KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme
Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan?
Päivän aihe: Voiman käsite ja partikkelin tasapaino (Kirjan luvut 2-3) Mitä on voima? Voima on vektori Lyhyt kertaus vektoreista Voimavektorin jako x- ja y-suuntaisiin komponentteihin Kolmiulotteiset voimasysteemit Suoran suuntainen voimavektori Partikkelin tasapainoehto Vapaakappalekuva
Mitä on voima? Voima on vetoa tai työntöä, joka kohdistuu yhdestä kappaleesta toiseen Kontakti kappaleiden välillä tai Vaikutus etäältä, esim gravitaatio, sähkö- ja magneettikenttä Voima on täysin määritelty suuruuden, suunnan ja vaikutuspisteen avulla
Mikä on skalaari, mikä on vektori? (Luku 2.1) Skalaarisuureita Pituus [m] Massa [kg] Aika [s] Vektorisuureita Voima [N] Momentti [Nm] Nopeus [m/s]
Vektorien laskusääntöjä (Luku 2.2) Vektorien summa Tapa 1: Suunnikassääntö Tapa 2: Kolmiosääntö Erikoistapaus: Samansuuntaiset vektorit
Vektorien laskusääntöjä Skalaarilla kertominen ja jakaminen Vektorien erotus
Voimavektorien summa eli resultanttivoima (Luku 2.3)
Voimavektorin jako komponentteihin (Luku 2.4) Vektori voidaan jakaa x- ja y-akselin suuntaisiin komponentteihinsa, ja muodostaa karteesinen vektori F = F x + F y = F x i + F y j Komponenttien suuruudet F x ja F y ovat skalaareja Ne voidaan määrittää suorakulmaisen kolmion laskusäännöistä: F x = F cos θ F y = F sin θ Tai kulmakertoimen avulla: F x = F a c F y = F b c Negatiivinen etumerkki kertoo, että voima osoittaa negatiivisen y-akselin suuntaan
Voimasysteemin resultantti (Luku 2.4) F R = F 1 + F 2 + F 3 F 1 = F 1x i + F 1y j F 2 = F 2x i + F 2y j F 3 = F 3x i F 3y j (F R ) x = F 1x F 2x + F 3x = ΣF x (F R ) y = F 1y + F 2y F 3y = ΣF y F R = (F R ) x i + (F R ) y j
Voimaresultantti esimerkki Määritä koukkuun vaikuttava resultanttivoima. Resultanttivoima F R on suunnikkaan lävistäjä Vaihtoehto 1: Lasketaan resultanttivoiman suuruus ja kulma suunnikkaan geometrian avulla Vaihtoehto 2: Jaetaan voimat x- ja y-akselin suuntaisiin komponentteihin ja lasketaan resultanttivoima komponenttien summasta. F R
Voimaresultantti esimerkki y Jaetaan molemmat voimat x- ja y- akselin suuntaisiin komponentteihinsa. Lasketaan voimaresultanttivektorin komponentit. 500 cos70 30 200 cos30 200 sin 30 200 N 40 x (F R ) x = 200 cos 30 + 500 cos 70 = 344 N (F R ) y = 200 sin 30 500 sin 70 = 570 N 500 sin 70 500 N
Voimaresultantti esimerkki Piirretään resultanttivoima F R. Lasketaan sen suuruus ja kulma θ x-akselilta. F R = (F R ) x 2 + (F R ) y 2 y (F R ) x θ x = 666 N F R θ = tan 1 (F R) y (F R ) x = 58.9 (F R ) y
Voimasysteemin resultantti Määritä voimasysteemin resultantin suuruus sekä sen kulma mitattuna x-akselilta vastapäivään. Ratkaisu Jaetaan voimat F 1, F 2 ja F 3 x- ja y-akselin suuntaisiin komponentteihin. Tarkastellaan ensin voimaa F 1
Voimasysteemin resultantti Jaetaan voima F 1 x- ja y-akselin suuntaisiin komponentteihin suunnikassäännön avulla. Suorakulmaisen kolmion trigonometriasta: F 1x = F 1 cos 30 = 700 cos 30 N = 606,22 N F 1y F 1y = F 1 sin 30 = 700 sin 30 N = 350 N F 1x HUOM! Miinus-merkki tarkoittaa, että voimat F 1x ja F 1y vaikuttavat akseleiden negatiiviseen suuntaan. Kuvissa voiman suuruus ilmoitetaan aina positiivisena, ja voiman suuntaa kuvataan nuolella. Voima F 1 voidaan esittää karteesisena vektorina kantavektoreiden i ja j avulla: F 1 = F 1x i + F 1y j = 700 cos 30 i 350j N
Voimasysteemin resultantti Jaetaan voima F 2 x- ja y-akselin suuntaisiin komponentteihin. F 2x = 0 F 2y = F 2 = 400 N Voima F 2 karteesisena vektorina F 2 = F 2y j = 400j N Miinus-merkki tarkoittaa, että voima F 2 vaikuttaa alaspäin, eli negatiivisen y- akselin suuntaan
Voimasysteemin resultantti Jaetaan voima F 3 x- ja y-akselin suuntaisiin komponentteihin. Voiman F 3 suunta on annettu kulmakertoimen avulla. Voiman komponentit saadaan kulmakerroinkolmion sivujen suhteesta F 3x F 3y F 3x F 3 = 3 5 F 3y F 3 = 4 5 F 3x = 600 3 5 N = 360 N F 3y = 600 4 5 N = 480 N Voima F 3 karteesisena vektorina F 3 = F 3x i + F 3y j = 360i 480j N
Voimasysteemin resultantti Voimasysteemin kaikki voimat karteesisina vektoreina F 1 = F 1x i + F 1y j F 2 = F 2y j F 3 = F 3x i + F 3y j Voimasysteemin resultantti saadaan voimien summasta F R = F 1 + F 2 + F 3 = F 1x i + F 1y j + F 2y j + F 3x i + F 3y j = F 1x + F 3x i + (F 1y + F 2y + F 3y )j = (F Rx )i + (F Ry )j = ΣF x i + ΣF y j
Voimasysteemin resultantti Sijoitetaan komponenttien arvot ja ratkaistaan resultantin komponentit F R = F 1 + F 2 + F 3 = F 1x + F 3x i + (F 1y + F 2y + F 3y )j = 700 cos 30 + 360 i + ( 350 400 480)j N = 246,22i 1230j N = F Rx i + F Ry j
Voimasysteemin resultantti Piirretään resultanttivoiman komponentit kuvaan. Resultanttivoima saadaan niistä suunnikassäännön avulla Resultanttivoiman suuruus saadaan Pythagoraan lauseesta F Ry = 1230 N F R F Rx = 246,22 N F R = F 2 2 Rx + F Ry = ( 246,22 N) 2 +( 1230 N) 2 = 1254 N
Voimasysteemin resultantti Resultanttivoiman kulma θ saadaan suorakulmaisen kolmion trigonometriasta F Ry = 1230 N F R θ = tan 1 F Ry F Rx = tan 1 1230 N 246,22 N = 78,7 θ F Rx = 246,22 N
Kolmiulotteiset voimasysteemit (Luku 2.5-2.6) Oikeakätinen koordinaatisto Peukalo z-akselin suuntaan Sormet x-akselin suuntaan Sormet kääntyvät y-akselin suuntaan Vektori voidaan jakaa x-, y- ja z-akselin suuntaisiin komponentteihinsa, ja muodostaa karteesinen vektori A = A x + A y + A z = A x i + A y j + A z k
Kolmiulotteiset voimasysteemit (Luku 2.5-2.6) Vektorin suuruus A = A x 2 + A y 2 + A z 2 Suuntakosinit saadaan helposti määrittämällä yksikkövektori, u A. A = Au A Vektorin suunta saadaan suuntakosinien avulla. cos α = A x A cos β = A y A cos γ = A z A u A = A A = A x A i + A y A j + A z A k
Esimerkki Määritä F karteesisena vektorina ja laske sen suuruus ja suuntakosinit. Kirjoitetaan F karteesisena vektorina. F:n suuruus: F = 4i 4j + 2k kn z F = ( 4) 2 +( 4) 2 +2 2 = 6 kn F Suuntakosinit. Lasketaan ensin yksikkövektori u F 2 kn 4 kn u F = F F = 4 6 i 4 6 j + 2 6 k 4 kn x y = 1 ( 2i 2j + k) 3 cos α = F x F = 2 3 cos γ = F z F = 1 3 cos β = F y F = 2 3
Kolmiulotteiset voimasysteemit (Luku 2.5-2.6) Karteesisten vektorien summa: R = A + B = A x + B x i + A y + B y j + A z + B z k Kolmiulotteisen voimasysteemin resultantti ratkaistaan samalla periaatteella kuin kaksiulotteinen F R = F x i + F y j + F z k
Paikkavektori (Luku 2.7) Esitellään monissa statiikan ongelmissa tarpeellinen konsepti: paikkavektori Paikkavektoria tarvitaan esimerkiksi, kun halutaan määrittää köydessä vaikuttava voima Paikkavektori määrittää pisteen paikan toisen pisteen suhteen. Esimerkiksi pisteen P(x,y,z) paikka origon suhteen
Paikkavektori r = xi + yj + zk Esimerkiksi: Pisteen (1,3,3) paikkavektori on r = i + 3j + 3k 1i r (1,3,3) 3k 3j
Paikkavektori Paikkavektori kahden pisteen välillä r A + r = r B r = r B r A = (x B i + y B j + z B k) (x A i + y A j + z A k) = (x B x A )i + (y B y A )j + (z B z A )k
Paikkavektori Esimerkiksi paikkavektori pisteiden A=(1,-1,1) ja B=(1,3,3) välillä r = (x B x A )i + (y B y A )j + (z B z A )k = (1 1)i + (3 ( 1))j + (3 1)k 1, 3, 3 = 4j + 2k 1, -1, 1 Joskus paikkavektoria merkitään r AB, jos halutaan painottaa sen alku- ja loppupisteitä
Suoran suuntainen voima (Luku 2.8) Voimavektorilla on sama suunta kuin pisteen B paikkavektorilla pisteen A suhteen, r Suuntaa kuvaamaan käytetään yksikkövektoria u u = r r
Suoran suuntainen voima Voimavektori saadaan yksikkövektorin u ja voiman suuruuden avulla F = Fu = F r r = F (x B x A )i + (y B y A )j + (z B z A )k (x B x A ) 2 +(y B y A ) 2 +(z B z A ) 2
Suoran suuntainen voima Esimerkki: Kuvan ketjua vedetään 300 kn suuruisella voimalla. Pisteiden koordinaatit ovat A = (2,0,2) ja B = (2,5,5). Esitetään voima F karteesisena vektorina F = F (x B x A )i + (y B y A )j + (z B z A )k (x B x A ) 2 +(y B y A ) 2 +(z B z A ) 2 = 300 kn (2 2)i + (5 0)j + (5 2)k = 1500 900 j + (2 2) 2 +(5 0) 2 +(5 2) 2 34 34 k kn
Voiman projektio (Luku 2.9) Nyt osaamme määrittää köydessä vaikuttavan voiman. Millaisen voiman köysivoima aiheuttaa kuvan rakenteeseen? Määritetään voiman F palkin pituuden suuntainen projektio F b sekä voiman kohtisuora komponentti Vektorin projektio suoralle määritellään kätevästi pistetulon avulla
Pistetulo Pistetulon määritelmä: A B = AB cos θ Jos toinen vektoreista on yksikkövektori, saadaan skalaariprojektio yksikkövektorin suuntaiselle suoralle A a = A cos θ = A u a Kun skalaariprojektio kerrotaan yksikkövektorilla, saadaan vektorin A komponentti suoralla aa A a = A a u a Miten saadaan kohtisuora komponentti A?
Partikkelin tasapaino (Luku 3.1) Mikä on partikkeli? Partikkeli on mekaniikassa käytettävä idealisoitu malli. Partikkelilla on massa, mutta sen kokoa ei huomioida. Näin voidaan tehdä kun tarkasteltavan kappaleen koko on huomattavan pieni verrattuna ympäristöön. Esimerkiksi maan koko on pieni verrattuna sen kiertorataan auringon ympäri. Kappaleen geometriaa ei siis huomioida Mekaniikan periaatteet yksinkertaistuvat huomattavasti Partikkelin tasapainon periaatetta voidaan hyödyntää, kun lasketaan voimia kuormaa nostavissa kaapeleissa
Partikkelin tasapaino Partikkeli on tasapainossa, jos 1. Se pysyy levossa tai 2. se liikkuu vakionopeudella Jotta tasapaino säilyy, Newtonin ensimmäisen liikelain pitää toteutua. Eli partikkeliin vaikuttavien voimien resultantti on nolla ΣF = 0
Vapaakappalekuva (Luku 3.2) (The free-body diagram) Näin piirrät vapaakappalekuvan: 1. Piirrä kappaleen ääriviivat 2. Piirrä kaikki partikkeliin vaikuttavat voimat Aktiiviset voimat ja tukivoimat 3. Merkitse kaikki voimat Tunnetut ja tuntemattomat
Esimerkki (Luku 3.3) Laatikko painaa 2,75 kn. Mitkä voimat vaikuttavat köysissä BA ja AC? Piirretään vapaakappalekuvat: Laatikko Köysi AD Lenkki A T AD T DA = T AD T AB T AC W = 2,57kN T AD T AD
Esimerkki (jatkuu) y Tasapainoehto: T AB 30 5 4 3 T AC x ΣF = 0 ΣF x i + ΣF y j = 0 ΣF x = 0 ΣF y = 0 T AD = W = 2,75kN Jaetaan voimat T AB ja T AC x- ja y-akselin suuntaisiin komponentteihinsa (voimalla T AD on vain y-akselin suuntainen komponentti)
Esimerkki (jatkuu) ΣF x = 0 ΣF y = 0 T AB 30 y 5 4 3 T AC x Jaetaan voimat T AB ja T AC x- ja y-akselin suuntaisiin komponentteihinsa ΣF x = 0 T AC,x T AB,x = 0 T AD = W = 2,75kN T AC 4 5 T AB cos 30 = 0 ΣF y = 0 T AC,y + T AB,y 2,75kN = 0 T AC 3 5 + T AB sin 30 2,75kN = 0
Esimerkki (jatkuu) Tasapainoyhtälöt: T AC 4 5 T AB cos 30 = 0 T AC = 5 4 T AB cos 30 T AC 3 5 + T AB sin 30 2,75kN = 0 5 4 T AB cos 30 3 5 + T AB sin 30 2,75kN = 0 3 T AB cos 30 + sin 30 = 2,75kN 4 2,75kN T AB = 2,39 kn 3 4 cos 30 + sin 30 T AC 2,59kN
Tasapainoyhtälöiden soveltaminen 3D voimasysteemille Voimat jaetaan vastaaviksi i, j ja k komponenteiksi ΣF = ΣF x i + ΣF y j + ΣF z k Sovelletaan tasapainoehtoa ΣF = 0 ΣF x i + ΣF y j + ΣF z k = 0 ΣF x = 0 ΣF y = 0 ΣF z = 0
Yhteenveto Päivän aiheena oli voiman käsite sekä partikkelin tasapaino Voima on vektori: Kerrattiin vektorien laskutoimituksia Opittiin laskemaan voimasysteemin resultantti Sovellettiin partikkelin tasapainon määritelmää rakenteessa vaikuttavien voimien laskemiseen Hyödynnettiin vapaakappalekuvaa ja tunnistettiin kaikki vaikuttavat voimat Voimat ratkaistiin tasapainoyhtälöiden avulla ΣF x = 0 ΣF y = 0