Lasketaan esimerkkinä seuraava tehtävä. Monisteen sivulla 14 on vastaavanlainen. x 1

Samankaltaiset tiedostot
Matematiikan tukikurssi

Matematiikan tukikurssi

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

1 Eksponenttifunktion määritelmä

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

Matematiikan tukikurssi

3 x < < 3 x < < x < < x < 9 2.

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

Tehtäviä neliöiden ei-negatiivisuudesta

Sijoitusmenetelmä Yhtälöpari

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

3 x < < 3 x < < x < < x < 9 2.

Insinöörimatematiikka IA

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Matematiikan tukikurssi, kurssikerta 3

3 10 ei ole rationaaliluku.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

Kompleksilukujen alkeet

Miten osoitetaan joukot samoiksi?

Insinöörimatematiikka D

YKSIULOTTEINEN JÄNNITYSTILA

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

Matematiikan pohjatietokurssi

5.3 Matriisin kääntäminen adjungaatilla

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Solmu 3/ toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

EX1 EX 2 EX =

Usean muuttujan funktiot

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Tekijä Pitkä Matematiikka 11 ratkaisut luku 3

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö

Aritmeettinen jono

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

Piste ja jana koordinaatistossa

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n.

2 Yhtälöitä ja epäyhtälöitä

9 Lukumäärien laskemisesta

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =

3 Lukujonot matemaattisena mallina

Mat. tukikurssi 27.3.

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi

Noora Nieminen. Hölderin epäyhtälö

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

S Laskennallinen systeemibiologia

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

****************************************************************** ****************************************************************** 7 Esim.

Matematiikan tukikurssi, kurssikerta 5

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Johdatus matemaattiseen päättelyyn

4.3 Signaalin autokorrelaatio

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Lineaarinen yhtälöryhmä

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Matemaattinen Analyysi

Funktion raja-arvo ja jatkuvuus

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx

Funktio. Funktio on kahden luvun riippuvuuden ilmaiseva sääntö, joka annetaan usein laskulausekkeena.

Mat Lineaarinen ohjelmointi

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Korkeamman asteen polynomifunktio

1 sup- ja inf-esimerkkejä

Kolmannen ja neljännen asteen yhtälöistä

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

Matematiikan tukikurssi

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

Matematiikan tukikurssi, kurssikerta 2

Tenttiin valmentavia harjoituksia

2 Pistejoukko koordinaatistossa

Matemaattisen analyysin tukikurssi

Transkriptio:

Kertausta Luku o viimeistä pkälää (iduktio) lukuu ottamatta kertausta koulukurssi asioista (tai asioista joide pitäisi kuulua koulukurssii) Tämä luku kädää siksi lueoilla läpi opeasti Jos asiat eivät ole vielä kuolla halliassa, ii iihi voi perehtä lukemalla moistetta ja tätä tukimateriaalia ja kertaamalla koulukirjoista Seuraavassa tekstissä o luvu osalta pari todistustaki Niitä ei tulla tetissä ksmää, vaa e ovat mukaa asiasta kiiostueita varte Se sijaa kaikki laskumeetelmät o hallittava, että selviäisi laskutehtävistä R: järjestsrelaatio Lasketaa esimerkkiä seuraava tehtävä Moistee sivulla 4 o vastaavalaie Esimerkki Ratkaise epähtälö < + Suositeltava meetelmä: Viedää kaikki samalle puolelle ja samalle murtoviivalle ja suoritetaa merkkitarkastelu (Lueolla esitettäee kaksi muutaki meetelmää) Merkkitarkastelu: < + ( + ) < 0 ( + )( ) < 0 + < 0 > 0 + + + + Vastaus < < tai > + + Varoitus: Vääri olisi kertoa oi vai imittäjällä, koska se merkkiä ei tueta Oha ii, että jos epähtälö kerrotaa egatiivisella luvulla, ii epähtälömerkki pitää käätää, siis esimerkiksi merkki < pitää vaihtaa merkiksi >

Itseisarvot Sivulla 7 o reaalilukuje itseisarvo omiaisuuksia, mm a b b a b, a b a b tai a b Esimerkki 3 Ratkaistaa epähtälö > Em omiaisuude ojalla > > tai < 3 < tai < < 3 < 3 tai < Ratkaistaa sama epähtälö toisellaki tavalla, kättämällä kuvaajia Tämä tapa o hödllie mös tarkistuskeioa Piirretää samaa kuvioo fuktioide = ja = kuvaajat = = 3 Ratkaisemalla leikkauspiste ( 3, 3 ) ähdää kuviosta vastaus < 3 Leikkauspistee taas saa suorie = ja = leikkauspisteeä Esimerkki Jos edellisessä esimerkissä olisiki ollut epähtälö <, lasku olisi lähtet omiaisuude avulla äi: < < < < ja <

Biomikaava Moistee sivu 9 alalaida kaavat o stä muistaa Kaavat ii) ja iii) tosi ovat erikoistapauksia biomikaavasta ( ) (a + b) = a i b i ( 0) i i=0 Jos sijoitetaa a = ja b =, kaava saa muodo ( ) ( + ) = i i i=0 ( ) ( ) ( ) ( ) ( ) = + + + + +, 0 ku muistetaa, että ( ( 0) = ja ) ( = = ), ii ( ) ( ) ( + ) = + + + 3 + + + 3 Esimerkiksi lisäämällä Pascali kolmioo vielä ksi rivi, 6, 5, 0, 5, 6, osataa heti kirjoittaa ( + ) 6 = + 6 + 5 + 0 3 + 5 4 + 6 5 + 6 Biomikaavaa ei tällä kurssilla todisteta, mutta se olisi todistettavissa kohtuullisella töllä pkälä iduktiomeettelllä Ratkaisukaava astee htälölle Sivu kaava johto tulee selvemmäksi jos se esi tekee tapauksessa a = Olkoo siis ratkaistavaa htälö + b + c = 0 Nöksi tädetämällä saadaa Siis + b + c = 0 + b = ( + b ) b 4 ( + b ) b ( + b 4 + c = 0 ) = b 4 c + b = ± b 4 c = b b ± 4 c = ( b ± ) b 4c Tätä keioa voi kättää laskuissaki kaava sijasta 3

Ellipsi Seuraavassa ellipsi kaava johto o auki kirjoitettua Moisteessa o vai pari sttävää riviä, koska tämä oikeastaa kuuluisi koulukurssii Sivulla 8 määritellää ellipsi iide pisteide joukkoa, joide etäisksie summa kahdesta aetusta pisteestä o vakio Ajatellaa, että ko kaksi pistettä ovat ( c, 0) ja (c, 0) missä c > 0 (valitsemalla koordiaatisto sopivasti) Silloi mivaltaise pistee (, ) etäisdet äistä pisteistä ovat ( + c) + ( 0) ja ( c) + ( 0) ( + c) + ja ( c) + Siis piste (, ) o ko ellipsillä jos ja vai jos äide etäisksie summa o aettu vakio, jota merkitsemme a:lla (a > 0), siis jos ja vai jos ( + c) + + ( c) + = a ( + c) + = a ( c) + Korottamalla toisee tästä tulee ( + c) + = (a) + ( c) + 4a ( c) + Kirjoittamalla biomie öt auki ja hiuka hdistämällä ja kumoamalla termejä saadaa 4c = 4a 4a ( c) + c a = a ( c) + Korottamalla taas toisee tästä tulee joka saadaa muotoo c + a 4 a c = a ( ( c) + ) (a c ) + a = a (a c ) Merkitää a c = b (pitäisi perustella että a c), jolloi b + a = a b Jakamalla tulolla a b saadaa ellipsi htälöksi a + b = 4

Hperb Hperb käsitellää samoi kui ellipsi Moisteessa o s 9 kuvat hperbeleistä, joilla o htälöt a b = ja a b = Huomataa eritisesti, että äillä hperbeleillä o viot asmptootit; itse asiassa asmptootit ovat suorat = ± Tällä kurssilla tulee kättöö pikemmiki hperbt, jotka sijaitsevat site, että asmptootit ovat koordiaattiakse suutaisia Perusesimerkki o hperb = =, ja leisempi tapaus o = a + b = = a + b = a = b Oikeapuoleisesta kuvasta äk, että kärällä = a + b o vaakasuora asmptootti = a ja pstsuora asmptootti = b Tämä tarkoittaa, jos kätämme möhemmi esiteltävää raja-arvo käsitettä, että () : rajaarvo o a ku läheee ääretötä (tai miius ääretötä), ja () : rajaarvo o ääretö ku läheee b:tä oikealta, ja miius ääretö ku läheee b:tä vasemmalta puolelta Möhemmi opimme, että äille raja-arvoille o kätevät merkitätavat: lim = a, ± lim =, b+ lim = b Kaattaa samalla paa merkille seuraava hödllie seikka, jota tulemme möhemmi kättämääki Ku kärästä = siirrtää kärää = a + b, ii tuo : korvaamie ( b):llä aiheuttaa kärä siirtmise oikealle b: verra ja : kasvattamie a:lla ostaa kärää a: verra Tätä havaiollistaa seuraava paraabkuvio = + ( 5) = = ( 5) (0, 0) (5, ) (5, 0) 5

Iduktio Esimerkki 8 Kuika mota osajoukkoa äärellisellä joukolla o? Tämä ksms o moisteessa jätett lukija ratkaistavaksi Tässä o eräs ratkaisu Kokeillaa pieiä joukkoja O huomattava, että thjä joukko ja koko joukko ovat aia osajoukkoja Yhde alkio joukko {a}: osajoukot ovat ja {a}, siis osajoukkoa Kahde alkio joukko {a, b}: osajoukot ovat, {a}, {b} ja {a, b}, siis 4 osajoukkoa Kolme alkio joukko {a, b, c}: osajoukot ovat, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} ja {a, b, c}, siis 8 osajoukkoa Nättää, että jos joukossa o alkiota, ii osajoukkoja o kappaletta Todistetaa tämä arvaus iduktiolla oikeaksi Väite Jos joukossa o alkiota,, ii se osajoukkoja o kappaletta Todistus Todistetaa iduktiolla : suhtee Iduktio lähtökohta: Väite o tosi ku =, koska osajoukkoja o = kappaletta, kute llä todettii Iduktio-oletus: Väite o tosi ku = k Iduktioväite: Väite o tosi ku = k + Iduktioväittee todistus: Olkoo X joukko, jossa o k + alkiota Valitaa X: alkio a ja merkitää X = X \{a}; siis X o joukko, joka saadaa jättämällä X:stä pois alkio a Silloi X :ssä o k alkiota, jote siihe voidaa soveltaa iduktio-oletusta: jouko X osajoukkoja o k kappaletta Jouko X osajoukkoja o kahdelaisia: o sellaisia, joihi a kuuluu, ja o sellaisia, joihi a ei kuulu Edelliset ovat samat kui X : osajoukot, ja jälkimmäiset ovat samat kui X : osajoukot, joihi o lisätt alkio a Kumpiaki o k kappaletta, jote X: osajoukkoja o kaikkiaa k + k = k = k+ kappaletta Näi iduktioväite tuli todistettua 6

Esimerkki Iduktio o siis todistusmeetelmä, mutta sillä voi olla kättöä kaavoje tai muide tuloste johtamisessaki Ajatellaa esimerkkiä, että meidä pitäisi lötää suljettu lauseke öide summalle + + 3 + + summalle i Mite sellaie kaava johdettaisii? Voisimme aloittaa vertaamalla tuttuu kaavaa (aritmeettie summa, esimerkki 6) Vasemmalla puolella o + + 3 + + = ( + ) i = ( + ) i, missä i esiit esimmäisessä potessissa, ja oikealla puolella o : lauseke, missä esiit toisessa potessissa Siis summaamie ättäisi ostava astelukua hdellä Teemme tästä luova arvaukse, että koska kstssä summassa i esiit i toisessa potessissa, ii voisikoha etsitt summa lauseke olla kolmatta astetta : suhtee? Meillä ei ole t parempaa perustetta tälle arvaukselle, mutta voiha sitä kokeilla Jos arvaus o oikei, ii i = a + b + c + d 3 joillai kertoimilla a, b, c, d joita emme vielä tue Sijoittamalla tähä vuoro perää arvot =,, 3, 4 saamme eljä htälö rhmä = a + b + c + d, 5 = a + b + 4c + 8d, 4 = a + 3b + 9c + 7d, 30 = a + 4b + 6c + 64d, josta voimme ratkaista a = 0, b = 6, c =, d = 3 Siis arvauksemme johtaa lausekkeesee i = 0 + 6 + + 3 3 i = 6( + )( + ) Näi olemme saaeet summalle lausekkee, josta valitettavasti emme tiedä muuta, kui että se pätee : arvoilla,, 3, 4 Etä voitaisiiko toivoa, että se olisi voimassa suuremmillaki : arvoilla? Ilma muutaha se ei ole selvä Seuraava vaihe olisi ottaa tämä lödett kaava ja rittää todistaa se oikeaksi iduktiolla Jos iduktiotodistus oistuu, ii tiedämme, että lauseke o leisesti oikea Tämä vaihe ehkä suoritetaa demoissa 7