MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

Samankaltaiset tiedostot
MAT Algebra I (s) periodilla IV 2012 Esko Turunen

Esko Turunen Luku 3. Ryhmät

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

a b 1 c b n c n

MAT Algebra 1(s)

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

ALGEBRA KEVÄT 2013 JOUNI PARKKONEN

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

Esko Turunen MAT Algebra1(s)

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

(xa) = (x) (a) = (x)0 = 0

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

1 Algebralliset perusteet

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

H = H(12) = {id, (12)},

Algebra kl Tapani Kuusalo

Esko Turunen Luku 9. Logiikan algebralisointi

Algebra 1. Jouni Parkkonen Luentoja Jyväskylän yliopistossa talvella 2019

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Luonnollisten lukujen ja kokonaislukujen määritteleminen

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Algebra II. Syksy 2004 Pentti Haukkanen

Polynomien suurin yhteinen tekijä ja kongruenssi

ja jäännösluokkien joukkoa

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a).

Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

Algebran ja lukuteorian harjoitustehtävien ratkaisut

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät sivua Heikki Koivupalo ja Rami Luisto

ALGEBRA KEVÄT 2011 JOUNI PARKKONEN

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

Liite 2. Ryhmien ja kuntien perusteet

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

KOMBINATORIIKKA JOUKOT JA RELAATIOT

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Algebra I, harjoitus 5,

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Algebra, 1. demot,

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tommi Kuusisto

6. Tekijäryhmät ja aliryhmät

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

Algebra I, Harjoitus 6, , Ratkaisut

811120P Diskreetit rakenteet

Lukuteorian kertausta

Eräitä ratkeavuustarkasteluja

Äärellisten mallien teoria

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra. Jouni Parkkonen. Lukijalle

Johdatus p-adisiin lukuihin

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

1 Lineaariavaruus eli Vektoriavaruus

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K,

a ord 13 (a)

14. Juurikunnat Määritelmä ja olemassaolo.

MS-A0402 Diskreetin matematiikan perusteet

811120P Diskreetit rakenteet

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma

Algebra I, harjoitus 8,

Kokonaislukuoptimointi

Koodausteoria, Kesä 2014

11. Jaollisuudesta. Lemma Oletetaan, että a, b R.

802320A LINEAARIALGEBRA OSA I

Transkriptio:

MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset. Tehtävä 1. Onko joukon X potenssijoukon P (X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen suhteen? Tehtävä 2. Onko laskutoimituksilla ja neutraalialkiot? Tehtävä 3. Onko jokaisella A P (X) käänteisalkiot laskutoimitusten ja suhteen? Tehtävä 4. Onko joukon P (X) laskutoimitus \ assosiatiivinen? Tehtävä 5. Onko matriisien yhteenlasku assosiatiivinen joukossa M 2 R? Onko se kommutatiivinen? Tehtävä 6. Onko matriisien kertolasku assosiatiivinen joukossa M 2 R? Onko se kommutatiivinen? Tehtävä 7. Onko matriisien yhteenlaskulla neutraalialkio joukossa M 2 R? Onko matriisien kertolaskulla neutraalialkio joukossa M 2 R? Tehtävä 9. Olkoon X, ja olkoon joukon X laskutoimitus. Osoita: Jos on alkiot e X ja e X siten, että e g = g ja g e = g kaikilla g X, niin e = e. 1

To 12.02.09 pidetyt harjoitukset. Tehtävä 8. Olkoon Γ = {A M 2 R : deta = 1}. Osoita, että matriisien kertolasku indusoi laskutoimituksen joukossa Γ. Miten yhteenlasku käyttäytyy? Tehtävä 10. Olkoon E relaatio joukossa R 2 siten, että Osoita, että E on ekvivalenssirelaatio. Tehtävä 11. (x, y)r(z, w) x 2 + y 2 = z 2 + w 2. Olkoon ekvivalenssirelaatio joukossa A. Olkoot x, y A. Osoita, että ekvivalenssiluokille pätee: Jos [x] [y], niin [x] = [y]. Tehtävä 12. Osoita, että tekijälaskutoimitus on assosiatiivinen, jos alkuperäinen laskutoimitus on assosiatiivinen. Peano 1. Hahmottele tapaa, miten voisit todistaa luonnollisten lukujen summan oleva vaihdannainen ja liitännäinen. Peano 2. Määrittele ensin parillinen luonnollinen luku ja osoita sitten induktiolla, että n 2 + n on parillinen, kun n on luonnollinen luku ja n 0. 2

To 19.02.09 pidetyt harjoitukset. Tehtävä 13. Olkoon relaatio joukossa N N annettu ehdolla (m, n) (p, q) jos, ja vain jos m + q = n + p. Todista, että on ekvivalenssirelaatio. Tehtävä 14. Määritellään joukossa N N laskutoimitus ehdolla (m, n) (p, q) = (mp + nq, mq + np). Todista, että saatu laskutoimitus on yhteensopiva tehtävän 13 relaation kanssa. [Vihje: Kun m, n N ja n m, on yhtälöllä n + x = m yksikäsitteinen ratkaisu N : merkitään sitä m n, ja oletetaan tunnetuksi näin saadun rajoitetun erotuksen tutut ominaisuudet. Huomaa, että silloin (m, n) (m n, 0).] Tehtävä 15. Olkoon kuvaus i : N Z sellainen, että i(n) = [(n, 0)] aina, kun n on luonnollinen luku. Todista, että (a) i on injektio ja (b) aina, kun m, n N on Tehtävä 16. i(m + n) = i(m) + i(n) ja i(mn) = i(m)i(n). Olkoon kuvaus i : N Z kuten tehtävä 15. Todista, että jokainen kokonaisluku on muotoa i(n) tai i(n) jollakin n N. Tehtävä 17. Osoita, että joukon Z Z ekvivalenssirelaatio on yhteensopiva laskutoimitusten (a, b) (c, d) jos, ja vain jos ad = bc (a, b) (c, d) = (ad + bc, bd) ja (a, b)(c, d) = (ac, bd) kanssa, jolloin voidaan määritellä ekvivalenssiluokkien joukossa operaatiot ja kaavoilla Tehtävä 18. [(a, b)] [(c, d)] = [(ad + bc, bd)] ja [(a, b)] [(c, d)] = [(ac, bd)] Todista, että rationaalilukujen kertolasku on distributiivinen yhteenlaskun suhteen. 3

To 05.03.09 pidetyt harjoitukset. Tehtävä 19. Todista, että SL 2 R varustettuna matriisien kertolaskulla on ryhmä. Tehtävä 20. Todista, että jos h : E E on surjektiivinen homomorfismi ja E:llä on neutraalialkio e, niin h(e) on E :n neutraalialkio. Tehtävä 21. Etsi vastaesimerkki tilanteesta, jossa edellinen tulos ei ole voimassa, kun oletuksesta h : E E on surjektiivinen luovutaan ja oletetaan vain h : E E on homomorfismi. Tehtävä 22. Olkoot G ja G ryhmiä ja h : G G homomorfirmi. Todista, että h(e) on G :n neutraalialkio, kun e on G:n neutraalialkio. Tehtävä 23. Onko edellinen väite voimassa, jos luovutaan oletuksesta G on ryhmä? Tehtävä 24. Olkoon G ryhmä. Todista, että aina, kun a, b, c G on voimassa Tehtävä 25. jos ab = ac, niin b = c, ja jos ba = ca, niin b = c. Olkoon A joukko, jossa on assosiatiivinen laskutoimitus sekä neutraalialkio e A tämän laskutoimituksen suhteen. Todista: Jokaisella yhtälöllä ax = b ja ya = b on ratkaisu joss A on ryhmä. Tehtävä 26. Todista Lemman 3.4 laskusäännöt. Tehtävä 27. Olkoon G ryhmä ja Aut(G) G:n automorfismien joukko varustettuna laskutoimituksella (kuvausten yhdistäminen). Osoita, että Aut(G) on ryhmä. 4

Tehtävä 28. Reaalifunktio f : R R on tunnetusti kasvava jos f(x) f(y) aina, kun x y. Muodostavatko kasvavat bijektiot ryhmän, kun laskutoimituksena on (kuvausten yhdistäminen)? Entä muodostavatko bijektiiviset, vähenevät funktiot ryhmän, laskutoimituksena? Monotonisten funktioiden joukko on kasvavien funktioiden joukon ja vähenevien funktioiden joukon unioni. Muodostavatko monotoniset bijektiot ryhmän, laskutoimituksena? Tehtävä 29. Oletetaan, että X, Y ja olkoon f : X Y bijektio. Todista, että permutaatioryhmät S(X) ja S(Y ) ovat isomorfiset. Tehtävä 30. Olkoot G ja G isomorfisia ryhmiä. Todista: jos G on kommutatiivinen, niin G on kommutatiivinen. Tehtävä 31. Muodostukoot joukon H 3 alkiot muotoa 1 x z 0 1 y 0 0 1 olevista reaalimatriiseista. Todista, että saadaan ryhmä, kun laskutoimituksena on matriisien kertolasku. Tehtävä 32. Olkoon G reaalisten, kolmipaikkaisten vektorien ryhmä ja laskutoimituksena vektorien yhteenlasku. Onko kuvaus h : G H 3, 1 x z h(x, y, z) = 0 1 y 0 0 1 ryhmäisomorfismi? Tehtävä 33. Olkoon G äärellinen ryhmä. Todista, että G:n laskutaulun jokainen alkio esiintyy jokaisella vaakarivillä täsmälleen yhden kerran. Miten on pystyriven laita? 5

Tehtävä 34. Olkoon G ryhmä. Määritellään relaatio R joukossa G siten, että Onko R ekvivalenssirelaatio?. Tehtävä 35. arb joss a = gbg 1 jollakin g G. Määritellään reaalilukujen R joukossa laskutoimitus kaavalla x y = 3 x 3 + y 3. Todista, että (a) (R, ) on ryhmä, (b) (R, ) ja (R, +) ovat ryhminä isomorfiset. 6

To 12.03.09 pidetyt harjoitukset. Tehtävä 36. Määritä kaikki ryhmien Z 6 ja Z 7 aliryhmät. Tehtävä 37. Osoita, että ryhmät Z 4 ja Z 2 Z 2 eivät ole isomorfisia (vihje: osoita, että toinen niistä on syklinen, mutta toinen ei ole). Tehtävä 38. Osoita, että ryhmät Z 6 ja Z 2 Z 3 ovat isomorfisia (vihje: osoita, että molemmat ovat syklisiä, ja muodosta sitten isomorfinen kuvaus). Tehtävä 39. Osoita, että aliryhmien leikkaus on aliryhmä eli jos G on ryhmä ja ja H i G, i Γ, niin i Γ H i G. Tehtävä 40. Todista Proposition 4.8 jälkimmäinen osa. Tehtävä 41. Määritä matriisien A, B, C SL 2 Z kertaluvut, kun ( ) ( ) ( 1 1 0 1 0 1 A =, B = ja C = 0 1 1 0 1 1 Tehtävä 42. Olkoon G ryhmä ja H sen aito aliryhmä. Määrittellään kaksi relaatiota G:ssä s.e. x v y x 1 y H ja x y yx 1 H. Todista, että relaatiot ovat ekvivalenssirelaatioita. Tehtävä 43. Olkoon G ryhmä ja H sen aito aliryhmä. Osoita, etta tekijäjoukkojen välinen kuvaus b : G/H H\G siten, että b(ah) = Ha 1 on bijektio. Tehtävä 46. Ryhmän G keskus on G:n osajoukko Z = {z G; zg = gz aina, kun g G} varustettuna indusoidulla laskutoimituksella. Todista, että Z on kommutatiivinen normaali aliryhmä. ). 7

Tehtävä 47. Todista Proposition 4.17 osa (2). Tehtävä 48. Todista Propositio 4.18. Tehtävä 49. Luennolla tutkimme yleistä lineaarista ryhmää GL n R s.o. reaalisia n n matriiseja, joiden determinatti ei ole = 0; se on ryhmä laskutoimituksena matriisien kertolasku. Asetataan O(n) = {A GL n R; AA T = I}. Saadaanko aito normaali aliryhmä? Tehtävä 50. Todista, että jokainen syklinen ryhmä on isomorfinen joko ryhmän Z tai jonkin jakojäännösryhmän Z n, n N kanssa. Tehtävä 51. Olkoon G äärellinen ryhmä. Olkoot K < H < G. Osoita, että indekseille pätee: [G : K] = [G : H][H : K]. Tehtävä 52. Olkoon G ryhmä. Olkoot K < H < G siten, että [G : H] <, [H : K] <. Osoita, että indekseille pätee: [G : K] = [G : H][H : K]. Tehtävä 54. Todista, että jokaisen syklisen ryhmän tekijäryhmä on syklinen. Tehtävä 55. Olkoon G ryhmä, ja olkoon ekvivalenssirelaatio, joka on yhteensopiva ryhmän G laskutoimituksen kanssa. Osoita, että neutraalialkion e G määräämä ekvivalenssiluokka [e] on ryhmän G normaali aliryhmä. Tehtävä 56. Muodostukoon joukko G = {e, a, b, c, d, f} seuraavista 2 2 matriiseista ( ) ( ) ( ) 1 0 0 1 0 1 e =, a =, b =, ( 0 1 ) ( 1 0 ) 1 ( 1 ) 1 1 1 1 1 0 c =, d =, f =. 0 1 1 0 1 1 8

Muodosta laskutaulu ja (a) totea, ett saadaan ryhmä. (b) Luettele kaikki ne aliryhmät, jotka ovat isomorfisia ryhmän Z 2 kanssa. (c) Onko G kommutatiivinen? 9

Huom! Toisen välikokeen tenttialue alkaa tästä! To 26.03.09 pidetyt harjoitukset. Tehtävä 58. Osoita, että kokonaislukujen kertolasku on yhteensopiva kongruenssin (mod p) kanssa. Osoita, että jakojäännösryhmä Z p varustettuna kokonaislukujen yhteen- ja kertolaskujen tekijälaskutoimituksilla on kommutatiivinen rengas. Tehtävä 59. Olkoon X joukko. Määritellään joukkojen A, B P(X) symmetrinen erotus asettamalla A B = (A \ B) (B \ A). Osoita, että (P(X),, ) on rengas. Onko se kommutatiivinen? Tehtävä 60. Olkoon R rengas. Osoita, että (1) x( y) = ( x)y = (xy) aina, kun x, y R, (2) x(y z) = xy xz ja (y z)x = yx zx aina, kun x, y, z R, (3) jos joukossa R on ainakin kaksi eri alkiota, niin 0 1. Tehtävä 61. Olkoon (A, +) kommutatiivinen ryhmä, ja olkoon Hom(A, A) = {φ : A A : φ on homomorfismi}. Todista, että joukon Hom(A, A) laskutoimitus, joka määritellään asettamalla on assosiatiivinen ja kommutatiivinen. Tehtävä 62. Todista Propositio 5.5. Tehtävä 63. (φ + φ )(a) = φ(a) + φ (a), Olkoon R kommutatiivisen renkaan R yksiköiden joukko. Osoita, että R varustettuna kertolaskun indusoimalla laskutoimituksella on ryhmä. Tehtävä 64. Määritellään joukossa Z 3 yhteenlasku komponenteittain ja kertolasku asettamalla (a, b, c)(x, y, z) = (ax, bx + cy, cz) aina, kun (a, b, c), (x, y, z) Z 3. Onko kertolaskuoperaatio kommutatiivinen? Onko Z 3 varustettuna näillä laskutoimituksilla rengas? 10

Tehtävä 65. Olkoot R = {f : [0, 1] R} S = {g : [0, 2] R} varustettu kuvausrenkaiden laskutoimituksilla. Ovatko renkaat R ja S isomorfisia? Tehtävä 66. Olkoon R rengas, ja olkoon S R ja olkoon joukossa S ainakin 2 eri alkiota. Osoita, että S on renkaan R alirengas, jos ja vain jos (i) x + y S ja xy S aina, kun x, y S, ja (ii) 1 S. Tehtävä 67. Olkoon φ : R R rengashomomorfismi. Olkoon S renkaan R alirengas. Osoita, että φ 1 (S ) on renkaan R alirengas. Tehtävä 68. Olkoon K kunta, ja olkoon K sen alikunta. Osoita, että alikunnan K yhteenlaskun ja kertolaskun neutraalialkiot ovat samat kuin kunnan K. Tehtävä 69. Osoita, että kunnan K osajoukko K on K:n alikunta, jos ja vain jos (i) joukossa K on ainakin 2 eri alkiota, (ii) a b K aina, kun a, b K, ja (iii) ab 1 K aina, kun a, b K, b 0. 11

To 02.04.09 pidetyt harjoitukset Tehtävä 70. Osoita, että alkulukuja on äärettömän monta. Tehtävä 71. Osoita, että jokainen luonnollinen luku n 2 voidaan esittää alkulukujen tulona. Tehtävä 72. Todista, että luku n N, n 2 ei ole alkuluku jos, ja vain jos on olemassa alkuluku p, jolle p 2 n, ja joka jakaa n:n. Tehtävä 73. Todista: alkio [a] Z n, 0 < a < n, on nollan jakaja, jos ja vain jos syt(a, n) 1. Tehtävä 74. Määritä renkaiden Z 6 ja Z 8 ja Z 101 yksiköt. Tehtävä 75. Olkoon p N. Olkoon a Z. Millä ehdolla [a] on ryhmän Z p virittäjä? Tehtävä 76. (a) Mitkä alkiot ovat nollan jakajia renkaassa Z 9? (b) Mitkä alkiot ovat yksiköitä renkaassa Z 9? (c) Onko renkaan Z 9 yksiköiden ryhmä (tulo-operaation suhteen) syklinen? (Vihje: kirjoita auki kertolaskutaulu!) 12

Viikon 16 harjoitukset Tehtävä 77. Olkoon R rengas, ja olkoon I R. Osoita, että (1) I on vasen ideaali jos, ja vain jos xa + x a I kaikilla x, x R ja a, a I. (2) I on kaksipuolinen ideaali, jos, ja vain jos se on vasen ideaali ja oikea ideaali. Tehtävä 78. Olkoon φ : R S rengashomomorfismi. Olkoon I renkaan R vasen ideaali. Osoita, että φ(i) on renkaan φ(r) vasen ideaali. Tehtävä 79. Olkoon R rengas. Olkoot a 1, a 2,, a n R. Osoita, että (a 1, a 2,, a n ) = {x 1 a 1 + x 2 a 2 + + x n a n x 1, x 2,, x n R} on renkaan R vasen ideaali. Tehtävä 80. Olkoot L ja M renkaan R vasempia ideaaleja. Olkoot ja LM = {x 1 y 1 + x 2 y 2 + + x n y n x i L, y i M, n N } L + M = {x + y x L, y M}, Osoita, että LM ja L + M ovat renkaan R vasempia ideaaleja. Tehtävä 81. Olkoot L ja M renkaan R vasempia ideaaleja. (1) Osoita, että L M on renkaan R vasen ideaali. (2) Osoita, että jos I i, i Γ on renkaan R vasen ideaali (Γ jokin ideksijoukko), niin i Γ I i on renkaan R vasen ideaali. (3) Osoita, että LM L M, jos R on kommutatiivinen. Tehtävä 82. Olkoon R rengas, ja olkoon I sen kaksipuolinen ideaali. Osoita, että R/I on rengas. 13

Tehtävä 83. Olkoon p alkuluku. Olkoon Olkoon edelleen R = { m n syt(m, n) = 1 ja n ei ole jaollinen luvulla p} I = { m n R m on jaollinen luvulla p} Osoita, että R on kommutatiivinen rengas, ja että I on renkaan R ideaali. (Rationaaliluku m n on supistetussa muodossa, jos syt(m, n) = 1.) Tehtävä 84. Todista renkaiden isomorfismilause. Tehtävä 85. Olkoot K ja K kuntia. Olkoon φ : K K kuntahomomorfismi. Osoita, että φ on injektio. 14

Viikon 17 harjoitukset Tehtävä 101. Osoita, että polynomi P (X) = 1 2X on yksikkö renkaassa Z 16 [X]. (Vihje: Etsi Z 16 [X]:n polynomi Q(X) jolle P(X)Q(X) = 1.) Tehtävä 102. Olkoon p alkuluku. Montako juurta polynomilla X p X Z p [X] on? (Vihje: Tutki - vaikka verkosta - mitä sanoo Fermat n pieni lause.) Tehtävä 103. Olkoon K kokonaisalue. Olkoot P (X), Q(X) K[X]. Osoita: Jos P (X) Q(X) ja Q(X) P (X), niin on olemassa kokonaisalueen K nollasta poikkeva alkio u jolle P (X) = uq(x). Tehtävä 104. Olkoon R kommutatiivinen rengas. Olkoot A(X), B(X) R[X] siten, että B(X) 0 ja B(X):n korkeimman asteen termin kerroin on yksikkö. Osoita, että tällöin on olemassa polynomit P (X), J(X) R[X], joille A(X) = Q(X)B(X)+ J(X) ja degj(x) < degb(x). Tehtävä 105. Olkoon K kokonaisalue. Olkoon P (X) K[X] polynomi, ja olkoot c 1,, c k K polynomin P (X) juuria. Osoita, että on olemassa polynomi Q(X) K[X], jolle P (X) = (X c 1 )(X c 2 ) (X c k )Q(X). Tehtävä 106. Olkoot P (X), Q(X) Z 8 [X], P (X) = 3 + 2X + 4X 2 + 2X 3 ja Q(X) = 4 + 4X + 4X 2 + 4X 3 + 4X 4. (a) Kerro Q(X) polynomilla P (X) ja (b) jaa Q(X) polynomilla P (X). Tehtävä 107. Olkoon K kunta. Polynomi P (X) K[X] on jaoton, jos ei ole olemassa polynomeja A(X), B(X) K[X], joille dega(x), degb(x) > 0 siten, että P (X) = A(X)B(X). Osoita, että toisen asteen polynomi P (X) K[X] on jaoton jos, ja vain jos sillä ei ole juurta kunnassa K. Tehtävä 108. Onko polynomirenkaan Z 5 [X] polynomi (a) X 2 2 (b) X 2 + 2 jaoton? 15

Tehtävä 109. Jaa polynomi P (X) = X 3 + 2X 2 + 3X + 2 polynomilla Q(X) = 2X 2 + 3X + 1 (a) polynomirenkaassa Q[X] ja (b) polynomirenkaassa Z 7 [X]. 16

Viikon 18 harjoitukset Tehtävä 110. Todista, että (a) joukon A esijärjestys R generoi ekvivalenssin joukkoon A, kun asetataan x y joss xry ja yrx ja että (b) tekijäjoukkoon A/ generoituu järjestysrelaatio ehdolla Tehtävä 111. [x] [y] joss xry. Todista, että hilan L hilaoperaatiot ja toteuttavat seuraavat ehdot aina, kun x, y, z L: x x = x x x = x x y = y x x y = y x x (y z) = (x y) z x (y z) = (x y) z x = x (x y) = x (x y) x y joss x y = x joss x y = y. Tehtävä 112. Todista: hilassa L ehdot (i) a (b c) = (a b) (a c) ja (ii) a (b c) = (a b) (a c) implikoivat toinen toisensa eli jos (i) on voimassa kaikilla a, b, c L, niin myös (ii) on voimassa ja kääntäen. Tehtävä 113. Osoita totuustaulujen avulla, että kaikki logiikan aksioomat ovat tautologioita. Tehtävä 114. Jos kaikkien logiikan lauseiden joukossa F määritellään relaatio R s.e. αrβ joss (αimpβ), on R refleksiivinen. Todista, että se on myös transitiivinen. Tehtävä 115. Todista, että Lindenbaum-Tarski algebrassa (F/,,, ) luokka [αjaβ] on luokkaparin {[α], [β]} suurin alaraja. 17