Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Samankaltaiset tiedostot
Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

MS-A0402 Diskreetin matematiikan perusteet

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Loogiset konnektiivit

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

LOGIIKKA johdantoa

Todistusmenetelmiä Miksi pitää todistaa?

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Ensimmäinen induktioperiaate

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

Ensimmäinen induktioperiaate

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Miten osoitetaan joukot samoiksi?

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Johdatus matemaattiseen päättelyyn

Luonnollisen päättelyn luotettavuus

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

811120P Diskreetit rakenteet

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

7 Vapaus. 7.1 Vapauden määritelmä

Johdatus matemaattiseen päättelyyn

Matematiikan tukikurssi, kurssikerta 2

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:

4 Matemaattinen induktio

Predikaattilogiikan malli-teoreettinen semantiikka

10 Matriisit ja yhtälöryhmät

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi

Matematiikan tukikurssi

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle

Joukot. Georg Cantor ( )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Approbatur 3, demo 5, ratkaisut

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

1 Logiikkaa. 1.1 Logiikan symbolit

Matematiikan tukikurssi, kurssikerta 1

Pikapaketti logiikkaan

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Logiikka I 7. harjoituskerran malliratkaisut Ratkaisut laati Miikka Silfverberg.

Logiikkaa Matematiikan mestariluokka, kevät 2010 Harjoitus 1a ( )

1 Perusasioita joukoista

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Vastaoletuksen muodostaminen


Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Johdatus yliopistomatematiikkaan

Algebra I, harjoitus 5,

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

Tehtävä 4 : 2. b a+1 (mod 3)

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

isomeerejä yhteensä yhdeksän kappaletta.

Lauselogiikka Tautologia

Diofantoksen yhtälön ratkaisut

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

(2n 1) = n 2

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Johdatus logiikkaan I Harjoitus 4 Vihjeet

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

a ord 13 (a)

Valitse vain 6 tehtävää! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus matematiikkaan

Johdatus matematiikkaan

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Matematiikan peruskurssi 2

Transkriptio:

Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten A:n lausuma ei voi päteä. Tämä vaihtoehto on siis mahdollinen. Jos A on retku, pätee A:n lausuman negaatio retkuthan valehtelevat aina. Tämä tarkoittaa, että sekä A että B olisivat rehtejä, mikä on mahdotonta, sillä on oletettu, että A on rehti. Näin ollen ainoa vaihtoehto on, että A on rehti ja B retku. 1.2. A sanoo: Olemme molemmat samaa tyyppiä ja B jatkaa: Olemme eri tyyppiä. Tehtävänä on taas päätellä A:n ja B:n tyypit. Jos A on rehti, niin B on A:n lausuman nojalla myös rehti. Mutta tämä on mahdotonta, koska tällöin myös B:n lausuma olisi totta, ja nämä lausumat ovat ristiriidassa keskenään. Jos A on retku, niin A:n lausuman negaatio pätee. Tämä tarkoittaa, että A ja B ovat eri tyyppiä eli, koska A on retku, B on rehti. Tämä ei ole ristiriidassa B:n lausuman kanssa, joten vaihtoehto on mahdollinen ja ainoa mahdollinen, koska edellä todetun nojalla vaihtoehto, jossa A olisi rehti, johtaa ristiriitaan. Eli siis A on retku ja B rehti. 1.3. A sanoo: Jos minä olen rehti niin B on rehti. Tyypit pitäisi taas päätellä. Jos A on rehti, niin A:n lausuman nojalla myös B on rehti. Tämä vaihtoehto on mahdollinen. Jos A on retku, niin A:n lausuman negaatio pätee. Yleisestä propositiologiikasta tiedetään, että implikaatio P Q on epätosi täsmälleen silloin, kun P on tosi ja Q epätosi; todesta ei koskaan seuraa epätotta. Näin ollen itse asiassa A:n on oltava rehti ja B:n retku. Tämä ei ole mahdollista, koska on oletettu, että A on retku. Siispä vaihtoehto A on retku ei ole mahdollinen. Vastaus on siis, että A ja B ovat molemmat rehtejä. 1.4. Tehtävän on luetella kaikki joukon A = {0, 1, 2, 3} osajoukot ja selvittää, moniko näistä ei sisällä alkiota 2. Tehdään tämä ihan raa'alla voimalla. Merkitään A:n osajoukkojen luokkaa (eli A:n niin sanottua potenssijoukkoa) symbolilla P(A). Nyt P(A) ={, {0}, {1}, {2}, {3} {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3} {0, 1, 2}, {1, 2, 3}, {0, 2, 3}, {0, 1, 3}, A}. Jonkinlaisen tarkistuksen tässä voi tehdä muistamalla, että jos joukon A alkioiden lukumäärä on n, niin A:n potenssijoukon alkioiden lukumäärä on 2 n eli tässä tapauksessa 2 4 = 16. 1

Edellä olevasta listauksesta voidaan helposti laskea, monessako joukoista ei sisällä alkiota 2. Näitä joukkoja on kahdeksan kappaletta; joukot ovat, {0}, {1}, {3}, {0, 1}, {0, 3}, {1, 3}, {0, 1, 3}. Perjantain toisessa demoryhmässä oli puhetta sen asian, että tyhjä joukko kuuluu minkä tahansa joukon potenssijoukkoon, perustelusta. Tämähän on asia, jota ei tarvitse muistaa vaan sen voi myös ihan määritelmien ja logiikan pelisääntöjen avulla ymmärtää. Olkoon tätä varten A mielivaltainen joukko. On osoitettava, että eli että eli että P(A) A x[x x A]. (1) Jos ehdon (1) formalisointi näyttää vieraalta, tarkoitetaan ehdolla vain, että kaikille x ehdosta x seuraa, että x A. Olkoon nyt x mielivaltainen vakio. Väitteen (1) todistamiseksi riittää osoittaa, että x x A (2) eli että ehdon (2) kaava on tosi. Kyseessä on implikaatiokaava; olennaisesti samanlainen kuin totuusarvotarkasteluissa. Koska tyhjässä joukossa ei ole yhtäkään alkiota, on alikaava x epätosi. Mutta tällöinhän (ks. implikaation totuustaulu) kaava (2) on kokonaisuudessaan tosi, joten väite on todistettu. 1.5a) Tehtävänä on päätellä totuusarvotaulukon avulla, että suora käänteinen päättely [P [ Q P ]] Q on tautologia eli tosi kaavojen P ja Q totuusarvoista riippumatta. Alla on totuusarvotaulukko asiasta; viimeiseltä riviltä näkyy taulukon täyttöjärjestys vaihenumeroilla ilmaistuna. [P [ Q P ]] Q 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 4 2 1 3 2 1 5 1 Kuten yltä näkyy, tautologia tuli: päänuolen alla on pelkkiä ykkösiä. 1.5b) Tehtävänä on selvittää totuusarvotaulukon avulla, ovatko kaavat [[P Q] R] ja [ P Q] R 2

ekvivalentit eli, onko niillä sama totuusarvo kaikilla P :n, Q:n ja R:n totuusarvoilla. Tässä voi tietysti tehdä kaavoista kokonaiset totuusarvotaulukot, mutta laiska tekijä huomaa, että rivit [[P Q] R] 0 1 1 1 1 1 4 1 2 1 3 1 ja [ P Q ] R 0 1 0 0 1 1 1 2 1 0 2 1 3 1 riittävät osoittamaan, etteivät kaavat ole ekvivalentit. 1.6. Tehtävänä oli arvioida erilaisten reaalilukuja koskevien väittämien todenperäisyyttä. 1. Jos 2x > 3, niin x > 2 Tämä ei ole totta. Ehto 2x > 3 on yhtäpitävä ehdon x > 3 kanssa; vastaesimerkiksi 2 väittämälle käy siis mikä tahansa välin ] 3, 2] 2 reaaliluku, esimerkiksi 3 4. 2. Jos 4x < 20, niin x < 100 tai x 2 + 3x 2 = 0. Tämä on totta. Jos nimittäin 4x < 20, niin x < 5. Tällöin selvästi x < 100. Koska väitteen jälkimmäinen osa on tai-väittämä, ei ehtoa x 2 + 3x 2 = 0 enää tarvitse tarkistaa: tieto siitä, että ehto x < 100 pätee, pakottaa tai-lauseen todeksi joka tapauksessa. 3. x < 4 jos ja vain jos x < 16 ja 2x < 16 Tämä ehto on yhtäpitävä ehdon x < 4 jos ja vain jos x < 16 ja x < 8 kanssa. Ekvivalenssi ei ole tosi; vastaesimerkiksi käy vaikkapa valinta x = 5. Tällöin ehto x < 16 ja x < 8 toteutuu, mutta ehto x < 4 ei. 1.7. Väitelause tarkoittaa sanallisesti seuraavaa: x Z y Z : x y < 1 Kaikille kokonaisluvuille x on olemassa kokonaisluku y siten, että epäyhtälö x y < 1 on tosi. Väittämän negaatio on eli sanallisesti x Z y Z : x y 1 On olemassa kokonaisluku x siten, että kaikille kokonaisluvuille y pätee x y 1. Väite on tosi, sen negaatio ei. Väitteen todistamiseksi olkoon x Z mielivaltainen. Riittää löytää kokonaisluku y siten, että x y < 1. Selvästi voidaan valita x = y. 3

1.8. Merkitään oikeita vastauksia 1:lla ja vääriä 0:llä. Tällöin tentti on jonkinlainen jono t = (t 1, t 2, t 3, t 4, t 5 ), t i {0, 1} kaikille i = 1,..., 5. (1) Koska Ville tietää, ettei vastaus kolmeen perättäiseen kysymykseen ole sama, voidaan sanoa, että Kumpikaan yhdistelmä 000 ja 111 ei esiinny t:ssä.. (2) Lisäksi Ville tehtävät luettuaan huomaa, että ensimmäisellä ja viimeisellä on vastakkaiset vastaukset, joten t = (0, t 2, t 3, t 4, 1) tai t = (1, t 2, t 3, t 4, 0). (3) Tiedetään vielä, että enemmän on oikeita kuin vääriä vastauksia, joten #{i t i = 1} > #{i t i = 0}. (4) Tuossa # tarkoittaa joukon alkioiden lukumäärää; merkintä on yleinen ja se kannattaa muistaa. Ville osaa vastata tehtävään 2, ja hän voi tämän vastauksen perusteella päätellä muut vastaukset. Jos t 2 = 1, niin ehdon (3) perusteella t = (0, 1, t 3, t 4, 1) tai t = (1, 1, t 3, t 4, 0). Mutta tällöin sekä t = (0, 1, 0, 1, 1) että t = (1, 1, 0, 1, 0) kelpaavat muiden sääntöjen mukaisiksi eli mahdollisiksi ratkaisuiksi, joten Ville ei voi sanoa varmuudella oikeaa riviä. Siispä ei voi päteä t 2 = 1, ja on oltava t 2 = 0. Tällöin ehdon (3) perusteella t = (0, 0, t 3, t 4, 1) tai t = (1, 0, t 3, t 4, 0). (5) Tilanne on siis se, että nyt varmuudella tiedetään, että ehdon (5) jompikumpi vaihtoehdoista pätee. Selvitetään, kumpi. Tässä vaiheessa voi tietysti epäillä, onnistuuko päättely mistä sitä tietää, vaikka Ville olisi väärässä eikä ratkaisua oikeasti voisi t 2 -tietouden avulla päätellä. Osoittautuu kuitenkin, että Villen logiikka ei petä: Oletetaan ensin, että t = (0, 0, t 3, t 4, 1). Tällöin ehdon (2) nojalla on oltava t 3 = 1 muutenhan alkuun tulisi nollakolmikko. Nyt siis tiedetään, että t = (0, 0, 1, t 4, 1). Jottei ehdon (2) vastaista ykkösriviä tulisi jonon loppuun, on vielä oltava t 4 = 0. Mutta tällöin t = (0, 0, 1, 0, 1), mikä on vastoin ehtoa (4). Syntynyt ristiriita osoittaa, että vaihtoehto t on muotoa (0, 0, t 3, t 4, 1) on mahdoton. Tällöin ehdon (5) nojalla t = (1, 0, t 3, t 4, 0). Tästä nähdään heti, että on oltava t 3 = t 4 = 1, sillä muuten (ehdon (4) vastaisesti) nollia tulisi enemmän kuin ykkösiä. Siispä t = (1, 0, 1, 1, 0). Vastauksen tehtävän kysymykseen: kakkos- ja vitostehtävien vastaus on sama: 'väärä väittämä'. 1.9. Väitetään, että kaikille joukoille A, B ja C on voimassa A (B C) = (A B) (A C). Todistus: Oletetaan ensin, että A, B, C eli että kaikki näistä joukoista ovat epätyhjiä. 4

Joukot osoitetaan samoiksi osoittamalla, että ne ovat toistensa osajoukkoja. On siis todistettava, että Ehdon (1) todistamiseksi oletetaan, että A (B C) (A B) (A C) ja (1) (A B) (A C) A (B C). (2) x A (B C). (3) On osoitettava, että (A B) (A C). (4) Oletuksen (3) ja joukkojen yhdisteen määritelmän mukaisesti x A tai (5) x B C. (6) Jos x A eli jos ehto (5) pätee, niin selvästi x A B ja x A C, joten ehto (4) on voimassa. Jos taas ollaan ehdon (6) tapauksessa, niin joukkojen leikkauksen määritelmän mukaisesti x B ja x C. Mutta tällöin myös x A B ja x A C, mistä ehto (4) seuraa. Tämä todistaa, kuten edellä todettiin, ehdon (1). Todistettavana on vielä ehto (2). Tätä varten oletetaan, että x (A B) (A C). (7) On osoitettava, ettö x A (B C). (8) Oletuksen (7) nojalla x kuuluu molempiin joukkoihn A B ja A C. Tällöin erityisesti x A, ja koska A A (B C), saadaan ehto (8) voimaan. Tämä todistaa ehdon (2), ja väite on todistettu siinä tapauksessa, että A, B, C. On vielä tarkasteltava tapaukset, joissa ainakin yksi joukoista A, B ja C on tyhjä. Jos A on tyhjä joukko, niin väite tulee muotoon B C = B C, (9) sillä kaikille joukoille D pätee D = D. Väite (9) on triviaalisti totta. Jos B =, niin väite tulee muotoon A = A (A C), (10) koska tyhjä joukko leikattuna millä tahansa joukolla on ilman muuta tyhjä. Ehto (10) nähdään oikeaksi seuraavasti: Jos x A, niin selvästi x A ja x (A C), joten x A (A C). Siispä A A (A C). (11) 5

Jos taas x A (A C), niin selvästi x A, joten Väite (10) seuraa ehdoista (11) ja (12). Jos C =, niin väite tulee muotoon A (A C) A. (12) A = A (A B). Tämä on olennaisesti sama kuin väite (10) ja todistuu samalla tavalla; tehtävän väitteessähän B:llä ja C:llä on sama rooli. Nämä tarkastelut osoittavat, että väite pätee siinäkin tapauksessa, että yksi (tai useampi) väitteen joukoista on tyhjä. Väite on siis kokonaisuudessaan todistettu. 1.10. Jos vasen yläkulma poistetaan, jää jäljelle 32 valkoista ja 31 mustaa ruutua. Mutta dominoissa on kussakin yksi valkoinen ja yksi musta ruutu, joten rakentelu näistä ei onnistu: dominorakannelmissahan valkoisten ja mustien ruutujen lukumäärä säilyy samana. Vastaavasti, jos poistetaan vasemman yläkulman mustan ruudun lisäksi oikean alakulman musta ruutu, on tuloksena shakkilauta, jossa on 32 valkoista ja 30 mustaa ruutua eli ei onnistu. 6