Matematiikan pohjatietokurssi

Samankaltaiset tiedostot
Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Rationaalilauseke ja -funktio

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

2 Yhtälöitä ja epäyhtälöitä

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

3 Yleinen toisen asteen yhtälö ja epäyhtälö

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA2.3 Koontitehtävät 2/2, ratkaisut

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

4 Yleinen potenssifunktio ja polynomifunktio

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Matematiikan peruskurssi 2

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

Derivaatan sovellukset (ääriarvotehtävät ym.)

sin x cos x cos x = sin x arvoilla x ] π

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Sähköinen koe (esikatselu) MAA A-osio

Insinöörimatematiikka A

Matematiikan tukikurssi, kurssikerta 3

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Matematiikan tukikurssi

Matematiikan tukikurssi

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

3.4 Rationaalifunktion kulku ja asymptootit

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

11 MATEMAATTINEN ANALYYSI

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

Matematiikan tukikurssi

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

y=-3x+2 y=2x-3 y=3x+2 x = = 6

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

2 Raja-arvo ja jatkuvuus

Ensimmäisen ja toisen asteen yhtälöt

PIENEMMISTÄ JA SUUREMMISTA EPÄYHTÄLÖISTÄ

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Tekijä Pitkä matematiikka

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

Reaalilukuvälit, leikkaus ja unioni (1/2)

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

Matematiikan tukikurssi

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATP153 Approbatur 1B Harjoitus 6 Maanantai

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

H5 Malliratkaisut - Tehtävä 1

3 TOISEN ASTEEN POLYNOMIFUNKTIO

Tekijä Pitkä matematiikka

4. Kertausosa. 1. a) 12

5 Differentiaalilaskentaa

2.4 Korkeamman asteen yhtälö

lnx x 1 = = lim x = = lim lim 10 = x x0

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

2 Yhtälöitä ja funktioita

5 Rationaalifunktion kulku

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

Integrointi ja sovellukset

= 9 = 3 2 = 2( ) = = 2

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

4 TOISEN ASTEEN YHTÄLÖ

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

MAOL-pisteytysohje. Matematiikka lyhyt oppimäärä Kevät 2014

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim.

MAB3 - Harjoitustehtävien ratkaisut:

1 Ensimmäisen asteen polynomifunktio

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

TEHTÄVIEN RATKAISUT. Luku Kaikki luvut on kokonaislukuja. Luonnollisia lukuja ovat 35, 7 ja 0.

( ) < ( ) Lisätehtävät. Polynomifunktio. Epäyhtälöt 137. x < 2. d) 2 3 < 8+ < 1+ Vastaus: x < 3. Vastaus: x < 5 6. x x. x < Vastaus: x < 2

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MAB3 - Harjoitustehtävien ratkaisut:

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Demo 1: Simplex-menetelmä

Transkriptio:

Matematiikan pohjatietokurssi Demonstraatio, 8.-9.9.015, ratkaisut 1. Jaa tekijöihin (joko muistikaavojen avulla tai ryhmittelemällä) (a) x +x+ = x + x + = (x+) x +x+ = (x +x+1) = (x+1) (c) x 9 = (x) 3 = (x+3)(x 3) x 3 x x+ = x () () = ()(x ) (e) x x +1 = (x ) x 1+1 = (x 1) = (x 1 ) = ((x+1)()) = (x+1) () (f) x +x 3 x = x 3 (x+1) (x+1) = (x+1)(x 3 ). Sievennä (a) x +3x = x(x+3) = x+3, x 0 x x (x+) x(x+) = (x+) (x+) x (x+) = x+ x, x (c) x()x () = x () () () = x x x+1 = () = () () =, x 1 3. Jaa jakokulmassa 7358 : 13. 1 0 1 3 7 3 5 8-6 1 3-1 3 0 5-0 5 8-5 6 7358 : 13 = 10 6 13.. Jaa jakokulmassa polynomi p(x) = x 3 x +x polynomilla q(x) = x + x 3 x +x (x 3 x ) 0 +x (x ) 0 p(x) q(x) = x3 x +x = x +. 1

5. Jaa jakokulmassa (a) x 3, (a) x 3 (x ) 1 (c) x +3x 3x+ x x x3 x x+, x, x x 3 +x x+1 x. +x+1 x 3 = + 1. x 1 x x 3 x x + (x 3 x ) 0 x + ( x +) 0 x 3 x x+ x (c) x +x + x x x +3x 3x + (x x 3 ) x 3 +3x (x 3 x ) x 3x (x x) x + x +3x 3x+ x x x x + x +x+1 x x 3 +x x +1 (x +x 3 +x ) x 3 x ( x 3 x x) x +x +1 (x +x +) x 1 x x 3 +x x+1 x +x+1 = x 1. = x +x++ x+ x x. = x x++ x +x+1.

6. Ratkaise seuraavat murtoyhtälöt ja -epäyhtälöt (a) (a) x, 3x+ x 5 x+ = x+1 x+, (c) x > 0, 3x+ (x )(3x+) (x+1)(x 5) 0. x+7 x+3 ( a ) osamääräsääntö b a ja b 0 x + ja 3x+ 0 x = ja 3x : 3 x = ja x 3 Vastaus on siis x =. x 5 x+ = x+1 x+ x 5 x+ x+1 x+ (x 5) (x+1) x+ x 5 ) x+ 3x 6 x+ x+1 x+ 3x 6 +6 ja x+ 0 3x = 6 : ( 3) ja x : 3 x = ja x Vastaus: Yhtälöllä ei ole ratkaisua. (c) Osoittajan nollakohdat: x 3x+ > 0 x + x = Osoittaja on nouseva suora, koska ensimmäisen asteen tekijän kerroin on positiivinen. Siten osoittaja saa negatiivisia arvoja niillä muutujan x arvoilla, joilla x on nollakohtaa pienempi ja muilla muuttujan x arvoilla positiivisia arvoja. Nimittäjän nollakohdat: 3x+ 3x = x = 3 3

Nimittäjä on nouseva suora, koska ensimmäisen asteen tekijän kerroin on positiivinen. Siten nimittäjä saa negatiivisia arvoja niillä muutujan x arvoilla, joilla x on nollakohtaa pienempi ja muilla muuttujan x arvoilla positiivisia arvoja. Tehdään seuraavaksi merkkikaavio. 3 x + 3x+ + + osamäärä + + Epäyhtälön ratkaisut ovat ne murtolausekkeen arvot, jotka ovat positiivisia. Siis arvot x < 3 ja x >. Nollakohdat eivät kuuluu ratkaisuun, sillä epäyhtälön merkki (>) ei sisällä yhtäsuuruutta. Näin ollen epäyhtälön ratkaisu on x < 3 tai x >. Osoittajan nollakohdat: (x )(3x+) (x+1)(x 5) 0 (x )(3x+) x + tai 3x+ x = tai 3x = : 3 x = tai x = 3 Osoittajan molemmat tulontekijä ovat nousevia suoria. Nimittäjän nollakohdat: (x+1)(x 5) x+1 1 tai x 5 +5 x = 1 tai x = 5 : x = 1 tai x = 5 Nimittäjän molemmat tulontekijä ovat nousevia suoria. Tehdään seuraavaksi merkkikaavio. 5 1 3 x + 3x+ + + + x+1 + + + + x 5 + + osamäärä + + + Epäyhtälön ratkaisut ovat ne murtolausekkeen arvot, jotka ovat negatiivisia. Siis arvot 1 < x < 3 ja 5 < x <. Lisäksi nollakohdista ne osoittajan nollakohdat, jotka eivät ole nimittäjän nollakohtia toteuttavat epäyhtälön, koska epäyhtälössä on mukana yhtäsuuruus ( ). Näin ollen epäyhtälön ratkaisu on 1 < x 3 tai 5 < x.

7. Ratkaise seuraavat murtoyhtälöt ja -epäyhtälöt (a) x+7 x+3 osamääräsääntö ( a b a ja b 0) x+7 7 ja x+3 0 3 x = 7 : ja x 3 Vastaus on siis x = 7 x = 7. ja x 3 x 3x 3 x 3x 3 (x 3x 3)(x ) ()(x ) = x +x 6 x x +x 6 x (x +x 6)() (x )() (x 3x 3)(x ) (x +x 6)() (x )() (x 3 3x 3x x +6x+6) (x 3 +x 6x x x+6) (x )() x 3 3x 3x x +6x+6 x 3 x +6x+x +x 6) (x )() 5x +10x) (x )() 5x(x )) (x )() +x 6 x x Lavennus samannimisiksi osamääräsääntö 5x(x ) ja (x )() 0 tulosääntö ( ) ( ) 5x tai x ja x 0 ja 0 ( ) ( ) x tai x = ja x ja x 1 Vastaus on siis x. (c) 8x+ x, (x ) 8x+ (x ) 0 Lavennetaan samannimisiksi 8x+ (x )() 0 ( 8x+) (x x x+) 0 8x+ x +5x 0 x 3x 0 Jaetaan osoittaja ja nimittäjä omiksi epäyhtälöiksi 5

Yhtälö on tulo-/osamäärä muodossa. Tällainen murtoepäyhtälö voidaan ratkaista ratkaisemalla, missä alueissa eri tulontekijät saavat positiivisia ja negatiivisia arvoja. Osoittajan nollakohdat: x 3x. asteen ratkaisukaavasta nollakohdat x = 3± ( 3) ( 1) ( ) ( 1) = 3± 9 8 = 3± 1 = 3±1 = { = 1 = Osoittaja on alaspäin aukeava paraabeli, sillä. asteen tekijän kerroin on negatiivinen murtoepäyhtälössä. Siten se saa positiivisia arvoja nollakohtiensa välissä ja muualla negatiivisia. Nimittäjä: +1 x = 1 Nimittäjä on nouseva suora, koska ensimmäisen asteen tekijän kerroin on positiivinen. Siten nimittäjä saa negatiivisia arvoja niillä muutujan x arvoilla, joilla x on nollakohtaansa pienempi ja muilla muuttujan x arvoilla positiivisia arvoja. Tehdään seuraavaksi merkkikaavio. 1 1 x 3x + + osamäärä + + Epäyhtälön ratkaisut ovat ne murtolausekkeen arvot, jotka ovat negatiivisia. Siis arvot < x < 1 ja x > 1. Lisäksi nollakohdista ne osoittajan nollakohdat, jotka eivät ole nimittäjän nollakohtia toteuttavat epäyhtälön, koska epäyhtälössä on mukana yhtäsuuruus ( ). Näin ollen epäyhtälön ratkaisu on x 1 tai x > 1. x 3x 3 x +x 6 x Havaitaan, että epäyhtälö on sama, kuin tehtävän 6b yhtälö lukuun ottamatta, että yhtäsuuruus merkki (=) on nyt pienempi tai yhtäsuurempi kuin -merkki ( ). Lisäksi b-kohdan ratkaisussa ei missään vaiheessa muokattu yhtälöä puolittain muuta kuin lisäämällä tai vähentämällä puolittain. (Erityisesti missään vaiheessa ei kerrottu tai jaettu negatiivisella luvulla tai nollalla.) Täten voimme hyödyntää ratkaisua ja todeta, että d-kohta voidaan muuttaa yhtäpitävään muotoon 5x(x ) (x )() 0. Edelleen tämän epäyhtälön nollakohdat on ratkaistu kunkin tulontekijän osalta tehtävässä 6b. Toisaalta tulontekijöistä 5x on laskeva suora, joten se saa ennen nollakohtaansa positiivisa arvoja ja sen jälkeen negatiivisia. Muut tulontekijät ovat nousevia suoria ja ne saavat ennen nollakohtaansa negatiivisia arvoja ja sen jälkeen positiivisia arvoja. Näin ollen saadaan merkkikaavio 6

0 1 5x (osoittaja) + x (osoittaja) + x (nimittäjä) + x 1 (nimittäjä) + + osamäärä + Epäyhtälön ratkaisut ovat siis x < 0, 1 < x < tai x >. Lisäksi nollakohdista osittajan nollakohta x toteuttaa yhtälön, mutta toinen nollakohta x = ei ole yhtälön ratkaisu, koska se on myös nimittäjän nollakohta. Epäyhtälön ratkaisu on siis x 0, 1 < x < tai x > 8. Ratkaise yhtälö x 3 8x 3. Kokeillaan ensin löytää yksi ratkaisu. Sijoitetaan yhtälöön arvot x = ±1 ja x = ±3. Havaitaan, että yhtälö toteutuu, kun x = 3. Täten yhtälön vasen puoli voidaan kirjoittaa muodossa q(x) (x 3). Ratkaistaan seuraavaksi q(x) jakokulman avulla. x +3x +1 x 3 x 3 8x 3 - (x 3 3x ) 3x 8x - (3x 9x) x 3 - ( x 3) 0 Nyt siis tiedetään, että Siten yhtälön muut ratkaisut ovat yhtälön x 3 8x 3 = (x 3)(x +3x+1). x +3x+1 ratkaisut. Nämä saadaan toisen asteen yhtälön ratkaisukaavasta: x = 3± 3 1 1 1 = 3± 9 Vastauksena saadaan siis, että yhtälön ratkaisut ovat = 3± 5. x = 3, x = 3+ 5 ja x = 3 5. 7