Kvanttifysiikka k-2006

Koko: px
Aloita esitys sivulta:

Download "Kvanttifysiikka k-2006"

Transkriptio

1 Kvanttifysiikka k-2006 Ilkka Tittonen prof. Optiikka ja Molekyylimateriaalit Micronova Jukka Tulkki prof. Laskennallisen tekniikan laboratorio

2 KVANTTIFYSIIKAN TUTKIMUSALA: Aineen atomirakenne Elektronitilat Aineen sähköiset ja optiset ominaisuudet Sähkömagneettisen kentän kvantittuminen

3 Täydellinen klassinen fysiikka 1900 Maailmankaikkeus käyttäytyy koneen tavoin. Kokonaisuus jaettavissa rajatta osiin. Liike kuvattavissa syyn ja seurauksen tarkkana lakina rajaton ennustettavuus eli determinismi. Valon ominaisuudet täydellisesti kuvattavissa Maxwellin yhtälöiden avulla. Energia on joko liike-energiaa tai kenttäenergiaa. Tutkittavan objektin rakenne ja liiketila on mitattavissa rajattomalla tarkkuudella häiritsemättä systeemiä. G. Galileo I Newton ( ) J. C. Maxwell ( )

4 Esimerkki atomirakenteesta: nanokiteet AFM-kuva InP saarekkeista GaAs kiteen pinnalla. TKK, Optoelektroniikan laboratorio InP saarekkeen atomitasot TEM-kuva Lundin yliopisto

5 Kide koostuu järjestäytyneistä atomeista Suurennettu TEM kuva

6 Sinkkivälkehila

7 Elektronivyöt ja fotonit Koe Teoria

8 Puolijohdeteknologia Aktiivinen materiaali 100 nm InAs kvanttipyramideja InGaAs/GaAs VECSEL Saito et al., Appl. Phys. Lett. 71, 590 (1997) 3 nm

9 Kentän ja materiaalin välinen vuorovaikutus elektronien sironta tuotti silti ihmeellisiä kuvioita kiinteästä hilasta kiihtyvässä liikkeessä oleva varaus säteilee energiaa

10 Kvanttifysiikan ilmiömaailma Sähkömagneettisen kentän kvantittuminen Atomien viivaspektrit, atomien ja molekyylien elektronirakenne, Valosähköinen ilmiö Comptonin sironta Elektronin de Broglie aallonpituus Braggin diffraktio

11 Nanosta makroon elektronirakenteen tuntemus kertoo makroskooppisista materiaaliominaisuuksista, sähkön johtavuus, optiset ja mekaaniset ominaisuudet mittaustapahtumakin ymmärretään paremmin kvanttifysiikan avulla laitteita: transistorit, laserit, nanotekniikan mahdollisuudet

12 Wilhelm Röntgen ( ) Saksalainen fyysikko Ensimmäinen fysiikan Nobel, 1901, röntgensäteilystä Löysi röntgen-säteilyn puolivahingossa Röntgen itse oli melko pihalla löydöksensä ominaisuuksista ja nimesi sen X-säteiksi

13 Röntgensäteilyn havaitseminen Hehkukatodilta irtoavat elektronit kiihdytetään muutaman kilovoltin jännite-eron yli. Osuessaan anodiin ne hidastuvat nopeasti ja emittoivat SM-säteilyä

14 Röntgensäteilyn intensiteettijakauma Varatun hiukkasen hidastuessaan emittoimaa säteilyä kutsutaan jarrutussäteilyksi. Jarrutussäteilyn intensiteettijakauma on jatkuva. Röntgenputkesta tulevassa säteilyssä esiintyy myös voimakkaita karakteristisia viivoja

15 K α -röntgenspektrit 1/2 Röntgenputkessa muodostuu fotoneita joiden energia on suurempi kuin tutkittavan aineen K-ionisaatioenergia. Röntgenfotoni irrottaa K-kuorelta elektronin, jolloin jäljelle jää tyhjä 1s-elektronitila.

16 K α -röntgenspektrit 2/2 Muodostunut ioni pyrkii alimpaan energiatilaan, joten K-kuorelle muodostuneen aukon täyttää jokin ylemmän kuoren elektroni. Jos aukon täyttävä elektroni tulee M-kuorelta emittoituu K β säteilyä.

17 Mustan kappaleen säteily mittaustulos tunnettiin jo 1899 (Lummer, Pringsheim) Ulkoa aukkoon osuva valo absorboituu ontelon sisäseiniin. Ontelossa oleva SM-kenttä on tasapainossa seinämän kanssa.

18 Max Planck ( ) Planck tutki mustan kappaleen säteilyä ja päätyi 1990 malliin, jossa valo emittoituu energiakvantteina, jotka toteuttavat yhtälön E = hf Fysiikan Nobel 1918: Energiakvanttien löytäminen Saksalainen teoreettinen fyysikko säteilyn energiajakaumalla ja kaviteetin seinämän atomien energian välillä jokin yhteys Vaikka Planckin säteilymalli selitti mustan kappaleen säteilyn hän ei itse luottanut teoriaansa.

19 Planckin fotonihypoteesi 1/3 Seinämän atomit ovat oskilaattoreita, joiden energiat ovat kvantittuneet : E = E + nhf n = n 0 0,1,2,3,4 h on Planckin vakio ja E ns nollapiste - energia. 0 Tämä oli selkeässä ristiriidassa klassisen sähkömagnetismin kanssa (energiatiheys jatkuva funktio) Boltzmannin jakauman mukaan oskillaattori on energiatasolla todennäköisyydellä : Pn exp ( En/ kt) / = exp ( En/ kt) n n

20

21

22

23

24

25

26

27 Wienin siirtymälaki Stefan-Boltzmannin laki

28 Planckin fotonihypoteesi 2/3 Oskillaattorin keskimääräinen energia on E = P E = E exp E / kt / exp E / kt = n n n ( ) ( ) / n n n n n hf kt hf e 1 Planck oletti, että nämä ovat myös SM- kentän keskimääräiset moodienergiat!! SM- moodin energiakvantti = fotoni Energia Liikemäärä Aallonpituus E p = hf = E/ c λ = c/ f = ch/ E = h/ p

29 Planckin fotonihypoteesi 3/3 Energiatiheys = SM-moodien tiheys E( f) = max 3 8π hf 1 c 3 hf / kt e 1 Wienin siirtymälaki λ T = hc/ k Stefan - Boltzmannin laki: E E tot = at 4 Plackin vakio : 34 h = 6, Js Klassinen teoria (Raylight - Jeans) 3 8π hf E( f) = kt 3 c (keskimääräinen moodienergia = kt )

30 Big Bang ja 2,7 K fotonisäteily 1965 A. Penzias ja R. Wilson havaitsivat radioteleskoopilla isotrooppisen 7,35 cm mikroaaltosäteilyn. Säteilyn intensiteettijakauma vastaa 2,7 K mustankappaleen säteilyä. Säteily voidaan selittää avaruuden adiabaattisella laajenemisella alkuräjähdyksen jälkeen.

31 Fotoelektronien havaitseminen P. Lenard havaitsi fotonien metallin pinnalta iroittamat elektronit 1900 Sai fysiikan Nobelin 1905 Valonlähteestä L tulevat fotonit iroittavat elektroneita katodilta C. Elektronit kulkevat anodilla olevan reiän läpi keräyslevylle α. Kun magneettikenttä kytketään päälle elektronivirta ohjautuu levylle β. Kokeella voidaan määrätä varauksen merkki ja q/ m suhde.

32 Valosähköinen ilmiö 1/4 Tyhjössä olevaa metallipintaa valaistaan valolla, jonka aallonpituutta ja intensiteettiä voidaan säätää. Metallista irronneet elektronit havaitaan keräilylevyllä C. Elektroneja voidaan hidastaa säädettävällä sähkökentällä. Fotonit läpäisevät lasiseinämän ja irrottavat metallilevyltä elektroneita Kullekin aallonpituudelle määrätään elektronivirran estojännite V 0.

33 Valosähköinen ilmiö 2/4 Valon taajuuden ollessa alempi kuin kynnystaajuus ei fotoelektronivirtaa saada suurellakaan valoteholla Klassisen fysiikka ei toimi: Olkoon valon intensiteetti 1W/m 2, aallonpituus 400 nm. Yhden elektronin irrottamiseen tarvitaan 2,22 ev. Kalium: 2,22 ev=teho pinta-ala aika Aika = 2, 22 ev/ 1 Wm 10 m = 11s ( Atomin säde on ) m. π ( ) Pinnalle tulee 1W/ 400nm h/c = fotonia/sm!!

34 Valosähköinen ilmiö 3/4 Elektronitilat metallissa Fermienergia on φ 0 verran pienempi kuin ulkopuolella olevan tyhjön potentiaalienergia

35 Valosähköinen ilmiö 4/4 Energiansäilymislaki h hf = φ0 + ev0 V0 = f φ0/ e e Suoran kulmakerroin on h/ e Albert Einstein selitti valosähköisen ilmiön 1905 ja sai siitä fysiikan nobelin 1921

36 Elektronin liike-energia suhteellisuusteoriassa Maxwellin yhtälöistä saadaan elektromagneettiselle tasoaallolle Oletetaan elektroni paikalleen aluksi tarkasteltavassa koordinaatistossa E k on alussa nolla ja sironnan jälkeen suhteellisuusteoreettisesti pitäisi olla Jossain on ristiriita!!!! mutta ei selvästi ole (vaikka kuinka pyörittäisi näitä yhtälöitä)

37 Kokeellinen tulos: aallonpituuden funktiona sirontaintensiteetti riippuu kulmasta ja vielä siten, että ilmestyy uusi aallonpituus/ taajuuskomponentti pitemmillä aallonpituuksilla uusi kulmasta riippuva komponentti

38 Comptonin sironta 1/4 Comptonin sironnalla tarkoitetaan hyvin lyhyen aallonpituuden omaavan SM-säteilyn sirontaa heikosti sidotuista elektroneista. Compton sironta on yhä merkittävä materiaalien elektronirakenteen tutkimusmenetelmä. A.H. Compton havaitsi 1922 röntgensäteiden epäelastisen sironnan ja selitti sen aallonpituuden muutoksen Planckin fotonimallin ja energian ja liikemäärän säilymislakien avulla. Sai tästä ansiosta fysiikan Nobelin 1927.

39 Comptonin sironta 2/4 Energian säilyminen: e e e E + mc = E+ c mc + p Liikemäärän säilyminen: p= p + p e Sironneen fotonin suuntakulma voidaan laskea säilymislaeista ilman SM-kentän ja elektronin dynamiikan yksityiskohtia.

40 ( 2 E+ m ) ec E Comptonin sironta 3/4 Liikemäärän säilymislaista : pe = p + p 2pp = E + E 2EE cos 2 c Energian säilymislaista : 2 ( θ ) pe = mc 2( ) 2 2 e = E + E + E E mc 2 e EE c c Yhdistämällä ja sijoittamalla E = hc / λ ( hmc)( 1 cos ) ( 1 cos ) λ λ = θ = λ θ e C missä λ C = hmc= Comptonin aallonpituus e

41 Compton sironta 4/4 Comptonin kaava = C ( 1 cos ) λ λ λ θ Huomaa myös elastisen sironnan maksimi aallonpituudella λ = λ (b)-(d) Sironneen säteilyn intensiteetti aallonpituuden funktiona

42 Varausten välinen vuorovaikutus Myös varattujen hiukkasten välinen vuorovaikutus eli Coulombin laki toteutuu fotonien vaihdon kautta. Elektroni 1 emittoi fotonin ja antaa sille osan energiastaan ja liikemäärästään. Elektroni 2 absorboi fotonin jolloin sen energia ja liikemäärä muuttuvat.

43 Sähkömagneettinen säteilyspektri Einsteinin teorian mukaan kaikki SM-säteily koostui energiakvanteista, joiden energia saadaan yhtälöstä E = hf. Korkeataajuisen säteilyn fotonien energia on suuri ja siksi niiden terminen virittyminen on vähäistä mustan kappaleen säteilyssä

44 Absorptio- ja emissiospektrit Siirtymät stationääristen tilojen välillä : Absorptio: A+ hf A Emissio: * * A A+ hf Niels Bohr esitti idean stationäärisistä tiloista ja selitti atomin energiatilat osin klassisella mallilla Fysiikan Nobel 1922

45 Jatkuvan spektrin muodostuminen Hiukkasella on sen näkemän potentiaalienergia-kentän ominaisuuksista riippuen viiva ja jatkumo spektrit. Spektri = hiukkasen stationääristen energiatilojen jakauma Viivaspektri muodostuu elektronin siirtyessä kahden sidotun tilan (E<0) välillä.

46 Optinen spektroskopia J. von Fraunhofer ( ) tutki auringon spektriä ja havaitsi siinä satoja voimakkaita viivoja.

47 Atomien viivaspektrit Vetyatomin fotoemissiospektrin muodostuminen Balmer sarja havaittiin jo v. 1885

48 Rekyyli-ilmiö fotoemissiossa Liikemäärän säilyminen: p = p = hν c atomi fotoni Energian säilyminen: 2 patomi Ei = Ef + + hν 2M hν Ei Ef = hν Mc hν = E E i f ( E ) i Ef 2Mc 2 2 Emittoituvan fotonin energia on pienempi kuin stationääristen tilojen energiaero

49 Franckin ja Hertzin koe 1/2 J. Franckin ja G. Hertzin kokeessa (1914) elektroneja irtoaa hehkukatodilta elohopeakaasuun. Elektronit kiihtyvät sähkökentän vaikutuksesta ja törmäävät satunnaisesti elohopea-atomeihin. epäelastiset törmäykset

50 Frankin ja Hertzin koe 2/2 Anodivirta kasvaa V:n funktiona kunnes elektroneilla on energiaa elohopea-atomin virittämiseen. Viritykseen osallistuneille elektroneilla ei ole energiaa estojännitealueen ylittämiseen joten anodivirta pienenee. Anodivirta kiihdytysjännitteen V funktiona. Kiihdytysjännitteen kasvaessa anodivirta kasvaa jälleen. Maksimeja havaitaan ennen kuin elektroni kykenee virittämään yhden tai useamman elohopeaatomin. Atomin virittämiseen tarvitaan 4,9 ev energiaa.

51 Elektronien diffraktio kiteessä a Sironneiden elektronien (a) interferenssikuvio elektronisuihkun (energia kev, G. P. Thomson) kulkiessa monikiteisen metallikalvon läpi. Vastaavan aallonpituuden omaavilla röntgensäteillä (b)saatiin samanlainen kuvio (Max Laue). b

52 De Broglie aallonpituus De Broglie ehdotti aaltoluonteen selitykseksi elektronilla olevan aallonpituus h λ = p Tämä on sama aallonpituuden ja liikemäärän suhde, jonka Planck esitti fotonille!

53 Elektronin kiihdyttäminen jännitteen V:n yli Elektronin liike-energia, kun se on kiihdytetty jännite-eron V yli Jos kiihdytysjännite on esim. TV:n 10 kv, saadaan aallonpituudeksi noin m.

54 Hiukkasten paikka vs liikemäärä de Broglie-aallonpituus kuvaa hiukkasen aaltoluonnetta ja antaa mm. vapaan hiukkasen monokromaattisen tasoaallon aallonpituuden hiukkasen liikemäärä on silloin tunnettu, mutta se ei paikallistu mihinkään avaruuden osaan koska mikään voima ei kohdistu siihen, ei myöskään materia-aaltoa voi mikään voima poikkeuttaa jossain paikassa enempää kuin muualla vastaavan harmonisen aallon vaihenopeus on (vrt. valolle ν=c/λ) Eli aineaaltokentän vaihenopeus on puolet hiukkasen klassisesta nopeudesta!

55 Myöhemmin havaitaan, että tämä ei ole mitattava suure, vaan nopeus, jota kutsutaan ryhmänopeudeksi, joka puolestaan saadaan laskettua aineaaltokentästä... Myöhemmin havaitaan myös, että vapaan hiukkasen paikasta riippuva amplitudi on muotoa Todennäköisyystulkinnan mukaan hiukkasen esiintymistodennäköisyystiheys on aaltofunktion itseisarvon neliö Vapaan hiukkasen aineaaltokenttä ei siis anna tietoa hiukkasen paikasta, mutta määrittelee tarkasti sen liikemäärän

56 Tasoaalto Aaltopaketti, paikka lokalisoitunut tarkkuudella x

57 Heisenbergin epätarkkuusrelaatio Hiukkasen paikka suurella todennäköisyydellä välillä ja Monokromaattinen tasoaalto, p tunnetaan tarkasti:

58 Heisenbergin epämääräisyysyhtälö Elektronin paikan epämääräisyys x-suunnassa b Ensimmäistä minimiä vastaa diffraktiokulma sin θ = λ/ b Tätä vastaava liikemäärä x-suunnassa on h λ h h px = psinθ = = = px x = h λ b b x

59 Fotoneille : λ = h/ p= hc/ E Neutroneille : λ = h/ p= h/ 2M E Elektronille : λ = h/ p= h/ 2m E mc e n 2 M c 2 e Aallonpituus ja energia n 2 2 = hc / 2M c E = hc / 2m c E e 0,5 GeV 1000 GeV n

60 Neutronispektroskopia Termisillä neutroneilla voidaan tutkia mm aineiden kiderakennetta. Fissioreaktorista tuleva suihku tehdään monokromaattiseksi NaCl kiteellä. Monokromaattinen neutronisuihku diffraktoituu tutkittavana olevasta näytteestä.

61 Ajan ja energian epämääräisyys Energian mittaamiseen käytetty aika t ja energian mittaustarkkuus E toteuttavat yhtälön E t h jota kutsutaan energian ja ajan epämääräisyysyhtälöksi. Kaasumaisesta näytteestä tulevassa valossa viivanleveys aiheutuu myös atomien liikkeestä spektrometriin nähden (Doppler leveneminen)

62 Fotonien absorptio ja sironta Fotonien tärkeimmät vuorovaikutusprosessit väliaineessa ovat: 1. Valosähköinen ilmiö. 2. Comptonin sironta. 3. Parin muodostus (fotonin energia siirtyy elektroni-positroniparille, osa liikemäärästä kiteeseen kuuluvalle ytimelle.

63 Plackin fotonihypoteesi: Yhteenveto 1/4 Fotonin energia Fotonin liikemäärä valon nopeus aallonpituus Planckin vakio E p c= fλ λ = = hf = E/ c h/ p h = 6, Js Planckin säteilylaki E( f) = E tot = at 4 3 8πν h 1 c 3 hf / kt e 1 Stefan- Boltzmannin laki

64 Yhteenveto 2/4 Valosähköinen ilmiö : Fotoelektronin energia: Ek = hν φ0 h 1 Pysäytysjännite: V0 = f φ0 e e φ = Irroitustyö (tai työfunktio) 0 Comptonin sironta λ λ = λc ( 1 cosθ) λ = Comptonin aallonpituus c Braggin ehto : 2dsinθ = nλ

65 Yhteenveto 3/4 Hiukkasen de Broglie aallonpituus : λ = h p Hiukkasen kulmataajuus: ω E / h h = h /2π (luetaan h-bar) kätevä apusuure Aaltovektori: p hk Aineaallot etenevät ryhmänopeudella : dω Vapaalle hiukkaselle: v g = de dp= p m= v dk he E p Vaihenopeus vapaalle hiukkaselle: v 1 p = λ f = = = = v ph p 2m 2 Vaihenopeus on puolet aallon nopeudesta!!

66 Yhteenveto 4/4 Heisenbergin epämääräisyysyhtälöt : Paikalle ja liikemäärälle: x p h Ajalle ja energialle: t E h t = energian mittaamiseen kuluva aika E = energian mittaustarkkuus Fysiikan Nobel 1931: Kvanttimekaniikan kehittämisestä. Esitti Heisenbergin epätarkkuusyhtälön helmikuussa 1927 kirjeessään Wolfgang Paulille ja julkaisi tuloksen myöhemmin samana vuonna. Werner Heisenberg ( )

S Fysiikka IV (SE, 3,0 ov) S Fysiikka IV (Sf, 4,0 ov )

S Fysiikka IV (SE, 3,0 ov) S Fysiikka IV (Sf, 4,0 ov ) S-114.326 Fysiikka IV (SE, 3,0 ov) S-114.426 Fysiikka IV (Sf, 4,0 ov ) KVANTTIFYSIIKAN TUTKIMUSALA: Aineen atomirakenne Elektronitilat Aineen sähköiset ja optiset ominaisuudet Sähkömagneettisen kentän

Lisätiedot

Täydellinen klassinen fysiikka 1900

Täydellinen klassinen fysiikka 1900 KVANTTIFYSIIKAN TUTKIMUSALA: Aineen atomirakenne Elektronitilat Aineen sähköiset ja kemialliset ominaisuudet Sähkömagneettisen kentän kvantittuminen Sähkömagneettisen säteilyn ja aineen vuorovaikutus,

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

KVANTTIFYSIIKAN ILMIÖMAAILMA...1 KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta

Lisätiedot

S Fysiikka III (EST) (6 op) 1. välikoe

S Fysiikka III (EST) (6 op) 1. välikoe S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna

Lisätiedot

Kvanttisointi Aiheet:

Kvanttisointi Aiheet: Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?

Lisätiedot

Valon hiukkasluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 3. Elektroniikan ja nanotekniikan laitos

Valon hiukkasluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 3. Elektroniikan ja nanotekniikan laitos Valon hiukkasluonne Harris luku 3 Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018 Johdanto Valolla myös hiukkasluonne fotoni Tarkastellaan muutamia ilmiöitä joiden kuvaamiseen

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

KVANTTIFYSIIKAN ILMIÖMAAILMA...1 KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE

3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

Luento 6. Mustan kappaleen säteily

Luento 6. Mustan kappaleen säteily Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

766326A Atomifysiikka 1 - Syksy 2013

766326A Atomifysiikka 1 - Syksy 2013 766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9

Lisätiedot

PHYS-C0240 Materiaalifysiikka kevät 2017

PHYS-C0240 Materiaalifysiikka kevät 2017 PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto

Lisätiedot

Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen

Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen Janne Klemola Oulun yliopisto Fysiikan tutkinto-ohjelma Pro gradu -tutkielma Toukokuu 2017 Sisältö Johdanto 1 1 Kurssin asiasisältö 2 1.1 Sähkömagneettisten

Lisätiedot

766326A ATOMIFYSIIKKA 1 - SYKSY 2017

766326A ATOMIFYSIIKKA 1 - SYKSY 2017 766326A ATOMIFYSIIKKA 1 - SYKSY 2017 Luennot 40 tuntia (10 viikkoa) Tiistaisin 14-16 (sali L6) Torstaisin 8-10 (sali L5) Luennoitsija: Saana-Maija Huttula saana.huttula@oulu.fi Huone FY253-1 (ei laskutehtävien

Lisätiedot

Aineaaltodynamiikkaa

Aineaaltodynamiikkaa Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia

Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia Hyvinvointiteknologian koulutusohjelma 1 Saatteeksi... 2 1. Atomi- ja röntgenfysiikan perusteita... 2 Sähkömagneettinen säteily...3 Valosähköinen

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op 78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

Todennäköisyys ja epämääräisyysperiaate

Todennäköisyys ja epämääräisyysperiaate Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain

Lisätiedot

FRANCKIN JA HERTZIN KOE

FRANCKIN JA HERTZIN KOE FRANCKIN JA HRTZIN KO 1 Atomin kokonaisenergian kvantittuneisuuden osoittaminen Franck ja Hertz suorittivat vuonna 1914 ensimmäisinä kokeen, jonka avulla voitiin osoittaa oikeaksi Bohrin olettamus, että

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri

Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt

Lisätiedot

4. ATOMI. Kuva atomista?

4. ATOMI. Kuva atomista? 4. ATOMI Kuva atomista? 4. ATOMIN RAKENNE YDIN 8-luvun lopulla useimmat tutkijat jo uskoivat, että materiaalit koostuvat atomeista pienistä jakamattomista osista 898 J.J. Thomson löysi elektronit ja esitti

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa Synkrotronisäteily ja elektronispektroskopia Tutkimus Oulun yliopistossa Ryhmätyö Keskustelkaa n. 4 hengen ryhmissä, mitä on synkrotronisäteily ja miten sitä tuotetaan. Kirjoittakaa ylös ajatuksianne.

Lisätiedot

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysikaalisten tieteiden esittely puolijohdesuperhiloista Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla). VALOSÄHKÖINEN ILMIÖ 1 Johdanto Valosähköisessä ilmiössä valo, jonka taajuus on f, irrottaa metallilta elektroneja. Koska valo koostuu kvanteista (fotoneista), joiden energia on hf (missä h on Planckin

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

SMG-4300: Yhteenveto ensimmäisestä luennosta

SMG-4300: Yhteenveto ensimmäisestä luennosta SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

1. JOHDANTOA. Makroskooppinen aine koostuu atomeista ja molekyyleistä. Atomit koostuvat ytimestä ja elektroneista.

1. JOHDANTOA. Makroskooppinen aine koostuu atomeista ja molekyyleistä. Atomit koostuvat ytimestä ja elektroneista. 1. JOHDANTOA Makroskooppinen aine koostuu atomeista ja molekyyleistä. Atomit koostuvat ytimestä ja elektroneista. 1 Atomifysiikka käsittelee atomin elektroniverhon fysiikka Ydinfysiikka käsittelee ytimen

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

1.5 RÖNTGENDIFFRAKTIO

1.5 RÖNTGENDIFFRAKTIO 1.5 RÖNTGENDIFFRAKTIO 1.5.1 Kiinteän aineen rakenne Kiinteät aineet voidaan luokitella kahteen ryhmään sen mukaan, millä tavalla niiden atomit tai molekyylit ovat järjestäytyneet. Amorfisten aineiden,

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

Miksi tarvitaan tilastollista fysiikkaa?

Miksi tarvitaan tilastollista fysiikkaa? Miksi tarvitaan tilastollista fysiikkaa? cm 3 kaasua NTP ssä ~ 3 9 molekyyliä P, T? (paine ja lämpötila?) tarvitaan joitakin estimaatteja jokaisen hiukkasen dynaamisesta tilasta, todennäköisyysjakaumia

Lisätiedot

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8. Aine ja säteily. Sanoma Pro Oy Helsinki

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8. Aine ja säteily. Sanoma Pro Oy Helsinki Tehtävien ratkaisut Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8 Aine ja säteily Sanoma Pro Oy Helsinki Sisällys Johdantotehtävien ratkaisut... 4 1 Säteily ja kvantit... 6 Atomi

Lisätiedot

FRANCKIN JA HERTZIN KOE

FRANCKIN JA HERTZIN KOE FYSP106/2 Franckin ja Hertzin koe 1 FYSP106/2 FRANCKIN JA HERTZIN KOE Työssä mitataan elohopea-atomin erään viritystilan energia käyttäen samantyyppistä koejärjestelyä, jolla Franck ja Hertz vuonna 1914

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN

ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN PRO GRADU -TUTKIELMA MARJUT PARRILA OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 005 Sisällysluettelo 1.

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi 8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

S Fysiikka III (Est) Tentti

S Fysiikka III (Est) Tentti S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

1.1 ATOMIN DISKREETIT ENERGIATILAT

1.1 ATOMIN DISKREETIT ENERGIATILAT 1.1 ATOMIN DISKREETIT ENERGIATILAT 1. MITTAUKSET Franckin ja Hertzin kokeen ja ionisaatiopotentiaalin mittauslaitteisto: jännitelähde digitaalinen yleismittari suojatut banaanijohdot neonputki telineineen

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

FYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO

FYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO FYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO Työssä tutkitaan termistä elektroniemissiota volframista, todetaan Stefanin - Boltzmannin lain paikkansapitävyys ja Richardsonin - Dushmanin yhtälön avulla

Lisätiedot

Fysiikan valintakoe klo 9-12

Fysiikan valintakoe klo 9-12 Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan

Lisätiedot

Valo ja muu sähkömagneettinen säteily

Valo ja muu sähkömagneettinen säteily Valo ja muu sähkömagneettinen säteily Valon luonne Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valoaallot eivät

Lisätiedot

Opettajaopiskelijoiden käsityksiä kvanttimekaniikasta

Opettajaopiskelijoiden käsityksiä kvanttimekaniikasta Opettajaopiskelijoiden käsityksiä kvanttimekaniikasta Eetu Laukka Pro gradu -tutkielma Joulukuu 2015 Fysiikan ja matematiikan laitos Itä-Suomen yliopisto i Eetu Laukka Työn ohjaajat Opettajaopiskelijoiden

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA

SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA PRO GRADU -TUTKIELMA HENRIK VAHTOLA OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS OULU 2000 Alkusanat Kiitän professori Helena Akselaa ja

Lisätiedot

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot