KVANTTIFYSIIKAN ILMIÖMAAILMA...1

Samankaltaiset tiedostot
Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Fysiikka 8. Aine ja säteily

Kvanttifysiikan perusteet 2017

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

Mustan kappaleen säteily

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

2. Fotonit, elektronit ja atomit

Täydellinen klassinen fysiikka 1900

Mustan kappaleen säteily

3.1 Varhaiset atomimallit (1/3)

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

Atomien rakenteesta. Tapio Hansson

S Fysiikka IV (SE, 3,0 ov) S Fysiikka IV (Sf, 4,0 ov )

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

S Fysiikka III (EST) (6 op) 1. välikoe

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

Shrödingerin yhtälön johto

Kvanttisointi Aiheet:

Kvanttifysiikka k-2006

FYSA242 Statistinen fysiikka, Harjoitustentti

Erityinen suhteellisuusteoria (Harris luku 2)

Infrapunaspektroskopia

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Voima ja potentiaalienergia II Energian kvantittuminen

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

766334A Ydin- ja hiukkasfysiikka

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

5.10. HIUKKANEN POTENTIAALIKUOPASSA

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

Teoreetikon kuva. maailmankaikkeudesta

Mekaniikan jatkokurssi Fys102

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

S Fysiikka III (EST) Tentti ja välikoeuusinta

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

766334A Ydin- ja hiukkasfysiikka

Luento 6. Mustan kappaleen säteily

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

Sovelletun fysiikan pääsykoe

Valon hiukkasluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 3. Elektroniikan ja nanotekniikan laitos

Luvun 8 laskuesimerkit

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Stanislav Rusak CASIMIRIN ILMIÖ

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

FRANCKIN JA HERTZIN KOE

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

Kvanttimekaniikan tulkinta

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Coulombin laki. Sähkökentän E voimakkuus E = F q

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Tfy Fysiikka IIB Mallivastaukset

Aurinko. Tähtitieteen peruskurssi

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

766326A ATOMIFYSIIKKA 1 - SYKSY 2017

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

Mekaniikan jatkokurssi Fys102

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe , malliratkaisut

12. Eristeet Vapaa atomi

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Valo ja muu sähkömagneettinen säteily

Magneettikentät. Haarto & Karhunen.

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

FY1 Fysiikka luonnontieteenä

Atomimallit. Tapio Hansson

ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

Kokeellisen tiedonhankinnan menetelmät

Fysiikka 7. Sähkömagnetismi

SEISOVA AALTOLIIKE 1. TEORIAA

Transkriptio:

KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta vapaista elektroneista... 15 1.6 Fotoni... 1 1.7 Stationääriset tilat... 3 1.8 Stationääristen tilojen kokeellinen havaitseminen... 31 1.9 Säteilyn vuorovaikutus väliaineen kanssa... 35 1.10 Kentät ja hiukkaset... 39 1.11 De Broglie aallonpituus... 41 1.11 Hiukkaset ja aaltopaketit... 45 1.1 Heisenbergin epämääräisyysperiaate paikalle ja liikemäärälle... 46 1.13 Ajan ja energian epämääräisyysyhtälö... 50

1.1 Historiaa 1 Kvanttifysiikan ilmiömaailma 1.1 Historiaa 1800-luvun lopussa ja 1900-luvun ensineljänneksen aikana tehtiin useita sähkömagneettisen säteilyn ja väliaineen vuorovaikutukseen liittyviä kokeellisia havaintoja, joita ei voitu selittää klassisen sähkömagnetismin avulla. Klassisen sähkömagnetismin teoriaa olivat 1800-luvulla kehittäneet mm. Ampere, Laplace, Faraday, Henry ja Maxwell. Klassinen sähkömagnetismi voidaan esittää Maxwellin yhtälöiden muodossa. Näissä yhtälöissä SM-kentän vuorovaikutus väliaineen kanssa kuvataan sähköisen permittiivisyyden, magneettisen suskebtibiliteetin ja sähkön johtavuuden avulla. 1900-luvun alussa kehittyi myös aineen atomirakennetta käsittelevä teoria. Se tiivistyi vähitellen Bohrin atomimallin muotoon. Kolmas ilmiö, jonka kuvaamiseen klassisen fysiikan lait eivät riittäneet, oli elektronien sironta kiteisestä aineesta. Kokeellisesti mitattu intensiteettijakauma ei noudattanut Newtonin mekaniikan ennusteita, vaan sironneet elektronit muodostivat interferenssikuvioista sähkömagneettisten aaltojen tapaan. Näiden kokeellisten havaintojen selittämiseksi kehitettiin useita, lähinnä älykkääseen arvaukseen ja intuitioon perustuvia, malleja. Ajan kuluessa näistä aluksi ilman tarkkoja perusteluja esitetyistä ideoista kehittyi vähitellen aineen mikrorakenteen teoria, joka tunnetaan kvanttimekaniikan nimellä. Kvanttimekaniikan keskeisin idea on kuvata hiukkasia aineaaltokentällä, josta hiukkasten mitattavissa olevat ominaisuudet seuraavat. 190-1930 - luvulla (P. Dirac) kvanttimekaniikkaan kehitettiin yleistys, kvanttisähködynamiikkaa, joka yhdistää aineen mikrorakenteen ja sähkömagneettisten kenttien teoriat. Kvanttisähködynamiikassa kvanttimekaaniseen hiukkasten käyttäytymistä ja rakennetta kuvaavaan aineaaltomalliin liittyy kvantittuneen sähkömagneettisen kentän kuvaaminen fotonien avulla. Kvanttisähködynamiikan matemaattista perustaa täydensi myöhemmin mm. R. Feynman vuosina 1948-1949. Tässä luvussa tarkastellaan aineen mikroraken-

Kvanttifysiikan ilmiömaailma teen ilmiömaailmaa. Tavoitteena on antaa taustatietoa myöhemmin käsiteltävien matemaattisten lähestymistapojen pohjaksi ja auttaa ymmärtämään, miten kokeellisten matemaattisten ja tieteellisen intuitioon perustuvien tutkimusmenetelmien yhdistäminen johti 1800-luvun lopussa ja 1900- luvun alussa kvanttifysiikan nopeaan läpimurtoon. Olemme liittäneet kvanttifysiikan ilmiöt mikroskooppisiin hiukkasiin tai hiukkassysteemeihin. Mikroskooppisia hiukkasia ovat esimerkiksi atomin ytimen muodostavat protonit ja neutronit sekä positiivista ydintä kiertävät elektronit. Hiukkassysteemejä ovat atomit, molekyylit ja kiteet. Yksinkertaistaen voimme sanoa, että kvanttifysiikan aineaaltoilmiöt määräävät atomien ja molekyylien elektronirakenteen. Atomien elektronitilat puolestaan määräävät sen, minkälaisen kiteen, nesteen tai kaasun atomit tietyssä lämpötilassa ja paineessa muodostavat. Aineen atominen rakenne määräytyy siis kvanttifysiikan lakien mukaan. Jos tunnemme atomien tai kiinteän aineen elektronirakenteen, voimme johtaa sen avulla makroskooppisiin kappaleisiin materiaaliominaisuudet, kuten sähkönjohtavuuden sekä optiset ja mekaaniset ominaisuudet. Näin voimme tehdä suoria aistihavaintoja makroskooppisen mittakaavan ilmiöistä, joiden selittäminen on mahdollista vain kvanttimekaniikan ja kvanttisähködynamiikan avulla. Vaikka esimerkiksi makroskooppisten kappaleiden väri määräytyy kvanttimekaniikan laeista, makroskooppiset kappaleet noudattavat klassisen mekaniikan liikeyhtälöitä. Aineaaltoilmiöt vaikuttavat välittömästi vain mikroskooppisiin hiukkasiin, joihin liittyvän aineaallon pituus on suurempi, kuin hiukkasen liikettä rajoittavien potentiaaliesteiden ulottuvuus. Tästä syystä kvanttimekaaniset ilmiöt korostuvat atomien elektronirakenteessa ja molekyylien ja kiinteän aineen rakenteessa atomitasolla. Kuten myöhemmin tulemme oppimaan, makroskooppisten kappaleiden aallonpituus on hyvin pieni ja kvanttiefektit pieniä. Joidenkin kvanttimekaniikan yksityiskohtien kokeellinen tutkimus on tullut mahdolliseksi vasta viime vuosikymmenten aikana. Erityisesti kvanttimekaniikan ja klassisen fysiikan välistä raja-aluetta on tutkittu aktiivisesti. Näin on voitu mm. osoittaa, että atomeissa esiintyy korkeasti viritettyjä elektronitiloja, joissa elektroni käyttäytyy Keplerin lakien mukaisesti. Tällaisia viritettyjä atomeja kutsutaankin planetaarisiksi atomeiksi.

1. Klassisen sähkömagnetismin perusideoita 3 Planetaarisessa atomissa uloimman elektronin radan halkaisija voi olla tuhansia vetyatomin halkaisijoita. Viime vuosina on voitu osoittaa kokeellisesti, että klassinen fysiikka seuraa tietyissä olosuhteissa kvanttimekaniikasta, joka näin sisältää klassisen fysiikan erikoistapauksena! Vaikka kvanttimekaniikka voitanee katsoa teoreettisena tai matemaattisena rakenteena täysin ymmärretyksi, sen menestystarina jatkuu teknologisissa sovellutuksissa. Tietotekniikan läpimurto on synnyttänyt teollisuudenalan, jonka tavoitteena on yhä pienempien sähköisten ja optisten komponenttien (transistorit, laserit) valmistaminen. Viimeaikainen kehitys on johtanut nanoteknologiaan, jossa aktiivisten rakenteiden ulottuvuus on vain muutamia atomikerroksia. Kehitteillä oleva uusi komponenttisukupolvi tulee perustumaan kvanttiefektien hyödyntämiseen. Kvanttimekaniikkaan perustuen ollaan myös kehittämässä kokonaan uudentyyppistä kvantti-informaatioteknologiaa, jossa tiedon tallentaminen ja prosessointi perustuu elektronitilojen vaiheinformaation tallentamiseen ja lukemiseen. Näin kvanttimekaniikka on siirtymässä fyysikkojen työpöydältä elektroniikkasuunnittelijoiden työkaluksi.

4 Kvanttifysiikan ilmiömaailma 1. Klassisen sähkömagnetismin perusideoita Kahden varatun hiukkasen välistä sähkömagneettista vuorovaikutusta voidaan parhaiten ymmärtää näiden varausten muodostamien sähkö- ja magneettikenttien avulla. Kun varattu hiukkanen on levossa tarkkailijan suhteen, havaitaan vain varauksen luoma staattinen sähkökenttä (Kuva 1-1). Jos varaus on liikkeessä tarkkailijaan nähden havaitaan sekä sähkö- että magneettikentät (Kuva 1-). Hiukkasen muodostamat sähkö- ja magneettikentät riippuvat hiukkasen nopeudesta ja kiihtyvyydestä tarkkailijaan nähden. Koska varauksen muodostamat sähkö- ja magneettikentät riippuvat varauksen liiketilasta, puhutaankin yleisesti varatun hiukkasen muodostamasta sähkömagneettisesta kentästä. Vastaavasti, kun varattu hiukkanen liikkuu muiden hiukkasten muodostamassa kentässä, siihen kohdistuu voima, jonka saamme yhtälöstä F = q( E + v B ), missä E ja B ovat sähkökentän voimakkuus ja magneettivuon tiheys. Näiden vektorisuureiden lyhyempinä ilmaisuina olkoon sähkökenttä ja magneettikenttä vastaavasti. Newtonin liikeyhtälössä voima on yhtä suuri kuin massa kertaa se kiihtyvyys, jonka tietty tarkkailija havaitsee, kun tarkkailijan sähkö- ja magneettikentille saamat mittausarvot ovat E ja B, ja tarkkailijan havaitsema nopeus on v. Kuva 1-1 Staattinen varaus. Kuva 1- Liikkuva varaus.

1. Klassisen sähkömagnetismin perusideoita 5 Klassisesta sähkömagnetismista muistamme, että sähkömagneettinen kenttä sisältää energiaa. Energiatiheys on tyhjiössä 1 1 E = ε0e + B µ 0, (1.1) missä ε 0 ja µ 0 ovat tyhjiön permittiivisyys ja permeabiliteetti, vastaavasti. On luontevaa olettaa, että staattisen sähkömagneettisen kentän energiatiheys on ajasta riippumaton ja vastaavasti, jos kenttä on aikariippuva, niin myös kentän energiatiheys muuttuu ajan funktiona. Aikariippuva sähkömagneettinen kenttä on yhteydessä sähkömagneettisiin aaltoihin, jotka etenevät valon nopeudella c = 1/ εµ 3 10 ms 0 0 8-1. (1.) Sähkömagneettiset aallot kuljettavat siis kentän energiaa; energiatiheys etenee valon nopeudella aaltojen mukana. Sähkömagneettista aaltoliikettä kutsutaan myös sähkömagneettiseksi säteilyksi. Paikallaan oleva varaus ei säteile sähkömagneettista energiaa, koska siihen liittyy ajasta riippumaton sähkökenttä. Edelleen voidaan osoittaa, että varaus, joka on tasaisessa liikkeessä laboratoriokoordinaatiston suhteen ei myöskään säteile sähkömagneettista energiaa. Jos varaus on kiihtyvässä liikkeessä, hiukkasen ympärilleen luoman sähkömagneettisen (SM) kentän energia muuttuu ajan funktiona. Kiihtyvässä liikkeessä oleva varaus säteilee sähkömagneettista energiaa. Voidaan osoittaa, että varauksen q, joka liikkuu nopeudella v, kiihtyvyyden ollessa a, säteilemän sähkömagneettisen energian määrä aikayksikköä kohden on de dt = q a 3 6πε c. (1.3) 0 Yhtälössä (1.3) oletimme, että hiukkasen nopeus v on itseisarvoltaan pieni valon nopeuteen verrattuna. Kiihtyvässä liikkeessä oleva varaus säteilee energiaa, joten varaukselle on tuotava ulkoisella energianlähteellä lisää energiaa myös tämän energiahäviön korvaamiseksi. Varauksen energiahäviöiden kompensointi tapahtuu esimerkiksi antennissa sopivan kiihtyvyyden antavan jännite-eron avulla.

6 Kvanttifysiikan ilmiömaailma Energian säteilylaki (1.3) on voimassa myös silloin, kun varauksen nopeusvektorin itseisarvo pienenee eli varauksen liike hidastuu. Tällöin varattu hiukkanen menettää liikeenergiaansa ja osa liikeenergiahäviöstä emittoituu sähkömagneettisena säteilynä. Kun suureen nopeuteen kiihdytetty alkeishiukkanen, kuten elektroni Kuva 1-3 Jarrutussäteilyn muodostuminen röntgenputkessa. Elektronit emittoituvat kuumalta tai protoni, osuu tiiviistä hehkukatodilta ja kiihtyvät muutaman kilovoltin aineesta (neste, kide tai jännitteen yli törmäten metalliseen anodiin. Voimakkaan hidastumisen johdosta elektronit emittoivat intensiivistä amorfinen aine) tehtyyn kohtioon, se pysähtyy nopeasti ja hyvin suuri osa sen kokonaisliike-energiasta emittoituu sähkömagneettisena (SM) säteilynä. Tätä säteilyä kutsutaan jarrutussäteilyksi. Jarrutussäteily onkin pääasiallinen mekanismi, jolla röntgensäteily muodostuu kaupallisissa röntgenputkissa (Kuva 1-3). Elektronispektroskopian sovellutuksissa röntgensäteilystä hyödynnetään usein jarrutussäteilyn tasoa intensiivisemmät, mutta energialtaan kapeat anodimateriaalille ominaiset (karakteristiset) säteilyenergiat, joihin palaamme röntgenspektrien muodostumisen yhteydessä. Kiihtyvässä liikkeessä olevan varauksen kykyä emittoida SM-säteilyä hyödynnetään myös synkrotronisäteilylähteissä. Näissä suuri määrä varauksia kiihdytetään lähes valon nopeuteen ja johdetaan ympyrän muotoiseen magneettiseen koossapitoon perustuvaan ns. varastorenkaaseen. Kiertäessään ympyrärataa varaukset emittoivat intensiivistä SM-säteilyä, jota kutsutaan synkrotronisäteilyksi. Synkrotronisäteilyä käytetään laajalti aineen atomi- ja elektronirakenteen tutkimuksessa. Liikkeessä olevan varauksen emittoima sähkömagneettinen säteily voi edelleen vuorovaikuttaa muiden hiukkasten kanssa. Tästä syystä kahden varauksen välistä vuorovaikutusta voidaan kuvata sähkömagneettisen säteilyn emissiona ja sitä seuraavana säteilyn absorptiona. Samalla tapahtuu

1.3 Mustan kappaleen säteily 7 varausten välistä energianvaihtona sähkömagneettisen kentän välityksellä. Radiolähettimessä elektronien edestakainen liike antennissa muodostaa radioaallon. Radioaalto aiheuttaa vastaanottimessa elektronien kiihtyvän liikkeen, jota vahvistamalla voidaan muodostaa esimerkiksi langaton tiedonsiirtojärjestelmä. Klassisessa sähkömagnetismissa väliaineen ja sähkökentän välistä vuorovaikutusta kuvataan permittiivisyyden, permeabiliteetin ja johtavuuden avulla. Näiden materiaaliparametrien arvo voidaan määrätä kokeellisin mittauksin tai vaihtoehtoisesti johtaa teoreettisesti aineen mikrorakennetta kuvaavasta kvanttimekaanisesta mallista. Klassinen sähkömagneettinen teoria (Maxwellin yhtälöt) sisältää aineen mikrorakennetta kuvaavan tiedon muutaman parametrin kautta. Kun nämä parametrit tunnetaan voidaan klassisella mallilla kuvata esimerkiksi radioaaltojen emissiota ja absorptiota. On kuitenkin olemassa myös sellaisia sähkömagneettiseen säteilyyn liittyviä ilmiöitä, kuten laser (light emission by stimulated emission of radiation), joita klassinen teoria ei pysty kuvaamaan. Kvanttisähködynamiikasta lähtien voidaan osoittaa, että klassinen SM-kenttä saadaan aina riittävän tiheän ja ajan funktiona hitaasti muuttuvan fotonikentän raja-arvona. Mikroskooppisessa mittakaavassa gravitaatiovoimilla on niiden heikkouden takia vain vähän merkitystä. 1.3 Mustan kappaleen säteily Tarkastellaan kiteisestä aineesta valmistettuun kappaleeseen tehtyä kaviteettia (onteloa), jonka seinämät ovat vakiolämpötilassa. Kaviteetin seinämien atomit voivat absorboida sähkömagneettisten aaltojen energiaa. Tasapainotilassa atomit vastaavasti emittoivat saman määrän energiaa sähkömagneettisten aaltojen muodossa kaviteettiin. Näin muodostuu termodynaaminen tasapaino kaviteetin seinien ja kaviteetissa olevan sähkömagneettisen kentän välille. Kokeellisesti on voitu osoittaa, että kaviteettiin muodostuvan sähkömagneettisen kentän energiajakauma (energia säteilyn taajuuden funktiona) noudattaa aina tiettyä lämpötilasta riippuvaa, mutta ontelon materiaalista riippumatonta lakia.

8 Kvanttifysiikan ilmiömaailma Tarkastelemme lähemmin tiettyä sähkömagneettisen säteilyn taa- f, f + df. juusväliä [ ] Tälle energiavälille sijoittuvien sähkömagneettisen kentän osaaaltojen energiatiheys on g f on g( f ) df, missä ( ) energiatiheys taajuuden yksikköväliä kohden. Tämä energiatiheys on esitetty kuvassa 1-4 kolmessa eri lämpötilassa. Kuva 1-4 Mustan kappaleen säteilyn energiatiheys (tilavuuden ja taajuuden yksikköä kohden) eri lämpötiloilla taajuuden funktiona Nämä tulokset saatiin jo vuonna 1899 mittauksissa, jotka Lummer ja Pringsheim suorittivat. Kuvasta 1-4 havaitaan, että kussakin lämpötilassa energiatiheydellä on maksimiarvo tietyn taajuuden kohdalla. Intensiteetin maksimikohtaa vastaavan taajuuden arvo kasvaa lämpötilan kasvaessa, mikä selittää kappaleiden värinmuutoksen lämpötilan kohotessa. Kun teemme onteloon pienen aukon, osa siellä olevasta säteilystä pääsee vuotamaan ulos ja voimme analysoida säteilyn intensiteettiä energian funktiona. Oletamme aukon niin pieneksi, että sen kautta ulos vuotava säteily ei häiritse termodynaamista tasapainoa ontelon seinien ja SM-säteilykentän välillä. Kun kappaleen lämpötila on hyvin korkea, aukko vaikuttaa hyvin kirkkaalta (valkoiselta). Vastaavasti, jos lämpötila on alhainen, aukko vaikuttaa mustalta ja aukosta purkautuvan säteilyn intensiteetti on hyvin pieni, erityisesti näkyvällä sähkömagneettisen spektrin alueella. Ontelosta emittoituvaa säteilyä kutsutaan mustan kappaleen säteilyksi. Nimi johtuu siitä, että termodynamiikassa täysin musta kappale absorboi jokaisen sähkömagneettisen kentän kvantin eli fotonin, joka osuu kappaleen pinnalle. Viime vuosisadan loppuun mennessä kaikki pyrkimykset selittää kuvan 1-4 energiajakauma lähtien klassisen fysiikan käsitteistä olivat epäonnistuneet.

1.3 Mustan kappaleen säteily 9 Saksalainen fyysikko Max Planck ehdotti vuonna 1900, että säteilyn energiajakauman ja kaviteetin seinämän atomien energioiden välillä olisi tietty yhteys. Planck kuvasi kaviteetin atomeja mallilla, jossa atomien oletettiin käyttäytyvän harmonisten oskillaattoreiden tavoin siten, että kukin atomeista värähteli taajuudella f. Hän oletti edelleen, että kukin harmoninen oskillaattori saattoi absorboida ja emittoida säteilyä ainoastaan energiapaketteina eli fotoneina, joiden energian suuruus oli suoraan verrannollinen oskillaattorin värähtelytaajuuteen f. Merkitsemällä energiaa, jonka oskillaattori saattoi vaihtaa sähkömagneettisen kentän kanssa yhden vuorovaikutusprosessin aikana suureella E, Planck kirjoitti E = hf, (1.4) missä h on verrannollisuusvakio, jonka hän oletti samaksi kaikille oskillaattoreille. Yhtälö (1.4) tunnetaan Planckin fotonihypoteesina. Näin ollen oskillaattorin vuorovaikuttaessa kentän kanssa, sen energia kasvoi tai pieneni hyppäyksittäin määrällä hf. Tämä edellytti, että atomien muodostamien oskillaattoreiden energiatilat ovat kvantittuneet, toisin sanoen oskillaattorin energia voi saada vain arvoja 0, hf, hf, 3hf, jne. Näihin sallittuihin arvoihin voidaan energiatilojen erotusten muuttumatta lisätä vielä jokin vakiotermi, palaamme tähän lähemmin harmonisen oskillaattorin käsittelyn yhteydessä. Oskillaattorin sallitut energiat voidaan nyt esittää muodossa En = nhf + E0, missä n on positiivinen kokonaisluku ja E 0 tuntematon vakioenergia. Ajatus jonkin fysikaalisen systeemin energioiden kvantittumisesta oli selvässä ristiriidassa klassisen fysiikan lakien kanssa. Klassisessa fysiikassa kappaleen tai usean kappaleen muodostaman systeemin energia voi muuttua jatkuvasti. Sähkömagneettisen kentän amplitudi on itseisarvoltaan jatkuva suure ja näin ollen myös SM-kentän energiatiheys voi muuttua jatkuvasti. Klassinen sähkömagnetismi oli siis ristiriidassa Planckin fotonihypoteesin (1.4) kanssa. Kvanttisähködynamiikasta lähtien voidaan osoittaa, että klassinen SM-kenttä saadaan aina riittävän tiheän ja ajan funktiona hitaasti muuttuvan fotonikentän raja-arvona Tilastollisessa fysiikassa olemme osoittaneet, että tasapainossa olevan sähkömagneettisen kentän fotonien muodostaman kaasun energiajakauma on muotoa

10 Kvanttifysiikan ilmiömaailma E( f) = 3 8π hf 1 c e 3 hf / kt 1, (1.5) missä k on Boltzmannin vakio. Tämä intensiteettijakauma vastaa hyvin tarkkaan eri lämpötiloissa saatuja koetuloksia ja on nimeltään Planckin säteilylaki. Planckin säteilylaki johti useiden sähkömagneettisen kentän ja väliaineen vuorovaikutuksiin liittyvien uusien ideoiden syntymiseen. Yhtälössä (1.4) käyttöön otettu vakio h tunnetaan Planckin vakiona. Se on nykyään yksi tärkeimmistä ja tarkimmin tunnetuista luonnonvakioistamme ja sen likiarvona on h 34 = 6,656 10 Js. (1.6) Esimerkki 1.1. Wienin siirtymälaki Kuva 1-4 esittää energiatiheyttä (1.5) kolmella eri lämpötilan arvolla. Huomaamme, että jakauman maksimi siirtyy korkeampiin taajuuksiin lämpötilan kasvaessa. Energiatiheyden maksimia vastaava taajuus saadaan derivoimalla energiatiheys (1.5) taajuuden suhteen: ( ) de f df = 0. (1.7) Yhtälö (1.7) voidaan ratkaista vain numeerisesti, jolloin maksimikohtaa vastaavaksi taajuudeksi saadaan kt -1 fmax = 4,9651 s h. (1.8) Vastaavasti voidaan kirjoittaa yhtälö maksimi-intensiteettiä vastaavalle aallonpituudelle. Sijoittamalla fmax = c/ λmax saadaan λ max T = hc / 4.9651k. (1.9) Maksimi-intensiteettiä vastaavan aallonpituuden ja lämpötilan tulo on siis (lämpötilasta riippumaton) vakio. Yhtälö (1.9) tunnetaan Wienin siirtymälain nimellä. Yhtälö (1.9) selittää miksi nuotiossa pidetty rautanaula hehkuu punaisena, kun taas paljon naulaa kuumempi hitsausliekki näyttää siniseltä. Hehkulampun langan lämpötila (000-3000 K) on paljon alhaisempi kuin auringon pintalämpötila (5000 K). Tästä johtuen hehkulampun valossa otetut diakuvat näyttävät keltaisilta tai punaisilta.

1.4 Valosähköinen ilmiö 11 Esimerkki 1.. Stefan-Boltzmanin laki Energian kokonaistiheys (integroituna yli fotonien taajuuden) saadaan yhtälöstä (1.5) integroimalla 8π h f Etot = E f df = df c e 1 3 ( ) 3. (1.10) hf kt 0 0 Tekemällä muuttujanvaihto x = hf kt saadaan df = ( kt h) dx, jolloin E tot 4 3 8π h kt x = dx 3 h. (1.11) x c e 1 0 Integraalin arvo on 6,4938 ja energiatiheys voidaan kirjoittaa Etot 4 = at, (1.1) missä laki. 4 3 3 a = 51,9504π k c h. Tulos (1.1) on nimeltään Stefan-Boltzmannin

1 Kvanttifysiikan ilmiömaailma 1.4 Valosähköinen ilmiö Tutkiessaan kahden elektrodin välistä sähkövirtaa Hertz havaitsi vuonna 1887, että elektrodien välinen sähkövirta kasvoi, kun toista elektrodeista valaistiin ultraviolettivalolla. Tämä viittasi siihen, että elektrodin pinnalta irtosi elektroneja valon vaikutuksesta. Myöhemmin Wilhelm Hallwachs havaitsi saman ilmiön eräille muille metalleille kuten sinkille, rubidiumille, kaliumille ja natriumille. Ilmiötä, jossa metallin tai aineen pinnalta irtoaa Kuva 1-5 Fotoelektronivirta metallin pinnalle osuvan sähkömagneettisen säteilyn taajuuden elektroneja sähkömagneettisen säteilyn vaikutuksesta kutsutaan va- funktiona. losähköiseksi ilmiöksi ja vastaavasti irronneita elektroneja fotoelektroneiksi. Elektronivirran havaittiin kasvavan sähkömagneettisen säteilyn intensiteetin funktiona. Fotoelektronivirta riippuu kuitenkin myös pinnalle osuvan sähkömagneettisen säteilyn taajuudesta eli sähkömagneettisen kentän fotonien energiasta. Kullekin metallille on olemassa tietty kynnystaajuus, jonka alapuolella fotoelektronivirtaa ei havaita, olipa sähkömagneettisen säteilyn intensiteetti kuinka suuri tahansa. Tämäkin on tosin approksimaatio: hyvin suurella SM-säteilyn intensiteetillä tulevat niin sanotut monen fotonin yhtäaikaiset absorptioprosessit mahdolliseksi ja tällöin kynnysenergia voidaan saavuttaa pienemmillä taajuuksilla. Tähän tarvitaan kuitenkin tähtiensotalaserin teho, joten jätämme monen fotonin yhtäaikaisen absorption tarkastelun jatkokursseihin. Metallin pinnalla on niin sanottuja johtavuuselektroneja, jotka voivat liikkua likimain vapaasti metallissa. Johtavuuselektroneilla ei ole normaalilämpötilassa niin suurta energiaa, että ne voisivat irrota metallista pinnalla olevan potentiaalikynnyksen takia. Voimme ajatella, että johtavuuselektronit ovat metallikappaleessa potentiaalikuopassa, jonka ulkopuolella elektronien potentiaalienergia on tyypillisesti muutamia elektronivoltteja korkeampi. Muistamme tilastollisesta fysii-

1.4 Valosähköinen ilmiö 13 kasta, että tietyssä lämpötilassa hiukkasen keskimääräinen lämpöenergia on suuruusluokkaa kt. Kun huoneenlämpötilassa kt on noin 5 mev, voimme päätellä, että vain hyvin harvoilla johtovyön elektroneilla on niin suuri terminen energia, että ne voivat paeta metallikappaleesta tämä potentiaalikynnyksen läpi. Elektronien irtoamista metallista voidaan edesauttaa kuumentamalla metallia. Tähän perustuukin elektronivirran muodostuminen elektroniputkessa. Lämpöliikkeen ohella emissiovirran muodostumiseen vaikuttaa kvanttifysiikalle ominainen tunneloitumisilmiö, johon tulemme palaamaan myöhemmin. Kuten edellä totesimme voidaan elektronien emissiota metallin pinnalta jouduttaa ultraviolettivalon avulla. Tarkastelemme seuraavaksi ehtoa, joka metallin pinnalle tulevien kvanttien on toteutettava, jotta tarvittava kynnysenergia saavutetaan yhden fotonin absorption yhteydessä. Merkitsemme tarvittavaa kynnysenergiaa suureella φ. Tämä on se energia, joka yhden elektronin on vähintään saatava, jotta se voisi irrota metallin pinnan muodostamasta potentiaalikuopasta. Jos fotonin energia on E jää elektronin liike-energiaksi irtoamisen jälkeen Ek = E φ. (1.13) Jos fotonin energia on pienempi kuin kynnysenergia φ, ei fotoelektronivirtaa voi muodostua. Vuonna 1905 Einstein yhdisti kyseisen kynnysehdon sähkömagneettisen kentän fotonien taajuuteen. Einstein ehdotti, että vuorovaikuttaessaan metallin pinnalle tulevan ultraviolettisäteilyn fotonien kanssa elektronit käyttäytyvät samaan tapaan kuin atomien muodostamat harmoniset värähtelijät mustan kappaleen seinämissä. Energia, jonka elektroni saa yhden elektroni-fotonitörmäyksen aikana, on yhtä suuri kuin absorboituneen fotonin energia. Voimme siis kirjoittaa E = hf ja sijoittamalla tämä yhtälöön 1.13 saadaan Ek = hf φ (1.14) Huomattakoon, että energia φ, joka tarvitaan johtovyön elektronin irrottamiseen metallista ei ole vakio. Ne johtovyön elektronit, jotka sijaitsevat ylimmillä energiatiloilla tarvitsevat vähemmän energiaa irrotakseen metallista. Merkitsemme ylimmillä energiatiloilla olevien (siis löyhimmin metalliin sidottujen) johtovyön elektronien energiaa φ 0. Suuretta φ 0 kut-

14 Kvanttifysiikan ilmiömaailma sutaan myös metallin työfunktioksi tai irrotustyöksi. Johtovyön ylimpien johtavuuselektronien kineettinen energia voidaan siis esittää muodossa Ek,max = hf φ0. (1.15) Asettamalla elektronin liike-energia nollaksi voimme ratkaista tästä yhtälöstä taajuuden kynnysarvon f 0. Kynnysarvoa f 0 pienemmillä sähkömagneettisen kentän taajuuksilla ei siis havaita fotoelektronivirtaa. Tämä johtuu siitä, että absorptiossa saatava energia ei riitä irrottamaan Kuva 1-6 Koejärjestely valosähköisen ilmiön mittaamiseksi. metallista edes johtovyön ylimpiä elektroneja. Näin Einsteinin ehdottama malli selittää fotoemission intensiteetin riippuvuuden metallin pinnalle tulevan sähkömagneettisen säteilyn taajuudesta. Voimme mitata kutakin fotonin taajuutta vastaavan fotoelektronin suurimman liikemäärän ja liike-energian kuvan 1-6 koejärjestelyllä. Levyjen A ja C välistä estojännitettä V 0 säätämällä voidaan hidastaa levyltä A irtoavia fotoelektroneja. Tietyllä jännitteen arvolla fotoelektronien etenemistä jarruttava sähkökenttä on niin suuri, että nopeimmatkin fotoelektronit pysähtyvät ennen levyä C. Kineettinen energia toteuttaa siis yhtälön Ek,max = ev0, ja yhtälöstä 1.15 saamme ev0 = hf φ0. (1.16) Muuttamalla levylle tulevan säteilyn taajuutta saamme sarjan fotonien taajuutta vastaavia estojännitteen arvoja. Mittaustulokset muodostavat kokeellisen tarkkuuden rajoissa suoran viivan (kuva 1-7). Tulos vastaa teorian mukaista käyttäytymistä (1.16). Mittaustuloksia keskimääräisesti ku- tan α = h e. Mittaamalla vaavan viivan kulmakerroin on teorian mukaan ( )

1.5 Sähkömagneettisen säteilyn sironta vapaista elektroneista 15 kulma α ja käyttämällä tunnettua alkeisvarauksen arvoa, voimme siis määrätä myös Planckin vakion arvon. Näin saatu arvo on sama kuin mustan kappaleen säteilylain avulla saatu Planckin vakion arvo. Tulosta voitiin näin ollen pitää Planckin kvanttihypoteesin lisävahvistuksena. Mittaustuloksista voidaan määrätä myös kynnystaajuus f 0 ja sen avulla metallin irroitustyö φ 0. Kuva 1-7 Estojännite fotonien taajuuden funktiona. 1.5 Sähkömagneettisen säteilyn sironta vapaista elektroneista Edellä tarkastelimme sähkömagneettiseen kenttään liittyvää energiatiheyttä. Klassisesta sähkömagnetismista tiedämme kuitenkin, että sähkömagneettisella kentällä on myös liikemäärää. Klassisen sähkömagnetismin mukaan sähkömagneettisen kentän liikemäärä ja energia toteuttavat yhtälön E = cp. (1.17) Erikoisessa suhteellisuusteoriassa osoitetaan, että lepomassallisen hiukkasen energia ja liikemäärä toteuttavat yhtälön E = c m c + p. (1.18) 0 Tästä voimme päätellä, että energian ja liikemäärän suhde on sähkömagneettisessa kentässä sama kuin nollalepomassaiselle hiukkaselle. Huomaa, että yhtälö (1.17) on yhtälön (1.18) raja-arvo lepomassalliselle hiukka-

16 Kvanttifysiikan ilmiömaailma selle, kun m c << p. Lähelle valon nopeutta kiihdytetty hiukkanen 0 noudattaa siis samaa energia-liikemäärä-yhtälöä kuin fotoni. Kun sähkömagneettisia aaltoja emittoituu, absorboituu tai siroaa, sähkömagneettisen kentän fotonit vaihtavat sekä energiaa että liikemäärää vuorovaikutuksen toisen osapuolen kanssa. Tarkasteltaessa sähkömagneettisen kentän ja väliaineen välistä vuorovaikutusta on aina otettava huomioon sekä energian että liikemäärän säilymislait. Näiden säilymislakien lisäksi meidän tulee tarkastella myös kulmaliikemäärän säilymistä vuorovaikutuksessa. Kulmaliikemäärän säilymiseen liittyviä ilmiötä tarkastellaan lähemmin kvanttifysiikan jatkokursseissa. Sähkömagneettisen kentän ja vapaiden elektronien vuorovaikutukseen liittyy tiettyjä rajoituksia säilymislakien toteutumisen suhteen. Tarkastellaan esimerkkinä sähkömagneettisen säteilyn absorptiota. Jos elektroni absorboi kentältä energiamäärän E, sen on myös otettava vastaan liikemäärä, itseisarvoltaan p = E c. Olettakaamme nyt, että elektroni on en- Kuva 1-8 Vapaasta elektronista Comptonsironneiden fotonien intensiteetti säteilyn nen absorptiota levossa laboratoriokoordinaatistossa. Tällöin SM- aallonpituuden ja sirontakulman funktiona. kentän energia siirtyy elektronin liike-energiaksi. Oletamme lisäksi, että elektroni on täysin vapaa eikä sen potentiaalienergia muutu absorption aikana. Erikoisen suhteellisuusteorian mukaan voimme kirjoittaa elektronin liike-energian muodossa

1.5 Sähkömagneettisen säteilyn sironta vapaista elektroneista 17 Ek Ek = c mec + pe mec. Jos sijoitamme tähän yhtälöön elektronin liikemääräksi pe = E c ja kineettiseksi energiaksi = E, kuten säilymislait edellyttävät, huomaamme että yhtälö ei mene tasan. Voimme siis päätellä, että vapaa elektroni ei voi absorboida sähkömagneettista säteilyä siten, että energian ja liikemäärän säilymislait voisivat toteutua yhtäaikaisesti. Palaamme tähän kappaleessa 1.6. Miksei liikemääränsäilymislakia otettu huomioon aiemmin valosähköisen ilmiön tarkastelun yhteydessä? Yksinkertaisella laskulla voidaan osoittaa, että valosähköisessä ilmiössä metallikappale (suuren massan takia) ottaa suurimman osan fotonin liikemäärästä. Metallikappaleen saama energia on kuitenkin merkityksettömän pieni elektronin saamaan energiaan verrattuna. Näin fotonin energia siirtyy käytännössä kokonaisuudessaan elektronille. Kokeellisesti on havaittu, että sähkömagneettisen säteilyn läpäistessä väliaineen, jossa tiedetään olevan likimain vapaita elektroneja, havaitaan alkuperäisen säteilyn lisäksi sironnutta säteilyä, jonka taajuus (ja energia ) poikkeaa alkuperäisen säteilyn taajuudesta. Tämä muuttuneen taajuuden omaava säteily on ilmeisestikin sironnut aineessa olevista vapaista elektroneista. Sironneen säteilyn taajuus on pienempi kuin tulevan säteilyn, ja aallonpituus vastaavasti pidempi kuin näytteeseen saapuvan säteilyn aallonpituus. Kuva 1-8 esittää sironneen säteilyn aallonpituuden riippuvuuden säteilyn alkuperäisen aaltovektorin ja sironneen säteilyn aaltovektorin välisen kulman, eli sirontakulman θ funktiona. SM-säteilyn sirontaa vapaista elektroneista kutsutaan Comptonin sironnaksi, amerikkalaisen fyysikon Comptonin mukaan. Compton havaitsi tämän ilmiön kokeellisesti 190-luvulla. Merkitsemme jatkossa alunperäisen eli sisään tulevan säteilyn aallonpituutta λ ja vastaavasti λ on sironneen säteilyn aallonpituus. Compton havaitsi, että aallonpituuden muutos λ λ riippuu ainoastaan sirontakulmasta θ. Kuva 1-9 esittää Comptonin sironnan mittaamisessa käytettävää koejärjestelyä. Alkuperäinen säteily oletetaan tasoaalloksi, joka saapuu näytteeseen vaakatasossa, vasemmalta oikealle. Sironneen säteilyn aallonpituus voidaan mitata sirontakulman θ funktiona. Ajattelemme, että vapaa elektroni