltofunktio Φ 0 on myös tämän operaattorin ominaisfunktio, ks. kirjan esim. 9.4. Valitaan 1. kertaluvun häiriöksi operaattori H (1) = H H (0), joka "korjaa" vertailutilan H (0) energian Hartree Fock-energiaksi, kun H on molekyylin hamiltonin operaattori (9.1b). Hartree Fock-energia on siis E HF = E (0) + E (1), missä ja E (0) = Φ 0 H (0) Φ 0 E (1) = Φ 0 H (1) Φ 0. Toisen kertaluvun korjaus on QTMN, 2016 179 (9.28) (9.29) missä Φ J ovat "viritettyjä" CSF-funktioita. Osoittajassa olevista matriisielementeistä häviävät kaikki muut paitsi ne, joissa Φ J on kahdesti virittynyt CSF. Tätä toisen kertaluvun MP-teoriaa 9.10. Coupled-Cluster method Eräs tapa kirjoittaa korreloitunut N-elektroniaaltofunktio on Ψ = e C Ψ 0, missä Ψ 0 on Hartree-Fock-aaltofunktio e C = 1 + C + C 2 /2! + C 3 /3! +..., C on "klusterioperaattori" C = C 1 + C 2 + C 3 +... + C N ja C k tekee systeemiin k elektronista viritystä. Esimerkiksi C 1 Ψ 0 = Σ a,p t a pφ a p ja C 2 Ψ 0 = Σ a,b,p,q t ab pqφ ab pq. (9.31a) (9.31b) QTMN, 2016 180 (9.30a) (9.30b) Voidaan osoittaa, että esim. 2-elektro-nivirityksistä C 1 C 1 Ψ 0 ja C 2 Ψ 0 tulee ottaa huomioon vain jälkimmäinen, ns. "kytketty" (coupled), ks. diagrammit kuvassa 9.8. Sama koskee myös kaikkia muitakin virityksiä, josta menetelmän nimi seuraa. Niinpä esim. "couple cluster doubles" (CCD) approksimaatiossa C = C 2 ja Ψ e C 2 Ψ 0 ja Schrödingerin yhtälö kirjoitetaan H e C Ψ 0 = E e C Ψ 0. (9.32) Tuosta tulee ortogonaalisuusehtojen vuoksi energian lausekkeeksi E = E HF + Ψ 0 HC 2 Ψ 0. (9.33) Fig. 9.8.

Density functional theory (DFT) Density functional theory (DFT) is an alternative approach to solve the many-electron system Schrödinger equation (9.1). DFT is a natural approach for extended systems (solids, sizeable clusters or molecules), whereas the Hartree Fock wavefunction theory and its dervatives of are that for smaller systems: atoms and smaller molecules. 9.11. Hohenberg Kohn existence theorem The starting point is the electron density. All properties of the ground state system of electrons in a given external potential (e.g., of nuclei) uniquely depend on the electron density ρ(r). This is the first Hohenberg Kohn theorem. QTMN, 2016 181 Let us prove, that the ground state electron density uniquely gives its external potential, i.e., its hamiltonian, which proves the theorem. Thus, the theorem can be proven by assuming two different hamiltonians, which lead to the same ground state density: 9.12. Hohenberg Kohn variational theorem The first Hohenberg Kohn theorem implies, that with variation of the electron density the total energy can be minimized to that of the ground state, but not below. Thus, minimizing E[ρ] = T[ρ] + V ee [ρ] + ρ(r) v(r) dr = E HK [ρ] + ρ(r) v(r) dr with the condition δ { E[ρ] µ ρ(r) dr } = 0 we get where µ is the chemical potetntial. 9.13. Kohn Sham equations µ = v(r) + δe HK [ρ]/δρ(r), QTMN, 2016 182 (9.36) (9.37) Introducing one-electron orbitals of noninteracting electrons or sc. Kohn Sham orbitals ψ i the ground state total energy can be written as where ρ(r) = Σ i ψ i (r) 2. The first term is the kinetic energy, the second is the potential energy, the third is Hartree energy and the last one is sc. exchange and correlation energy. Thus, the energy is a functional of electron density, E[ρ]. The last term corrects the independent electrons energy to the interacting electrons energy.

QTMN, 2016 183 Application of variational principle to the total energy, silimarly to HF earlier, here leads to the Kohn Sham equations f ψ i = ε i ψ i, (9.39) where (9.42) and (9.41) If E xc [ρ] was known, the exchange and correlation potential V xc [ρ] could be found as its functional derivative. Thus, with DFT we can keep the one-electron picture, although we have all the correlations fully included. Therefore, interpretation of the Kohn Sham orbitals as quasi-electron states is different from the wavefunction theory. It can be shown, e.g., that the eigenenergy of the highest occupied Kohn Sham orbital is the first ionization energy, exactly! Historically, the DFT was preceded by the Thomas Fermi method, see sec. 7.18, where however, calculation of the kinetic energy without the one-electron picture is not simple. The sc. X α -method derived from the HF theory by Slater is also reminiscent of DFT or LDA, see the next sec. X α -method includes exchange energy as a functional of electron density. Also, hungarian Gáspár had presented similar suggestion before Slater. 9.14. Local-density approximation (LDA) For DFT calculations the exchange and correlation energy functional E xc [ρ] needs to be known for a given ρ(r). This functional is known very accurately for the homogeneous electron gas (HEG), which can be described with a single parameter ρ 0 or r s = (3 / 4πρ 0 ) 1/3. In fact, the energies per electron in HEG ε xc [ρ 0 ] = ε x [ρ 0 ] + ε c [ρ 0 ] are known and the functional is then E xc [ρ] = ρ(r) ε xc LDA (ρ(r)) dr, QTMN, 2016 184 (9.43a) where ε xc LDA (ρ(r)) = ε xc [ρ 0 ], when ρ 0 = ρ(r). Thus, at every position r the ε xc is approximated by that of the HEG, when ρ 0 = ρ(r). This is the LDA. The LDA can be expected to be viable for conduction electrons of metals, for example, but is has turned out to be very useful in many other cases as well and for molecules, in particular. In general, LDA can be expected to be viable, in cases where the exchange and correlation hole is localized around the electron. While HF approach is accurate for an one-electron system, e.g. hydrogen atom, the LDA is accurate for an infinite HEG. Between these extremes the structure dependent correlations need to be considered and HF is completed with CI, for example. So far, the best corrections to LDA are based on the "nonlocal" functionals of the form ε xc NL[ρ(r); ρ(r)]. Also, many kind of hybrids of HF and DFT have turned out to be useful. Jokingly, we can say that the hamiltonian of wavefunction theories is exact, but the resulting wavefunctions are not, whereas in case of DFT it is vice versa, the hamiltonian is an approximate (with the functional V xc [ρ]), but the resulting wavefunction is exact (for that hamiltonian, within numerical accuracy).

QTMN, 2016 185 QTMN, 2016 186