Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot ilmaistaan vuosikorkoina. Jos korko lisätään pääomaan vuosittain ja pääoma A lainataan vuodeksi niin vuoden päästä maksetaan (1+s 1 )A ja jos lainataan kahdeksi vuodeksi niin kahden vuoden päästä maksetaan (1+s 2 ) 2 A. Yleisemmin: mikäli korko lisätään pääomaan m kertaa vuodessa ja pääoma A lainataan t vuodeksi niin t:n vuoden päästä maksetaan (1 + st m )mt A. Nyt on myös mt:n oltava kokonaisluku eli ts. t = 1 mk, missä k on kokonaisluku. Jatkuvan koron tapauksessa saadaan lim (1 + s t m m )mt A = e stt A ja nyt ajan t ei tarvitse olla kokonaisluku. Spot-korot voidaan teoriassa määrittää joko nollakuponkisten joukkovelkakirjojen maturiteettituotoista tai lähtemällä liikkeelle lyhyen maturiteetin joukkovelkakirjoista ja etenemällä portaittain kohti suurempia maturiteetteja. Esim. määritetään s 1 1 vuoden korkotason mukaisesti. s 2 voidaan tällöin ratkaista 2 vuoden joukkovelkakirjan avulla yhtälöstä P = C 1+s 1 + C+F (1+s 2. Näin etenemällä voidaan ratkaista s ) 2 3, s 4,... ja saadaan ns. korkokäyrä. Nollakuponkikorkoisella joukkovelkakirjalla tarkoitetaan sellaista joukkovelkakirjaa, jonka hinta on nimellisarvoaan pienempi ja johon ei sisälly maksettavia kuponkeja. Nollakuponkisen joukkovelkakirjan hinta on F siis sen nimellisarvon F nykyarvo P =, missä n on joukkovelkakirjan maturiteetti. (1 + r) n Nollakuponkikorkoisia joukkovelkakirjoja ei välttämättä aina tarjolla tietylle maturiteetille. Maturiteetiltaan samanlaisista, mutta kuponkikoroiltaan erilaisista joukkovelkakirjoista voidaan kuitenkin rakentaa portfolio, jonka kuponkituotto on nolla. Olkoon joukkovelkakirjojen A ja B maturiteetti n vuotta ja nimellisarvo F euroa. A:n kuponkikorko on λ A ja B:n kuponkikorko λ B < λ A. A:n hinta on P A ja B:n hinta P B < P A. Nollakuponkikorkoinen joukkovelkakirja voidaan tällöin rakentaa ostamalla B:tä n B kpl ja myymällä (so. lasketaan liikkeelle) A:ta n A kpl. Portfolion arvoksi (so. hinta) saadaan tällöin n B P B n A P A Vaaditaan, että kuponkimaksut kumoavat toisensa eli n A λ A + n B λ B = 0 Skaalataan nollakuponkikorkoisen portfolion nimellisarvoksi 100, jolloin täytyy päteä 100n A + 100n B = 100 On siis ratkaistava yhtälöpari n A λ A + n B λ B = 0 100n A + 100n B = 100 Yhtälöparin ratkaisulle pätee n A nb = λb λa Forward-korot määrittävät etukäteen sen koron, joka maksetaan myöhemmin lainattavalle pääomalle. Esimerkiksi lainataan kahdeksi vuodeksi jolloin korko on (1 + s 2 ) 2 tai lainataan ensin vuodeksi ja sen jälkeen uudelleen vuodeksi, jolloin korko on (1 + s 1 )(1 + f), missä f on forward-korko. Arbitraasiperiaatteen mukaisesti on oltava (1 + s 2 ) 2 = (1 + s 1 )(1 + f) ja saadaan f = (1+s 2) 2 1+s 1 1. Yleisemmin voidaan kirjoittaa, että vuodesta i vuoteen j > i lainattavaa pääomaa koskeva forward-korko f i,j saadaan yhtälöstä (1 + s j ) j = (1 + s i ) i (1 + f i,j ) j i, josta f i,j = [ (1+s j) j (1+s i ] 1 ) i j i 1.
Immunisoinnilla tarkoitetaan joukkovelkakirjaportfolion rakentamista korkoriskiltä suojautumiseksi. Duraatioanalyysin avulla voidaan tukea sellaisten joukkovelkakirjojen valintaa, jotka minimoivat korkoriskin. Oletetaan spot-korkojen muuttuvan saman verran λ riippumatta ajanhetkestä ja tarkastellaan sen vaikutusta joukkovelkakirjan arvoon (so. hintaan). n x k Nykyarvo: P V (λ) = k=0 (1 + s k+λ m )k dp (λ) n k x k Nykyarvon muutos derivaatan avulla kohdassa λ = 0: λ=0 = m (1 + s k k=0 m ) k+1 Jakamalla tämä puolittain P V (0):lla saadaan ns. kvasimodioitu duraatio nk=0 1 k x k dp (λ) m (1+ s k λ=0 = m ) k+1 P V (0) P V (0) = D Q Korkoriskiltä suojaava portfolio voidaan rakentaa sitoumukselle S siten, että a) portfolion nykyarvo ja b) kvasimodioitu duraatio ovat samat kuin sitoumukselle. Nykyarvo voidaan laskea myös rekursiivisesti: P V (0) = x 0 + d 1 x 1 + d 2 x 2 +... + d n x n P V (0) = x 0 + d 1 [x 1 + d 2 d 1 x 2... + dn d 1 x n ] P V (0) = x 0 + d 1 P V (1) Yleisemmin voidaan merkitä d k,n = d k,k+1 d k+1,k+2 d n 1,n ja saadaan P V (k) = x k + d k,k+1 P V (k + 1)
1. (L4.3) Tarkastellaan kahta 5 vuoden joukkovelkakirjaa. Ensimmäisen kuponkikorko on 9% ja hinta 101.00 pistettä. Toisen korko on 7% ja hinta 93.20 pistettä. Mikä on tällöin 5 vuoden nollakuponkikorkoisen joukkovelkakirjan hinta? Olkoon joukkovelkakirjat A ja B. Skaalataan nollakuponkikorkoisen joukkovelkakirjan nimellisarvoksi 100. Tällöin siis myös hinta ilmoitetaan nimellisarvon perusteella. Vuosi 1 2 3 4 5 P A 9 9 9 9 109 101.00 B 7 7 7 7 107 93.20 n A A + n B B 0 0 0 0 100? On ratkaistava n A ja n B yhtälöparista: 9n A + 7n B = 0 100n A + 100n B = 100 Ratkaisuksi saadaan n A = 3.5, n B = 4.5. Tämä siis tarkoittaa, että myydään joukkovelkakirjaa A ja ostetaan joukkovelkakirjaa B. Nollakuponkikorkoisen joukkovelkakirjan hinnaksi saadaan 3.5 101.00 + 4.5 93.20 65.90 pistettä.
2. (L4.5) Olkoot s(t), 0 t, spot-korot. Tällöin ajanhetkellä t saadun markan nykyarvo on e s(t)t. Olkoon t 1 < t 2 ja f(t 1, t 2 ) spot-korkojen määräämä forward-korko aikavälille t 1 :stä t 2 :een (t 1 < t 2 ). a) Määritä f(t 1, t 2 ):n lauseke s(t):n avulla. b) Olkoon r(t) = lim f(t, t t2 2). Tällöin r(t):tä voidaan kutsua välittömäksi koroksi hetkellä t. Osoita, että t r(t) = s(t) + s (t)t. c) Pankkiin talletetaan x 0 :n verran rahaa ajanhetkellä t = 0. Pankki maksaa talletukselle jatkuvasti välitöntä korkoa r(t) (korkoa korolle). Pankkitilin tase x(t) toteuttaa tällöin dierentiaaliyhtälön dx(t) = r(t)x(t). Määritä x(t):n lauseke. a) Forward-koron määritelmän perusteella e s(t 2)t 2 = e s(t 1)t 1 e f(t 1,t 2 )(t 2 t 1 ) = e s(t 1)t 1 +f(t 1,t 2 )(t 2 t 1 ) s(t 2 )t 2 = s(t 1 )t 1 + f(t 1, t 2 )(t 2 t 1 ) f(t 1, t 2 ) = s(t 2)t 2 s(t 1 )t 1 t 2 t 1 b) Derivaatan määritelmän sekä tulon derivointisäännön perusteella saadaan r(t) = lim f(t, t s(t 2 )t 2 s(t)t t2 2) = lim = d t t2 t t 2 t [s(t)t] = s(t) 1 + s (t) t = s(t) + s (t)t m.o.t. c) b-kohdasta saadaan, että r(t) = d [s(t)t], jolloin dierentiaaliyhtälö saadaan muotoon = d [s(t)t]x(t) dx(t) dx(t) x(t) = d [s(t)t] Luonnollisen logaritmin derivointisäännön dln(x) dx = x (t) x(t) = dx(t) x(t) avulla saadaan dln(x(t)) = d [s(t)t] Integroidaan ln(x(t)) = s(t)t + C e ln(x(t)) = e s(t)t+c = e s(t)t e C = De s(t)t x(t) = De s(t)t, missä C ja D ovat vakioita. Reunaehto x 0 = x(0) D = x 0, jolloin saadaan lopulta ratkaisuksi x(t) = x 0 e s(t)t.
3. (L4.7) Sijoittaja harkitsee 10 vuoden joukkovelkakirjan ostamista ja suunnittelee pitävänsä sen koko lainaajan. Kupongeista sekä nimellisarvosta kauppahinnan ylittävältä osalta joudutaan maksamaan vero samana vuonna. Veroprosentti t on 30%. Kaksi 10 vuoden joukkovelkakirjaa täyttävät sijoittajan vaatimukset. Joukkovelkakirjan 1 kuponkikorko on 10% ja hinta P 1 = 92.21. Joukkovelkakirjan 2 kuponkikorko on puolestaan 7% ja hinta P 2 = 75.84. Joukkovelkakirjojen hintojen perusteella sijoittaja haluaa laskea kuvitteellisen 10 vuoden nollakuponkikorkoisen joukkovelkakirjan hinnan. Hinnan tulee olla sellainen, että se ja joukkovelkakirjojen 1 ja 2 hinnat ovat verojen jälkeen keskenään johdonmukaisia. Laske nollakuponkikorkoisen joukkovelkakirjan hinta. Osoita, että se ei riipu veroprosentista. Kuponkikorkojen tulee olla 0 eli 10n 1 + 7n 2 = 0, koska joukkovelkakirjan 1 kuponkikorko on 10% ja joukkovelkakirjan 2 kuponkikorko on 7%. Nimellisarvoksi skaalataan 100 eli 100n 1 + 100n 2 = 100 n 1 + n 2 = 1. Ratkaisemalla molemmat yhtälöt saadaan n 1 = 7 3 = 2.33 ja n 2 = 10 3 = 3.33. Toisin sanoen myydään (so. lasketaan liikkeelle) joukkovelkakirjaa 1 ja ostetaan joukkovelkakirjaa 2. Nyt on siis muodostettu nollakuponkinen portfolio joukkovelkakirjoista 1 ja 2. Nyt kassavirrat eivät ole kuitenkaan yksikäsitteisesti määriteltyjä, koska ne riippuvat verojen johdosta joukkovelkakirjan hinnasta. Veroja menee nimellisarvosta kauppahinnan ylittävältä osalta 100-P, missä P on joukkovelkakirjan hinta. Koska rakennetaan nollakuponkinen portfolio ei kupongeista makseta veroja. Veroja siis maksetaan määrä 100 (100 P )t. Nyt on siis etsittävä sellainen hinta, jolla joukkovelkakirjojen 1 ja 2 muodostaman nollakuponkisen portfolion verojen jälkeinen nimellismaksu on sama kuin "kuvitteellisen"nollakuponkisen joukkovelkakirjan vastaavan maksun kanssa. Toisin sanoen etsitään sellainen hinta P 0, että siitä sekä replikoivasta portfoliosta tulee samat kassavirrat. n 1 [100 (100 P 1 )t] + n 2 [100 (100 P 2 )t] = 100 (100 P 0 )t Sijoittamalla n 1 + n 2 = 1 saadaan, että P 0 = P 1 n 1 + P 2 n 2 = 92.21 ( 2.33) + 75.84 3.33+ 37.6. Toisin sanoen hinta on veroista huolimatta painotettu summa portfolion sisältämien joukkovelkakirjojen hinnasta kuten pitääkin.
4. (L4.13) Taulukossa 1 on esitetty erään yrityksen sitoumusten edellyttämät maksut seuraavien 8 vuoden aikana sekä markkinoiden spot-korot. Yritys on päättänyt sijoittaa kahteen joukkovelkakirjaan. Joukkovelkakirjan 1 laina-aika on 12 vuotta, kuponkikorko 6% ja hinta 65.95. Joukkovelkakirjan 2 laina-aika on vastaavasti 5 vuotta, kuponkikorko 10% ja hinta 101.66. Rakenna joukkovelkakirjoista 1 ja 2 immunisoitu portfolio. Taulukko 1: Vuosi 1 2 3 4 5 6 7 8 9 10 11 12 Maksu 500 900 600 500 100 100 100 50 0 0 0 0 Spot-korko 7.67 8.27 8.81 9.31 9.75 10.16 10.52 10.85 11.15 11.42 11.67 11.89 Immunisoidun portfolion rakentamiseksi on määriteltävä ensin sitoumuksen sekä joukkovelkakirjojen nykyarvot sekä kvasimodioidut duraatiot. Nykyarvo, kun spot-korot muuttuvat ajanhetkestä riippumatta λ:n verran: n P (λ) = x k (1 + s k + λ m ) k k=1 Tästä johdetaan kvasimodioidun duraatiolle (QM) yhtälö (huom. kvasimodioitu duraatio ei aikasuure): n dp (0) dp (0) λ=0 = ( k m )x k(1 + s k + λ m ) (k+1) D Q 1 dp (0) P (0) k=1 dp (0) = P (0)D Q Ao. taulukoissa duraatiokertoimella tarkoitetaan QM-duraation osoittajassa olevan summatermin osoittajan kerrointermejä ilman maksuja. Duraatiotemillä puolestaan tarkoitetaan vastaavaa lauseketta, jossa maksut on otettu mukaan. Vuosi 1 2 3 4 5 6 7 8 9 10 11 12 Spot-kurssi 7.67 8.27 8.81 9.31 9.75 10.16 10.52 10.85 11.15 11.42 11.67 11.89 Diskonttauskerroin 0.93 0.85 0.78 0.70 0.63 0.56 0.50 0.44 0.39 0.34 0.30 0.26 Duraatiokerroin 0.86 1.58 2.14 2.56 2.86 3.05 3.14 3.17 3.13 3.04 2.93 2.79 Sitoumukset 500 900 600 500 100 100 100 50 0 0 0 0 Nykyarvotermi 464 768 466 350 63 56 50 22 0 0 0 0 Duraatiotermi 431 1418 1284 1282 286 305 314 158 0 0 0 0 QM-duraatioksi saadaan 2.45 = duraatiotermien summa / nykyarvotermien summa.
JVK 1 6 6 6 6 6 6 6 6 6 6 6 106 Nykyarvotermi 5.57 5.12 4.66 4.20 3.77 3.36 2.98 2.63 2.32 2.03 1.78 27.53 Duraatiotermi 5.18 9.45 12.84 15.38 17.17 18.29 18.87 18.99 18.76 18.26 17.55 295.26 QM-duraatioksi saadaan 7.07 = duraatiotermien summa / nykyarvotermien summa. JVK2 10 10 10 10 110 0 0 0 0 0 0 0 Nykyarvotermi 9.29 8.53 7.76 7.00 69.08 0 0 0 0 0 0 0 Duraatiotermi 8.63 15.76 21.40 25.63 314.73 0 0 0 0 0 0 0 QM-duraatioksi saadaan 3.80 = duraatiotermien summa / nykyarvotermien summa. Nyt on siis ratkaistava yhtälöryhmä x 1 P 1 + x 2 P 2 = P sit x 1 P 1 D 1 + x 2 P 2 D 2 = P sit D sit Voidaan ratkaista esim. solverilla ja saadaan joukkovelkakirjojen lukumääriksi x 1 = 14.0 ja x 2 = 31.1.
5. (L4.15) Kalle Virtanen halusi tietää, mittaako duraatio hinnan herkkyyttä lyhyiden korojen muutokseen (s.o. r k r k + λ). Aikansa mietittyään Kalle löysi lopulta nykyarvon rekursiiviseen määritelmään perustuvan vastauksen. Olkoon P k (λ) nykyarvo hetkellä k ja kun korkotaso muuttuu λ yksikköä, ja S k = dp k(λ) λ=0. S k :t voidaan laskea rekursiivisesti yhtälöstä S k 1 = a k P k (0) + b k S k, kun P k :t on laskettu ensin omasta rekursioyhtälöstään. Laske a k ja b k. Mittaako duraatio kysyttyä herkkyyttä? Joukkovelkakirjan hinta hetkellä k: P k Kassavirta hetkellä k: c k Lyhyt korko hetkellä k: r k Lyhyen koron muutos: λ Tutkitaan siis nykyarvon P 0 herkkyyttä korkomuutokselle r k r k + λ Spot-korot määräytyvät korkomuutoksen jälkeen seuraavasti: (1 + s k ) k = (1 + r 0 + λ)(1 + r 1 + λ) (1 + r k 1 + λ) Tästä nähdään, että spot-koroissa tapahtuva muutos ei selvästi ole sama kuin mitä duraatio kuvaa eli s k s k + λ Toisin sanoen duraatio ei mittaa kysyttyä herkkyyttä. Lähdetään tutkimaan Kallen kaavaa. Rekursiiviseksi nykyarvon kaavaksi saadaan P k 1 (λ) = x k 1 + P k(λ) 1+r k 1 +λ Derivaataksi voidaan pyöritellä d P k 1(λ) = d (x k 1 + P k(λ) 1+r k 1 +λ ) = 0 + 1 Sijoitetaan λ = 0 jolloin saadaan d 1+r k 1 +λ P 1 k(λ) (1+r k 1 +λ) 2 P k (λ) d P k 1(λ) λ=0 = 1 d 1+r k 1 P 1 k(λ) λ=0 (1+r k 1 P ) 2 k (0) Merkitsemällä tehtävänannon mukaisesti S k = d P k(λ) λ=0 saadaan, että S k 1 = 1 1+r k 1 S k 1 (1+r k 1 ) 2 P k (0), mistä saadaan, että a k = 1 (1+r k 1 ) 2 ja b k = 1 1+r k 1.