Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin on olemassa täsmälleen yksi sellainen lineaarikuvaus L: V W, että L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n. LM2, Kesä 2014 83/267
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lauseen 18 todistus. Jos v V, niin on olemassa yksikäsitteiset a 1,..., a n R, joilla v = a 1 v 1 + a 2 v 2 + + a n v n. Määritellään kuvaus L: V W asettamalla L( v) = a 1 w 1 + a 2 w 2 + + a n w n. Osoitetaan, että L täyttää lauseessa asetetut vaatimukset. Esimerkiksi v 2 = 0 v 1 + 1 v 2 + 0 v 3 + + 0 v n, joten L( v 2 ) = 0 w 1 + 1 w 2 + 0 w 3 + 0 w n = w 2. Näin voidaan osoittaa, että L( v i ) = w i kaikilla i {1,..., n}. LM2, Kesä 2014 84/267
Osoitetaan, että L on lineaarikuvaus. Oletetaan, että x, ȳ V ja t R. Tällöin x = b 1 v 1 + + b n v n ja ȳ = c 1 v 1 + + c n v n joillakin b 1,..., b n, c 1,..., c n R. Tällöin L( x + ȳ) = L ( (b 1 v 1 + + b n v n ) + (c 1 v 1 + + c n v n ) ) = L ( (b 1 + c 1 ) v 1 + + (b n + c n ) v n ) = (b 1 + c 1 ) w 1 + + (b n + c n ) w n = (b 1 w 1 + + b n w n ) + (c 1 w 1 + + c n w n ) = L(b 1 v 1 + + b n v n ) + L(c 1 v 1 + + c n v n ) = L( x) + L(ȳ) LM2, Kesä 2014 85/267
ja L(t x) = L ( t(b 1 v 1 + + b n v n ) ) = L(tb 1 v 1 + + tb n v n ) = tb 1 w 1 + + tb n w n = t(b 1 w 1 + + b n w n ) = tl(b 1 v 1 + + b n v n ) = tl( x). Siis L on yksi lauseen vaatimukset täyttävä lineaarikuvaus. Onko olemassa muita lineaarikuvauksia, jotka myös täyttävät lauseen ehdot? LM2, Kesä 2014 86/267
Osoitetaan, että lauseen 18 vaatimukset täyttäviä lineaarikuvauksia on enintään yksi (edellä määritelty L). Oletetaan, että L, T : V W ovat lineaarikuvauksia, joilla L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n ja T( v 1 ) = w 1, T( v 2 ) = w 2,..., T( v n ) = w n. Oletetaan, että v V. Tällöin v = a 1 v 1 + + a n v n joillakin a 1,..., a n R, sillä ( v 1,..., v n ) on avaruuden V kanta. Kuvausten L ja T lineaarisuutta käyttäen saadaan L( v) = L(a 1 v 1 + + a n v n ) = a 1 L( v 1 ) + + a n L( v n ) = a 1 w 1 + + a n w n = a 1 T( v 1 ) + + a n T( v n ) = T(a 1 v 1 + + a n v n ) = T( v). Kuvauksilla L: V W ja T : V W on samat arvot, joten ne ovat sama kuvaus. LM2, Kesä 2014 87/267
Dimensiolause Lause 19 Oletetaan, että V ja W ovat vektoriavaruuksia ja L: V W on lineaarikuvaus. Oletetaan lisäksi, että lähtö V on äärellisulotteinen. Tällöin dim(v ) = dim(ker L) + dim(im L). LM2, Kesä 2014 88/267
Ytimen ja kuvan dimensiot Lauseen 19 todistus. Olkoon dim(v ) = n ja olkoon ( v 1,..., v k ) aliavaruuden Ker L kanta, jolloin dim(ker L) = k. Koska jono ( v 1,..., v k ) on vapaa, voidaan se täydentää vektoriavaruuden V kannaksi ( v 1,..., v k, v k+1,..., v n ). Osoitetaan, että (L( v k+1 ),..., L( v n )) on aliavaruuden Im L kanta, jolloin dim(im L) = n k. Tämä todistaa väitteen. LM2, Kesä 2014 89/267
Osoitetaan ensin, että span(l( v k+1 ),..., L( v n )) = Im L. Oletetaan, että w Im L. Tällöin on olemassa v V, jolla L( v) = w. Lisäksi ( v 1,..., v k, v k+1,..., v n ) on vektoriavaruuden V kanta, joten v = a 1 v 1 + + a k v k + a k+1 v k+1 + + a n v n joillakin a 1,..., a n R. Käyttämällä kuvauksen L lineaarisuutta sekä tietoa, että v 1,..., v k Ker L, saadaan w = L( v) = L(a 1 v 1 + + a k v k + a k+1 v k+1 + + a n v n ) = a 1 L( v 1 ) + + a k L( v k ) + a k+1 L( v k+1 ) + + a n L( v n ) = 0 + + 0 + a k+1 L( v k+1 ) + + a n L( v n ) = a k+1 L( v k+1 ) + + a n L( v n ). LM2, Kesä 2014 90/267
Osoitetaan sitten, että jono (L( v k+1 ),..., L( v n )) on vapaa. Oletetaan, että c k+1 L( v k+1 ) + + c n L( v n ) = 0 joillakin c k+1,..., c n R. Kuvauksen L lineaarisuuden vuoksi L(c k+1 v k+1 + + c n v n ) = 0, joten c k+1 v k+1 + + c n v n Ker L. LM2, Kesä 2014 91/267
Koska c k+1 v k+1 + + c n v n Ker L, niin on olemassa luvut b 1,..., b k R, joille pätee Tästä saadaan yhtälö c k+1 v k+1 + + c n v n = b 1 v 1 + + b k v k. b 1 v 1 b k v k + c k+1 v k+1 + + c n v n = 0. Jono ( v 1,..., v k, v k+1,..., v n ) on vektoriavaruuden V kanta ja siten vapaa. Edellisestä yhtälöstä seuraa siis, että b 1 = 0,..., b k = 0, c k+1 = 0,..., c n = 0 ; erityisesti c k+1 = 0,..., c n = 0. LM2, Kesä 2014 92/267
Lineaarikuvauksen injektiivisyys ja surjektiivisuus Lause 20 Oletetaan, että V ja W ovat äärellisulotteisia vektoriavaruuksia, joilla dim(v ) = dim(w ). Oletetaan, että L: V W on lineaarikuvaus. Tälllöin L on injektio, jos ja vain jos L on surjektio. Huom. Lauseen oletuksissa vaaditaan, että lähdön ja maalin dimensio on sama! LM2, Kesä 2014 93/267
Lauseen 20 todistuksen idea. Todistuksen perustana on lauseen 19 tulos dim(v ) = dim(ker L) + dim(im L). : Oletetaan, että L on injektio. Tällöin Ker L = { 0}, joten dim(ker L) = 0. Siten dim(im L) = dim(v ) = dim(w ). Tiedetään lisäksi, että Im L on vektoriavaruuden W aliavaruus. Tästä seuraa, että Im L = W. Siis L on surjektio. : Oletetaan, että L on surjektio. Tällöin Im L = W, joten dim(im L) = dim(w ) = dim(v ). Tästä seuraa, että dim(ker L) = 0. Siten Ker L = { 0}. Siis L on injektio. LM2, Kesä 2014 94/267
Isomorfisuus Lause 21 Oletetaan, että V ja W ovat äärellisulotteisia vektoriavaruuksia. Vektoriavaruudet V ja W ovat isomorfiset, jos ja vain jos dim(v ) = dim(w ). LM2, Kesä 2014 95/267
Isomorfisuus Lauseen 21 todistus. : Oletetaan, että V = W. Tällöin on olemassa isomorfismi L: V W. Koska L on injektio, niin Ker L = { 0} ja siten dim(im L) = dim(v ) dim(ker L) = dim(v ) 0 = dim(v ). Koska L on surjektio, niin Im L = W. Siten dim(v ) = dim(im L) = dim(w ). LM2, Kesä 2014 96/267
: Oletetaan, että dim(v ) = dim(w ) = n. Olkoon ( v 1,..., v n ) vektoriavaruuden V kanta ja olkoon ( w 1,..., w n ) vektoriavaruuden W kanta. Olkoon L: V W se lineaarikuvaus, jolla L( v 1 ) = w 1, L( v 2 ) = w 2,..., L( v n ) = w n. Lauseen 18 mukaan tällaisia lineaarikuvauksia on tasan yksi. Osoitetaan, että L on injektio. LM2, Kesä 2014 97/267
Oletetaan, että v Ker L. Tällöin L( v) = 0. Kirjoitetaan v kantavektorien lineaarikombinaationa v = a 1 v 1 + + a n v n, jolloin saadaan 0 = L( v) = L(a 1 v 1 + + a n v n ) = a 1 L( v 1 ) + + a n L( v n ) = a 1 w 1 + + a n w n. Jono ( w 1,..., w n ) on kanta ja siten vapaa, joten tästä yhtälöstä seuraa, että a 1 = 0, a 2 = 0,..., a n = 0. Siis v = a 1 v 1 + + a n v n = 0 v 1 + + 0 v n = 0. Tämä osoittaa, että Ker L = { 0}. Siis L on injektio. LM2, Kesä 2014 98/267
Oletuksen mukaan dim(v ) = dim(w ). Lisäksi lineaarikuvaus L: V W on injektio, joten L on lauseen 20 mukaan surjektio. Siis L on lineaarikuvaus ja bijektio, eli isomorfismi. Näin ollen V = W. LM2, Kesä 2014 99/267
Lineaarikuvauksen R n R m matriisi Lauseessa 8 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos: Lause 22 Oletetaan, että T : R n R m on lineaarikuvaus. Tällöin on olemassa täsmälleen yksi matriisi A R m n, jolla T( v) = A v kaikilla v R n. LM2, Kesä 2014 100/267
Ennen lauseen 22 perustelua tutkitaan hiukan matriistuloa A v: a 11 a 12 a 1n v 1 a 21 a 22 a 2n v 2 A v =... a m1 a m2 a mn v n a 11 v 1 + a 12 v 2 + + a 1n v n a 21 v 1 + a 22 v 2 + + a 2n v n =. a m1 v 1 + a m2 v 2 + + a mn v n = v 1 a 11 a 21. a m1 + v 2 a 12 a 22. a m2 + + v n a 1n a 2n.. a mn LM2, Kesä 2014 101/267
Lineaarikuvauksen R n R m matriisi Tulo A v on siis matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin v komponentit. Lauseen 22 todistus. Muodostetaan matriisi A seuraavasti: Katsotaan, miten avaruuden R n luonnollisen kannan (ē 1, ē 2,..., ē n ) vektorit kuvautuvat lineaarikuvauksessa T eli määritetään T(ē 1 ), T(ē 2 ),..., T(ē n ). Laitetaan kuvavektorit T(ē 1 ), T(ē 2 ),..., T(ē n ) matriisin A sarakkeiksi tässä järjestyksessä. LM2, Kesä 2014 102/267
Matriisin A sarakkeet ovat siis T(ē 1 ), T(ē 2 ),..., T(ē n ) R m ja tällöin voidaan merkitä lyhyesti [ ] A = T(ē 1 ) T(ē 2 )... T(ē n ). Huomaa, että matriisin jokaisessa sarakkeessa on m alkiota ja sarakkeita on n kappaletta, joten A todella on m n -matriisi. Osoitetaan, että matriisin A määräämä lineaarikuvaus L A : R n R m on sama kuin T : R n R m. Koska kantavektorien kuvavektorit määräävät lineaarikuvauksen (lause 18), niin riittää osoittaa, että kantavektorit ē 1, ē 2,..., ē n kuvautuvat samalla tavalla kuvauksissa L A ja T. LM2, Kesä 2014 103/267
Matriisin A määräämässä kuvauksessa L A esimerkiksi a 11 a 12 a 13 a 1n a 21 L A (ē 2 ) = Aē 2 = 0. + 1 a 22. + 0 a 23. + + 0 a 2n. a m1 a m2 a m3 a mn a 12 a 22 =. = T(ē 2), a m2 sillä tulo Aē 2 on matriisin A sarakkeiden lineaarikombinaatio, jossa kertoimina ovat vektorin ē 2 komponentit; matriisin A sarakkeet ovat kuvavektorit T(ē 1 ),..., T(ē n ). LM2, Kesä 2014 104/267
Näin voidaan osoittaa, että L A (ē i ) = T(ē i ) kaikilla i {1,..., n}. Lineaarikuvaukset L A ja T ovat siten lauseen 18 nojalla sama kuvaus, eli T( v) = A v kaikilla v R n. Osoitetaan vielä, ettei muita sopivia m n -matriiseja ole. Oletetaan, että A, B R m n ovat sellaisia, että T( v) = A v ja T( v) = B v kaikilla v R n. Tällöin A v = B v kaikilla v R n. LM2, Kesä 2014 105/267
Erityisesti esimerkiksi Aē 1 = Bē 1 eli a 11 a 12 a 1n b 11 b 12 b 1n a 21 1. +0 a 22. + +0 a 2n. = 1 b 21. +0 b 22. + +0 b 2n.. a m1 a m2 a mn b m1 b m2 b mn Siis a 11 b 11 a 21. = b 21. a m1 b m1 ts. matriiseilla A ja B on sama ensimmäinen sarake. Vastaavalla tavalla voidaan vektorien ē 2,..., ē n avulla päätellä, että matriisien A ja B muutkin sarakkeet vastaavat toisiaan. Siis A = B. LM2, Kesä 2014 106/267
Lineaarikuvauksen R n R m matriisi Määritelmä Oletetaan, että T : R n R m on lineaarikuvaus. Edellä lauseessa 22 määriteltyä matriisia [ ] A = T(ē 1 ) T(ē 2 )... T(ē n ) kutsutaan lineaarikuvauksen T standardimatriisiksi. Huom. Jos A on lineaarikuvauksen T : R n R m standardimatriisi, niin lauseen 22 nojalla T( v) = A v kaikilla v R n. LM2, Kesä 2014 107/267
Esimerkki 24 Lineaarikuvauksen R n R m matriisi Tarkastellaan kuvausta L, joka peilaa tason R 2 vektorit suoran y = x suhteen. Alla olevan kuvan avulla voidaan järkeillä, että tämä kuvaus on lineaarinen: v v+ w w c w L( v) L( w) L( v+ w)=l( v)+l( w) L(c w)=cl( w) LM2, Kesä 2014 108/267
Määritetään kuvauksen L standardimatriisi päättelemällä kantavektorien ē 1 = (1, 0) ja ē 2 = (0, 1) kuvavektorit: ē 2 L(ē 2 ) ē 1 L(ē 1 ) Havaitaan, että L(ē 1 ) = (0, 1) ja L(ē 2 ) = ( 1, 0). Kuvauksen L standardimatriisi on siten [ ] [ ] 0 1 A = L(ē 1 ) L(ē 2 ) =. 1 0 Siis kuvaukselle L pätee L( v) = A v kaikilla v R 2. LM2, Kesä 2014 109/267