Laskuharjoitus 3 palautus 11. 11. 23 mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen, joka mahdollistaa B:n sitoutumisen. 2. A:n sitouduttua B voi sitoutua ja sitoutuu. 3. A ja B muuttuvat entsyymin katalysoimassa reaktiossa P:ksi ja Q:ksi. 4. P ja Q irtoavat entsyymistä. Koska entsyymi katalysoi kahden substraatin reaktiota, ei se kaikissa oloissa noudata Michaelisin ja Mentenin kinetiikkaa. Kuitenkin pitämällä A:n konsentraatiota vakiona ja vaihtelemalla B:n konsentraatiota voimme approksimaationa käyttää Michaelisin ja Mentenin yhtälöä v [ S] [ S] = vmax, K M + kun asetamme, että [S]=[B]. a) Edellä mainitussa mittausjärjestelyssä saimme seuraavat tulokset: [B] /mm 1/[B] /mm -1 v /(mms -1 ) 1/v /(mm -1 s) 1, 1, 4,9,24 1,5,67 6,5,154 2,,5 8,5,118 3,,33 11,9,84 5,,2 16,5,61 1,1 23,7,42 2,5 3,8,32 Määritä K M ja v max. b) Kun inhibiittoria I oli läsnä vakiokonsentraatio [I], niin saatiin seuraavat tulokset: [B] /mm 1/[B] /mm -1 v /(mms -1 ) 1/v /(mm -1 s) 1, 1, 3,2,313 1,5,67 4,5,222 2,,5 5,9,169 3,,33 8,2,122 5,,2 12,1,83 1,1 18,8,53 2,5 25,6,39
Onko inhibitio kilpailevaa, kilpailematonta (eli sekamuotoista) vai entsyymin ja substraatin kompleksiin kohdistuvaa? VASTAUS a)+b).35.3.25 y =.2899x +.25 1/v.2.15.1 y =.1842x +.243 ilman inhibiittoria inhibiittorin kera Linear (ilman inhibiittoria) Linear (inhibiittorin kera).5-1 -.5.5 1 1.5 -.5 -.1 -.15 1/[S] Tehdään esim. Excelillä tai laskimen yms. avulla suoran sovitus pienimmän neliösumman menetelmää käyttäen. Sovitusta varten tiedot tulee piirtää 1/v vs. 1/[S] -koordinaatistoon. Tämä johtuu siitä, että näin saada linearisoitua Michaelisin ja Mentenin yhtälö. [ S] v = vmax K S M + [ ] Siis 1/v =K M /v max 1/[S] +1/v max. Kun y-akselilla on 1/v ja x-akselilla 1/[S], on siis yhtälö muotoa y=k M /v max x+1/v max, missä 1/v max on vakiotermi ja K M /v max on kulmakerroin. Näin saadaan selvitettyä sovituksen tulosten avulla vakiosta v max ja edelleen kulmakertoimesta K M /v max K M -arvo, jotka siis ilman inhibiittoria ovat 41 mm/s ja 7,6 mm ja inhibiittorin kera 4 mm/s ja 11,6 mm. Kuvaajasta nähdään, että suorien leikkauspiste on likimain y-akselilla annettujen arvojen tarkkuuden puitteissa, kun taas kulmakerroin on selvästi eri. Kyseessä on siis todennäköisesti yksinkertainen kilpaileva inhibitio. c) Olisiko inhibitiomekanismi sama, jos meillä olisi mittauksessamme vakiokonsentraatio B:tä ja vaihtelisimme A:n konsentraatiota (siis olisi [S]=[A]) ja jos käyttäisimme samaa inhibiittoria I? Mikä se olisi ellei se olisi sama ja miksi? Edellisessä tapauksessa tilanne oli: EA=E' eli entsyyminä toimii entsyymin ja A:n kompleksi ja lisäksi B=S. Siis E'+S<=>E'S E+P. Inhibiittori siis kilpaili B:n kanssa. Toisaalta A:n ollessa valitsemamme substraatti eli substraatti, jonka suhteen työskentelemme, ei B:n kilpaileva inhibiittori kilpaile sen kanssa. Käytännössä siis nyt A=S ja E+S<=>ES E+P, missä ES on siis entsyymin ja A:n muodostama kompleksi, johon B tai sen kilpaileva inhibiittori (joka siis sitoutuu samaan kohtaan kuin B) sitoutuu. Lähinnä siis inhibition voisi olettaa olevan entsyymin ja substraatin kompleksiin kohdistuvaa, koska matemaattisen käsittelymme kannalta EA on tässä tapauksessa entsyymin ja substraatin kompleksi, kun taas edellisessä kohdassa se oli E'B.
d) Mikä inhibitiomekanismi tulisi c-kohdan tapauksessa kyseeseen, jos reaktion kulussa tai reaktiomekanismissa A:n ja B:n sitoutumisjärjestyksellä ei olisi väliä? Miksi? Tässä tilanteessa B ja näin ollen myös sen kanssa samasta sitoutumispaikasta kilpaileva inhibiittori voivat sitoutua myös ennen A:ta eli ennen entsyymin ja substraatin kompleksin muodostumista. Täten inhibitio olisi sekamuotoista (tai kilpailematonta eli nonkompetitiivista, jos sitoutumisvakio olisi sama ennen ja jälkeen). Tehtävä 2: Lipidikaksoiskalvon potentiaaliprofiilit Lipidikaksoiskalvossa on useita ryhmiä, joilla on varauksia tai osittaisvarauksia. Niinpä kalvon sähköistä potentiaalia kuvaava käyrä on melko monimutkainen. Oheisessa kuvassa on esitetty karkea malli kalvon eri potentiaalista. Tärkein potentiaaleista lienee transmembraanipotentiaali, johon usein viitataankin pelkällä membraani- tai kalvopotentiaalinimityksellä. Transmembraanipotentiaali aiheutuu ionien erilaisesta jakautumisesta solun sisä- ja ulkopuolen välillä ja on siis ulko- ja sisätilavuuksien potentiaalien välinen erotus. Lisäksi kalvon pinnalla voi olla varautuneita ryhmiä esim. negatiivisesti varautuneiden ryhmien vuoksi tähän viitataan pintapotentiaalinimityksellä. Nuo negatiiviset ryhmät myös rikastavat kationeja kalvon läheisyyteen, joten kauempana kalvon pinnasta ovat kationit näennäisesti neutraloineet varauksen. Koska rasvahappoketjut, esterisidokset, lipidien pääryhmät ja lipidin ja veden rajapinnan vesimolekyylit ovat kaksoiskalvoksi järjestäymisen vuoksi joutuneet eisatunnaiseen orientaatioon, on kalvolla myös ns. dipolipotentiaali, jonka muutos tapahtuu lähinnä juuri rajapinnassa. Keskimäärin kalvossa on yleensä enemmän dipolien positiivisia osittaisvarauksia suuntautuneena kalvon hydrofobiseen osaan päin ja enemmän dipolien negatiivisia osittaisvarauksia suuntautuneena vesifaasiin päin. Hahmottele karkea potentiaaliprofiili seuraavissa tapauksissa. 1) Alkutila pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama sisäpuoli on negatiivisesti varautunut eli transmembraanipotentiaali negatiivinen 2) Transmembraanipotentiaalin neutraloituminen pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama transmembraanipotentiaali = (vastaa karkeasti esim. aktiopotentiaalitilanteen yhtä vaihetta) 3) Ulkopuolelle lisätty dipoli: pian lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) kalvon ulkopuolelle on lisätty ainetta, joka sitoutuu nopeasti kaksoiskalvon ulkopuoliseen lehdykkään, muttei vielä ole ehtinyt flip-flopin kautta tasapainottua kalvon eri lehdyköihin; tämä aine alentaa tehokkaasti dipolipotentiaalia sillä puolella kalvoa, jolla se on
4) Ulkopuolelle lisätty dipoli: kauan aikaa lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) tilanteen 3) dipolipotentiaalia alentavan aineen pitoisuus kaksoiskalvon lehdyköissä on ehtinyt tasapainottua Olisiko piirtämiesi kuvien perusteella mielestäsi mahdollista, että joidenkin jänniteherkkien kanavien jännitesensorit saattaisivat aktivoitua myös tilanteessa 3? Jos olisi, niin miksi? [Kuvapohjat piirtämisen helpottamiseksi.] 1) 2) 3) 4) Kuva 1 on siis sama kuin alkutilanne. Kuvassa 2 on muuten sama tilanne, mutta transmembraanipotentiaali=. Kuvassa 3 on likimain sama transmembraanipotentiaali (pitäisi olla täsmälleen, mutta piirrokseen tuli pieni heitto) kuin kuvassa 1. Kuvan vasemmalla puolen eli solukalvon ulkopuolella on kuitenkin dipolipotentiaali pienentynyt. Kuvassa 4 puolestaan dipolipotentiaalia alentavan aineen pitoisuus kalvon eri lehdyköissä (leaflets) on ehtinyt tasoittua ja se alentaa dipolipotentiaalia molemmin puolin. Mielenkiintoista on se, että kalvon poikki kulkeva potentiaaliprofiili (joskus nimellä diffusion potential) muuttuu hyvin samalla tavalla tilanteissa 2 ja 3. Jos siis jänniteherkän kanavan jännitesensori on kalvon sisässä, niin sen liikkeiden tulisi olla samanlaisia tilanteissa 2 ja 3 ja kanavan avautumisen tulisi tapahtua samalla tavoin.on vielä epäselvää, tapahtuuko näin todella, mutta yksi kokeellinen työ tukee arviota, että lindaani-niminen hyönteismyrkky aktivoi jänniteherkkiä Ca 2+ -kanavia alentamalla dipolipotentiaalia (Silvestroni ym., 1997, Partition of the organochlorine insecticide lindane into the human sperm surface induces membrane depolarization and Ca2+ influx, Biochem. J. 321: 691 698).
Tehtävä 3: Peptidiantibiootin kalvovuorovaikutukset Mene sivulle http://us.expasy.org/ ja valitse Databases: Swiss-Prot and TrEMBL. Kirjoita hakusanaksi "magainin" kohtaan Search Swiss-Prot and TrEMBL for. Hakutulokseksi saat afrikkalaisen kynsisammakon tuottaman polypeptidin, josta sen ihon puolustukseen osallistuvia antibioottisia peptideitä pilkotaan. Vastaavia antibioottisia peptideitä on useimmilla ellei kaikilla eläimillä antibioottipeptideitä löytyy esimerkiksi ihmisen syljestä ja kyynelnesteestä. Valitse näytöltä "Magainin II copy A" ja saat antibioottipeptidi magainin II:lle kuuluvan sekvenssin väritettyä punaiseksi koko sekvenssin joukosta. Poimi sekvenssi talteen esimerkiksi Notepadiin. Toimi vastaavasti kolmikirjainlyhenteille merkityn sekvenssin osalta. Imuroi koneelle ohjelma WinPep osoitteesta http://www.ipw.agrl.ethz.ch/~lhennig/winpep.html ja asenna se. Asennettuasi valitse "File" "New" ja liitä Notepadista (yksikirjaiminen) aminohapposekvenssi avautuvaan sekvenssi-ikkunaan. Valitse "Analyze" ja "Physicochemical properties". Mikä on sekvenssin perusteella arvioitu isoelektrinen piste? Mitä se kertoo peptidin varauksesta ph:ssa 7,35? Isoelektriseksi pisteeksi saadaan pi=1,8, mikä tarkoittaa sitä, että se on positiivisesti varautunut ph:ssa 7,35. (Helppo muistisääntö positiivisen ja negatiivisen varautumisen suunnan muistamiseksi on se, että pienemmässä ph:ssa on enemmän protoneja H +, joista siis Le Chatelier'n periaatteen mukaisesti tarttuu suurempi määrä molekyyliin, joten se saa positiivisen varauksen, jos ph<pi. Vastaavasti tietysti varaus on negatiivinen, jos ph>pi. Voit oppikirjasta tarkistaa esim. isolektrisen fokusoinnin periaatteen.) Hae osoitteesta http://us.expasy.org/cgi-bin/protscale.pl haluamamme hydropaattisuusasteikko. Kyseessä on Raon ja Argosin v. 1986 julkaisema asteikko, joka kuvaa sitä, miten usein kyseisiä aminohappoja suhteellisesti esiintyy integraalisten membraaniproteiinien membraaniin hautautuneissa osissa. Kokeile tehdä ProtScale-ohjelman ikkunassa ko. sekvenssistä transmembraaniheeliksin etsinnässä käytetty lasku, valitse esim. Window size = 5 sivun alalaidasta. Paina "Submit". Tryptofaanin 1. kuvaa suunnilleen arvoa, jolla aminohappo tyypillisesti esiintyy lipidin ja veden välisessä rajavyöhykkeessä. Membraaniympäristössä magainin II:n tiedetään muodostavan α-heeliksin. Kun otetaan huomioon, että kalvon paksuus on n. 2 aminohapon muodostaman α-heeliksin verran, niin miten todennäköiseksi # arvioisit tuloksen perusteella sen, että yksittäinen magainin II -peptidin muodostama α-heeliksi kulkee kalvon puolelta toiselle transmembraaniheeliksinä? # Tarkkuudeksi riittää ihan hyvin mikä tahansa Stetson Harrison -menetelmän* antama tulos. *Sama kuin Stetson-menetelmä eli hatusta vetäminen, mutta Harrisonin nimi antaa lisää uskottavuutta.
Koska peptidin keskeltä ei löydy yhtenäistä hydrofobista aluetta, niin lienee epätodennäköistä, että se kulkisi membraanin läpi, etenkin kun hydrofobiset jaksot ovat enimmäkseen peptidin päissä. Palaa nyt WinPepiin. Valitse "Options" "Preferences" "Helical Wheel Options". Valitse Raon ja Argosin asteikon arvojen perusteella aminohapoille värit: punainen (hydrofobinen) arvoilla >1, violetti arvoilla,5 1, ja sininen arvoilla <,5. Valitse sitten "Analyze" "Helical Wheel". Lisäpisteitä voit saada tekemällä esimerkiksi Excelillä seuraavat laskut. Keskimäärin aminohappojen kulma α- heeliksissä (akselin suunnasta katsottuna) on n. 1 eli n. 3,6 aminohappoa/kierros. Tee taulukko esimerkiksi seuraavan sivun esimerkin tavalla käyttäen magainin II:n aminohapposekvenssiä ja Raon ja Argosin hydropaattisuusasteikkoa. Tee uusi sarake, jossa olet vähentänyt kokonaiset kierrokset eli kaikki kulmat palautettu välille 36 astetta (nimeksi esim. "reduced angle"). Huomaa, että =36. [Taulukon bulk angle -arvot kannattaa kirjoittaa käsin tai sitten laskea kaavalla, mutta valita sen jälkeen "copy", "paste special" ja "values" ja kopioida ne pelkkinä arvoina.] Valitse nyt otsikkoineen kokoalue taulukossa, jossa tietosi ovat. Valitse "Data", "Sort", "Sort by:" reduced angle, ascending. Näin saat aminohapot järjestykseen. Laske keskiarvo ±2 kulmista joka kulmalle, jolla on jokin aminohappo. Tee sitten kuvaaja, jossa kuvaat hydropaattisuusarvon kulman funktiona ("Insert", "Chart", "XY Scatter"). Jälleen arvo 1, kuvaa n. suunnilleen veden ja lipidin rajapinnalle tyypillistä arvoa, suuremmat hydrofobisia ja pienemmät hydrofiilisiä. Mitä arvioisit ns. helical wheel -kuvaajan ja mahdollisesti tekemäsi Excel-kuvaajan perusteella peptidin muodostaman α-heeliksin orientaatiosta ja sijainnista lipidikaksoiskalvossa? Saadaan oheinen kuva:
Vastaavasti Excelillä amino acid amino acid amino hydropathicity bulk angle reduced angle averaged number acid 1 G Gly 1.9.97 19 E Glu.25 18.97 12 F Phe 1.57 11 2 1.15 5 F Phe 1.57 4 4 1.495 23 S Ser 1.27 22 4 1.495 16 F Phe 1.57 15 6 1.443 9 A Ala 1.36 8 8 1.453 2 I Ile 1.44 1 1 1.333 2 I Ile 1.44 19 1 1.333 13 G Gly 1.9 12 12 1.36 6 L Leu 1.47 5 14 1.31 17 V Val 1.37 16 16.977 1 K Lys.9 9 18.993 3 G Gly 1.9 2 2.812 21 M Met 1.42 2 2.674 14 K Lys.9 13 22.82 7 H His.68 6 24.62 18 G Gly 1.9 17 26.62 11 K Lys.9 1 28.4 4 K Lys.9 3 3.468 22 N Asn.33 21 3.468 15 A Ala 1.36 14 32.887 8 S Ser.97 7 34.918
Magainin II 1.6 1.4 1.2 hydropathicity 1.8.6 Series1.4.2 5 1 15 2 25 3 35 4 Reduced angle Oheisista kuvaajista nähdään, että katsottaessa α-heeliksiä pitkin heeliksin akselia on toinen puoli α- heeliksistä jokseenkin hydrofobinen ja toinen puoli hydrofiilinen. Näin ollen tuntuisi varsin luontevalta, että yksittäisenä kalvossa ollessaan magainiini makaa ikään kuin kyljellään. Olisiko muunlainen orientaatio/järjestäytyminen kenties mahdollinen, jos kalvossa on paljon peptideitä? Miten tällainen järjestäytyminen saattaisi selittää peptidin soluja tappavan vaikutuksen? Yksi mahdollisuus olisi, että magainiinien α-heeliksit kääntyvät transmembraaniheelikseiksi siten, että polaariset ovat suuntautuneet lipideistä poispäin muodostaen reiän kalvoon. Tämä johtaisi hypoosmoottisissa olosuhteissa solun hajoamiseen veden virratessa solun sisään, hyperosmoottisissa oloissa solu taas kuivuisi ja kaikissa olosuhteissa menettäisi ravinteita. Huomautettakoon, etät magainiinin varsinaisesta toimintamekanismista on eri näkymyksiä, joista tämä reikämalli on vain yksi eikä edes suosituin tätä nykyä. amino acid number amino acid amino acid hydropathicity bulk angle 1 G Gly 1.9 2 I Ile 1.44 1 3 G Gly 1.9 2 4 K Lys.9 3 5 F Phe 1.57 4 6 L Leu 1.47 5 7 H His.68 6 8 S Ser.97 7 9 A Ala 1.36 8 jne. jne. jne. jne. jne.
Tehtävä 4: Aineiden kuljetus solukalvon puolelta toiselle Yksi solukalvon keskeisistä rooleista on diffuusion esteenä toimiminen eli solun rajaaminen. Joitakin aineita halutaan kuitenkin päästää solun kalvon läpi. Niinpä solukalvossa on mm. passiivisia kanavaproteiineja, jotka päästävät valikoivasti aineita soluun, ja aktiivisia pumppuja, jotka kemiallista sidosenergiaa hyödyntäen synnyttävät pitoisuusgradientteja. (Lue esim. Lehningerin luvut 12 ja 14.) Pumppuja voi periaatteessa tarkastella entsyymeinä, jotka kytkevät energeettisesti hyvin epäedullisen reaktion (eli nettosiirtymisen pitoisuusgradienttia vastaan) energeettisesti hyvin edulliseen reaktioon (esim. ATP:n hydrolyysi ADP:ksi ja PO 4 3- -ioniksi) ja tehden kokonaisreaktiosta näin energeettisesti edullisen. Ajatellaan seuraavaksi pelkästään aineen siirtymistä kalvon puolelta toiselle. Lehningerissä annetaan reaktioiden yleiseksi vapaaenergian muutokseksi G= G' +RTln([P]/[S]), missä G' on standardiolojen vapaaenergian ero tuotteelle ja lähtöaineelle, R on yleinen kaasuvakio, T on lämpötila absoluuttisella asteikolla ja [P] ja [S] ovat tuotteen ja lähtöaineen pitoisuudet tässä järjestyksessä. Koska kalvon puolelta toiselle pumppaamisessa ei itse molekyyli muutu (eivätkä tietenkään määritellyt standardiolosuhteet muutu) ja ennen kaikkea koska siis K=1, on G' =. Toisaalta reaktion tuote on esimerkiksi aineita soluun sisään kuljetettaessa sisällä oleva molekyyli ja lähtöaine ulkona oleva molekyyli. Näin ollen päästään varauksettomien molekyylien tapauksessa Lehningerissä (ja muissa biokemian kirjoissa) mainittuun muotoon G=RTln(c s /c u ). a) Miten suuri konsentraatiosuhde olisi mahdollista saavuttaa 1 %:n hyötysuhteella pumpulle, joka pumppaa yhden varauksettoman molekyylin solun sisään yhden ATP:n fosfodiesterisidoksen hydrolyysienergiaa hyödyntäen? ATP:n hydrolyysille tyypillisissä solunsisäisissä olosuhteissa G = -51,8 kj/mol, kuten Lehningerissä kerrotaan. Entä mikä olisi tulos 2 %:n hyötysuhteella? Yhteen kytketyissä reaktioissa uuden reaktion täytyy olla spontaani, jotta sitä tapahtuisi. Ts. ATP:n hajoamiseen liittyvän vapaaenergian G ATP ja pumppaamiseen käytettävän vapaaenergian G PUMP tulee toteuttaa ehto G KOK = G ATP + G PUMP. Jos hyötysuhde η otetaan vielä huomioon, niin saadaan G KOK =η G ATP + G PUMP ja rajatapauksena siis η G ATP + G PUMP = eli G PUMP =-η G ATP. Toisaalta G PUMP =RTln(c s /c u ), joten η G ATP cs RT = e c u G ATP =-518 J/mol, R=8,31 J/(mol K) ja olkoon T=31 K (37 ºC). Kun η=1, on c s /c u =5,4 1 8, ja kun η=,2, on c s /c u =55,8. Jos kyseessä on varauksellinen yhdiste, niin asia on monimutkaisempi. Lukiossa fysiikkaa ja/tai kemiaa lukeneille lienee tuttua, että varauksellisen yhdisteen siirtyessä potentiaalista toiseen siirtymiseen liittyy energian muutos. Toisaalta varaukset luovat ympärilleen potentiaalienergiakentän. Potentiaali V=E p /Q eli potentiaalienergia jaettuna varauksella. Jotta saataisiin ionien potentiaalista toiseen liittyvä energia, täytyy siis potentiaaliero kertoa siirtyvällä varauksella, joka yleensä lasketaan moolia kohti, ts. E p =UQ=zFU, missä z=ionin valenssi ja F on Faradayn vakio 96485,31 C/mol (eli N A alkeisvarausta). Näin ollen saadaan ionin siirtymiselle kalvon puolelta toiselle G=RTln(c s /c u )+zfu, missä U on potentiaaliero sisä- ja ulkopuolen välillä. Mainittakoon, että tasapainossa tietenkin G= ja niinpä tasapainossa zfu=-rt ln(c s /c u )=RT ln(c u /c s ) eli
RT c U = ln zf c u s Tämä on Nernstin yhtälö, jota käytetään huomattavan paljon membraanipotentiaalin yhteydessä, koska tietenkin membraanipotentiaali=u. Tästä enemmän fysiologian tai sähkökemian kursseilla. Karkeana solukalvon mallina voidaan toisaalta pitää levykapasitaattoria, jossa kapasitaattorin pinta-ala on solun pinta-ala ja kalvon hiilivedylle ε r =2. Levykondensaattorin kapasitanssi C on C=ε ε r A/d, missä A siis on solun pinta-ala ja d on solukalvon paksuus. Laskua varten ajattele solu palloksi, jonka säde r=5 µm. Solukalvon paksuudeksi d voidaan ottaa esim. 3 nm. Ulkopuolen tilavuuden voi olettaa niin suureksi, ettei sen ionikonsentraatio muutu. Siis c u =vakio. Olkoot ionit monovalentteja eli z=1. Kondensaattorille C=Q/U, missä U on jälleen potentiaaliero, Q on varaus ja C=kapasitanssi. Varaus Q=(c s -c u )zfv, missä V=solun tilavuus. b) Johda näitä yksinkertaistavia likiarvoistuksia käyttäen lauseke vapaaenergian muutokselle sisällä olevan ionipitoisuuden funktiona. Kannattaa laskea välivaiheet numeerisesti (esim. kapasitanssilla arvo). Yhtälö on edelleen melko hankalaa muotoa suoraan ratkaistavaksi, joten voit tehdä esim. Excelillä kuvaajan, jossa kuvaat G:n c s /c u :n funktiona sopivin välein. Ellet osaa kopioida lausekkeita Excelissä ja luoda c s :lle arvoja Excelin kaavojen avulla (esim. arvo sarakkeessa A2=A1+1), niin pyydä apua esim. osoitteesta jmalakos@cc.helsinki.fi. Määritä piirtämältäsi kuvaajalta, millä arvolla nyt saavutetaan a-kohdan 2 ja 1 %:n hyötysuhdetta vastaava arvo. Kannattaa tehdä kaavat, joihin voit helposti muuttaa c u :n arvoa. 1º Olkoon c u =1-2 M. 2º Olkoon c u =1-7 M. Ensimmäinen vastaa lähinnä solunulkoisen K + :n ja jälkimmäinen [H + ]:n (tai [H 3 O + ]:n) pitoisuutta. Miten arvioisit eri pumppujen kykyä synnyttää gradientteja tällaisissa oloissa? Entä mikä on c s -c u näille tilanteille? Miten selität eron? Johtaminen: Oletetaan, että solun ulkopuolinen tila on niin paljon suurempi, että pitoisuus siellä pysyy vakiona riippumatta siitä, miten paljon solu pumppaa ioneita sisäänsä. Varaukselle toisaalta Q=(c s -c u )zfv ja toisaalta U=Q/C, joten G=RTln(c s /c u )+zfu= RTln(c s /c u )+zfq/c= RTln(c s /c u )+zf(c s -c u )zfv/c= RTln(c s /c u )+(zf) 2 (c s -c u )V/C, missä pallon tilavuus V=4/3 πr 3 ja C=ε ε r A/d, joten G= RTln(c s /c u )+4(zF) 2 (c s -c u )πr 3 d/(3ε ε r A). Toisaalta tässä pallon ala A=4πr 2, joten 2 3 2 cs 4( zf) ( cs cu ) πr d cs ( zf) ( cs cu ) rd G = RT ln RT ln 2 c + = + u 3ε ε r 4πr c u 3ε ε r Jo kaavan muodosta nähdään, että termien keskinäinen suhteellinen riippuvuus on erilainen, kun c u ja c s ovat erilaiset.
Kohta 1 delta G 1 9 8 7 6 5 4 3 2 1 1 1.5 1.1 1.15 1.2 1.25 1.3 1.35 1.4 cs/cu Kohta 2 12 1 8 delta G 6 4 2 5 1 15 2 25 3 35 4 cs/cu Kuvissa y-akselilla G yksiköissä kj/mol ja x-akselilla c s /c u. Koska varaus on paljon tärkeämpi määräävä tekijä kuin sinänsä pitoisuusero, määrää c s -c u funktion suuruuden. Näin ollen on c s /c u paljon suurempi samalla G:n arvolla, jos c u on pienempi. Mikäli varausta ei neutraloi jokin muu ioni (esim. Na + ulkopuolella ja K + sisäpuolella) eli jos pumppu joutuu pumppaamalla kasvattamaan transmembraanipotentiaalia, niin se ei siihen kovin hyvin pysty. c) Mitä tapahtuu, jos ioneja pumppaava pumppu joutuu (kaikkien pumpun kannalta olennaisten reaktanttien ollessa läsnä) ionigradienttiin, joka vastaa suurempaa energiaa kuin ATP ADP+P i reaktion vapaaenergia? Periaatteessa pumppukin on luonteeltaan entsyymi, joten se ei vaikuta reaktion tasapainoon. Näin ollen reaktio alkaa kulkea toiseen suuntaan. Mitokondrioiden sisäkalvolla aerobisen eli happea hyväksi käyttävän aineenvaihdunnan varsinainen ATP:n tuotanto perustuu osaltaan tällaiseen ilmiöön. Elektroninsiirtoketju tuottaa noin kahden yksikön ph-gradientin eli n. 1-kertaisen H + -konsentraation kalvon toiselle puolelle. Kalvossa oleva ATP-syntaasi eli H + -ATPaasi katalysoi reaktion, jossa protoni siirtyy kalvon poikki ja samalla ADP:sta ja P i :sta syntetisoidaan ATP:ia. Jos olosuhteet ovat toiset
(lähinnä siis keinotekoisissa systeemeissä), niin kyseinen pumppu käyttääkin ATP:ia pumpatakseen protoneita. (Jos vertaat kuvaan 2, niin huomaa, että 51,8 kj/mol perustuu solun sytoplasmassa oleviin ATP:n, ADP:n ja P i :n pitoisuuksiin ja että vastaava suhde 149 perustuu oletukseen ph-arvosta 7 (mitokondrioissa 6 ja 4) ja mitokondrion kokoa suurempaan 5 µm:n säteeseen.)