Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella: a a a a a a a a a a 0 a ) ) a) 0.. Osoita, että kaikilla x R o os 4 x si 4 x. Ratkaisu. os 4 x si 4 x = os x si x ) os x si x ) ) = os x. 4. Olkoot a,, ja d reaalilukuja. Osoita, että a d a d. Milloi tässä epäyhtälössä vallitsee yhtäsuuruus? Ratkaisu. Jos a d < 0, ii triviaalisti a d < a d. Oletetaa siis, että a d 0. Tällöi voidaa päätellä: a d a d a d) a ) d ) a d ad a a d d ad a d 0 ad ). Haluttu epäyhtälö o todistettu oikeaksi. Yhtäsuuruus pätee täsmällee silloi ku a d 0 ja ad =. 5. Olkoot a,, ja d reaalilukuja. Osoita, että piei luvuista o pieempi tai yhtä suuri kui 4. a,, d ja d a Ratkaisu. Tehdää se vastaoletus, että kyseiset luvut olisivat kaikki suurempia kui 4. Tällöi olisi a d d a > 4 4 4 4, eli 0 > a a 4 4 4 d d 4 = a ) ) ) d ), mikä o ristiriita, sillä reaalilukuje eliöide summa ei koskaa voi olla egatiivie.
6. Etsi kaikki e reaalilukuviisikot x, y, u, v, w, joille y u v w = 4x, x u v w = 4y, x y v w = 4u, x y u w = 4v, x y u v = 4w. Ratkaisu. Laskemalla puolittai yhtee ämä yhtälöt ähdää, että halutulaiset reaalilukuviisikot toteuttavat yhtälö eli o oltava 4x 4y 4u 4v 4w = 4x4y4u4v4w, 4x 4x 4y 4y 4u 4u 4v 4v 4w 4w = 0, tai yhtäpitävästi x ) y ) u ) v ) w ) =0, eli x = y = u = v = w =. Tämä reaalilukuviisikko o siis aioa mahdollie ratkaisu. Toisaalta se selvästi o ratkaisu, sillä ) 4 = = 4. 7. Määritä yhtälö x 8 x 7 x 6 x 5 x 4 x 4x 4x 5 = 0 reaaliste juurie lukumäärä. Ratkaisu. Ku x tai x 0, o varmasti x 8 x 7 x 6 x 5 x 4 x 4x 4x 5 0 0 0 0 5 > 0, eli mahdolliset ratkaisut löytyvät väliltä ]0, [. Olkoo x ]0, [. Tällöi varmasti x 6 x 4 x 4 < 0 ja 0 > x x 4, eli x 8 x 7 x 6 x 5 x 4 x 4x 4x = x 6 x 4 x 4)x x) > 0 ) = 5 4, eli ratkaisuita ei löydy myöskää väliltä ]0, [. Siis tarkasteltavalla yhtälöllä ei ole reaalisia ratkaisuita. Tehtäviä aritmeettis-geometrisesta epäyhtälöstä 8. Olkoo a R. Osoita, että a a. Milloi tässä epäyhtälössä vallitsee yhtäsuuruus? Ratkaisu. Aritmeettis-geometrise epäyhtälö ojalla a a = a a a a =, missä yhtäsuuruus pätee täsmällee silloi, ku a =, eli ku a =. a 9. Olkoot a ja ei-egatiivisia reaalilukuja. Osoita, että a 4 4 a. Ratkaisu. Aritmeettis-geometrise epäyhtälö ojalla a 4 a 4 = 4 a. 0. Olkoot a, R. Osoita, että a ) a ) 4.
Ratkaisu. Käyttämällä aritmeettis-geometrista epäyhtälöä kumpaaki multiplikadii eriksee, saadaa a ) a ) a a = 4.. Osoita, että jos α o terävä kulma, ii ta α ot α. Ratkaisu. Aritmeettis-geometrie epäyhtälö ataa suoraa ta α ot α = si α os α os α si α si α os α os α si α =.. Osoita, että jos a,, R, ii a ) ) a) 8a. Ratkaisu. Käyttämällä aritmeettis-geometrista epäyhtälöä jokaisee todistettava epäyhtälö vasemma puole multiplikadii eriksee saadaa a ) ) a) a a = 8a.. Osoita, että jokaisella kokoaisluvulla > o 5... ) <. Ratkaisu. Suoraa aritmeettis-geometrise epäyhtälö ojalla ) ) 5... ) 5... ) < = =. Tässä yhtäsuuruus ei voi päteä, sillä ei voi olla = = 5 =... =. 4. Olkoot x, y, z R. Osoita, että xyz x y. z Ratkaisu. Aritmeettis-geometrise epäyhtälö ojalla x y z x y z =. xyz Haluttu tulos saadaa korottamalla tässä epäyhtälö molemmat puolet potessii. 5. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Aritmeettis-geometrise epäyhtälö ojalla a a a a = a. 6. Olkoot a, R ja Z. Osoita, että a a. Ratkaisu. Aritmeettis-geometrise epäyhtälö ojalla a = a... a = a.
7. Olkoot a,, R. Osoita, että 9 a ) a a. Ratkaisu. Suoraa aritmeettis-harmoise epäyhtälö ojalla a a 9 a ) ) a) = 9 a ). 8. Pisteet M ja N sijaitsevat kolmio ABC sivulla BC site, että BAM = ĈAN. Osoita, että MB MC NB AB NC AC. Ratkaisu. Käytetää aluksi aritmeettis-geometrista ja sitte erilaisia geometrisia idetiteettejä: MB MC NB MB NC MC NB NC = AMB AMC ANB ANC ) = AM AB si BAM AN AB si BAM MAN ) AM AC si MAN ĈAN AN AC si ĈAN AB = AC = AB AC, missä XY Z tarkoittaa kolmio XY Z pita-alaa. 9. a) Etsi ratioaalilukukertoimie kolme muuttuja x, y ja z polyomi Qx, y, z), jolle x y z xyz = x y z)qx, y, z). ) Osoita, että jos a, ja ovat positiivisia reaalilukuja, ii a Milloi tässä epäyhtälössä vallitsee yhtäsuuruus? a. Ratkaisu. a) Polyomi Qx, y, z) = x y z xy yz zx = kelpaa: x y) y z) z x) ) xyz)x y z xy yz zx) = x xy xz x y xyz x zx yy yz xy y z xyzx zy zz xyz yz xz = x y z xyz. ) Koska a > 0, > 0 ja > 0, o a > 0, > 0 ja > 0. Siispä sijoittamalla a)-kohdassa saatuu yhtälöö x = a, y = ja z =, saadaa: a a = x y z xyz = xyz) x y) y z) z x) ) 0. Koska xyz > 0, esiityy yhtäsuuruus täsmällee silloi ku lukuje x y, y z ja z x eliöt häviävät, eli ku x = y = z. Siis a a, missä yhtäsuuruus esiityy vai ku a = =. 0. Olkoot a, R sellaisia, että a =. Osoita, että a a) ) 5.
Ratkaisu. Koska mielivaltaisille positiivisille reaaliluvuille x ja y o x y xy, o oltava myös x y ) x y xy = x y), eli x y x y). Sijoittamalla tähä x = a a ja y =, saadaa a a) ) a a ) = = a a ) a a ) a ) = 5.. a) Olkoot a,, R sellaisia, että a. Oko tällöi välttämättä a? ) Olkoot a,, R sellaisia, että a. Oko tällöi välttämättä a? Ratkaisu. a) Ei. Nimittäi jos vaikkapa a = = ja =, ii a = 4 kuiteki a = = 4 >. ) Kyllä o. Nimittäi aritmeettis-harmoisesta epäyhtälöstä seuraa, että a 9 a 9 =.. Olkoot a, ja reaalilukuja, joille a > > > 0. Osoita, että >, mutta a a 5. Ratkaisu. Pilkotaa todistettava epäyhtälö vasemma puole kaksi jälkimmäistä termiä osii ja käytetää sopivasti aritmeettis-geometrista epäyhtälöä: a a = a a = a a a a = = 5.. Olkoo kokoaisluku ja olkoot a, a,..., a ei-egatiivisia reaalilukuja. Osoita, että a a a... a ) ) a a... a. Ratkaisu. Koska aritmeettis-geometrise epäyhtälö ojalla jokaisella R o oltava a a ), o oltava myös ) ) ) a a... a a ) aa...a a a... a a =. 4. Olkoot x, y ja z sellaisia positiivisia reaalilukuja, että xyz =. Mikä tällöi o lausekkee x 4xy 4y z piei mahdollie arvo? Ratkaisu. Käyttämällä aritmeettis-geometrista epäyhtälöä saadaa alaraja x 4xy 4y z = x xy xy 4y z z 6 6 x xy xy 4y z z = 6 6 6xyz) 4 = 6 6 6 4 = 6 6 4 = 6 4 = 96. Tässä alaraja voidaa saavuttaa vai silloi ku x = xy = xy = 4y = z = z, eli ku x = y = z. Lisäehdo xyz = ojalla kyseie alaraja saavutetaa siis täsmällee silloi ku x = z = 4 ja y =.
Tehtäviä suuruusjärjestysepäyhtälöstä 5. Olkoot a,, R. Osoita, että: a) a a a. ) a 4 4 4 a a a. ) a a a. Ratkaisu. a) Olkoot luvut a,, missä tahasa suuruusjärjestyksessä. Tällöi varmasti luvut a,, ovat myös samassa suuruusjärjestyksessä. Siispä suuruusjärjestysepäyhtälö ojalla a a a a = a. ) Missä tahasa suuruusjärjestyksessä luvut a,, ikiä ovatkaa, ovat luvut a,, ja toisaalta luvut a,, samassa suuruusjärjestyksessä, ja luvut, a, a taas vastakkaisessa suuruusjärjestyksessä. Nyt voidaa käyttää suuruusjärjestysepäyhtälöä kahdesti, jolloi saadaa a a a a a a = a a ) Suoraa suuruusjärjestysepäyhtälö ojalla a a 6. Olkoot a,, R. Osoita, että: a a = a 4 4 4. = a a = a a a a = a. a a a a a. Ratkaisu. Suuruusjärjestysepäyhtälö ojalla a a ja a a ovat aia eitää yhtä suuria kui a. Siispä a )a ) = a ) a a) a a ) a ) a ) a ) = a ). Haluttu tulos seuraa tästä jakamalla puolittai luvuilla a ja. Suuruusjärjestysepäyhtälö ojalla a a a. Siispä a ) = a a a) a a). Haluttu tulos saadaa tästä ottamalla puolittai eliöjuuret ja jakamalla puolittai luvulla. 7. Olkoot a,, R. Osoita, että a a a a. Ratkaisu. Luvut a,, ja, a, a ovat aia samassa suuruusjärjestyksessä. Toisaalta luvut a,, ja a,, ovat aia vastakkaisissa suuruusjärjestyksissä. Käyttämällä suuruusjärjestysepäyhtälöä kahdesti saadaa, että a a a a a a = a a 8. Olkoot a,, R. Osoita, että a 8 8 8 a a. a a = a.
Ratkaisu. Koska luvut a 5, 5, 5 ja, a, a ovat aia samassa suuruusjärjestyksessä, ja koska luvut a,, ja a,, ovat aia vastakkaisissa suuruusjärjestyksissä, voidaa käyttää suuruusjärjestysepäyhtälöä kahdesti: a 8 8 8 a = a 5 a 5 a 5 5 5 =a a a a l= a 5 a a = a. 9. Olkoot a, a, a,... pareittai erisuuria positiivisia kokoaislukuja. Osoita, että jokaisella Z o a l l l. Ratkaisu. Olkoot,,..., luvut a, a,..., a järjestettyä kasvavaa järjestyksee, eli site, että < <... <. Koska luvut,,..., ovat positiivisia kokoaislukuja, o varmasti,,...,. Nyt suuruusjärjestysepäyhtälö ojalla l= a l l = l= a l l l= l= l l l= l l = 0. Aritmeettis-geometrise epäyhtälö todistamie suuruusjärjestysepäyhtälöllä. l= l. a) Olkoot z, z,..., z R. Osoita, että ) Olkoot ϱ, x, x,..., x R. Osoita:.... ) Olkoot y, y,..., y R. Osoita, että y y y y y y... y. ϱx ϱ x x x ϱx ϱx... ϱx. d) Osoita lopuksi, että x x... x x x x. Ratkaisu. a) Ku luvut,,..., ovat jossaki suuruusjärjestyksessä, ovat luvut,,..., varmasti vastakkaisessa suuruusjärjestyksessä. Täte suuruusjärjestysepäyhtälö ojalla... =... ) Väite seuraa a)-kohda epäyhtälöstä sijoituksilla... = y, = y y, = y y y,..., = y y y. ) Väite seuraa )-kohda epäyhtälöstä sijoituksilla y = ϱx, y = ϱx,..., y = ϱx. =. d) Sijoittamalla )-kohda epäyhtälöö ϱ = x x x saadaa eli x x x x x x x x... x x... x x x x. x x x x,
Tehtäviä Cauhy Shwarzi epäyhtälöstä. Olkoot a, a,..., a R. a) Osoita, että ) a k k= a k k= ). ) Osoita, että a a... a a a... a. Ratkaisu. a) Käytetää Cauhy Shwarzi epäyhtälöä: ) ) ) a k ak = ) =. a k a k k= k= k= ) Käytetää jällee Cauhy Shwarzi epäyhtälöä: a a... a = a a... a... a a... a = a a... a.. Olkoot a, a,..., a R. Osoita, että jos a a... a =, ii a 4 a 4... a 4. Ratkaisu. Käyttämällä kahdesti Cauhy Shwarzi epäyhtälöä kute )-kohdassa saadaa, että a 4 a 4... a 4 a a... a ) k= ) aa...a ) = ) = =.. Olkoot a, a,..., a R. Osoita, että a a... a a a... a a 4 a 4... a 4. Ratkaisu. Riittää käyttää Cauhy Shwarzi epäyhtälöä vai kerra: a a... a = a a a a... a a a a... a a 4 a 4... a 4. 4. Olkoot a,, R. Osoita, että a a Ratkaisu. Cauhy Shwarzi epäyhtälö ojalla a a a a a a a ) = a ) = a. a a ) a) a ). ) a a 5. Polyomi P kertoimet ovat positiivisia reaalilukuja. Osoita, että kaikilla positiivisilla reaaliluvuilla a ja pätee P a)p ) P a ). Ratkaisu. Tämä seuraa suoraa Cauhy Shwarzi epäyhtälöstä. Nimittäi, jos P x) = l=0 lx l, missä,,..., R, ii P a ) = l a) l ) l ) l = l a l l=0 l=0 l ) ) l l ) ) l a = l a l l l = P a) P ). l=0 l=0 l=0 l=0
6. Olkoot a, a,..., a,,,..., R, missä Z, ja oletetaa, että a a... a a a... a. Osoita, että tällöi a a... a a a... a. Ratkaisu. Käytetää Cauhy Shwarzi epäyhtälöä: a a... a a a... a ) a a... a a a... a ) a a... a = a a... a. 7. Olkoot a,,, d R. Osoita, että a d a d) ). Ratkaisu. Väite seuraa Cauhy Shwarzi epäyhtälöstä: a d = a d a ) d ) ) ) = a d. 8. Olkoot a,, R. Osoita, että 9a a a ) a a ). Ratkaisu. Cauhy Shwarzi epäyhtälö ojalla 9a = a) = a a a a ) a ) ) ) ) ) ) ) ) a a a = a a ) a a ). 9. Olkoot a, a,..., a,,,..., Z ) reaalilukuja. Osoita, että a )... a ) a... a.... Ratkaisu. Neliöimällä molemmat puolet todistettava epäyhtälö imeltää Mikowski epäyhtälö) saa muodo: a )... a ) a... a... a... a..., mikä piee sievetämise jälkee muuttuu tuttuu muotoo a... a a... a... ; tämähä o Cauhy Shwarzi epäyhtälö. 40. Olkoot a, a,..., a,,,..., R, Z. a) Osoita, että a a... a a a... a )... ). Ratkaisu. Osoitetaa väite iduktiolla parametri Z suhtee. Tapauksessa = väitetyssä epäyhtälössä vallitsee varmasti yhtäsuuruus ja asia o selvä. Oletetaa siis, että väite pätee jollaki Z. Olkoot a, a,..., a,,,..., R jotki ) lukua. Tehdystä iduktiooletuksesta ja Mikowsky epäyhtälöstä seuraa, että a a... a a a... a )... ) a a a a... a a )... ).
4. Olkoot x, y ja z ei-egatiivisia reaalilukuja. a) Osoita, että x y z) x y y z z x. ) Oletetaa lisäksi, että xyz 0. Osoita, että x y z x y z. ) Oletetaa lisäksi, että 0<xy z. Osoita, että y z x y x) z x). Ratkaisu. Nämä epäyhtälöt seuraavat suoraa Mikowsky epäyhtälöstä: a) ) ) x y y z z x x y z) y z x) = x y z) = x y z). x y z x y z x ) y ) z ) x y z =. y z = x y x) x z x) x x y x) z x) = x y x) z x). Sekalaisia epäyhtälötehtäviä 4. Olkoot a > > 0. Osoita, että lukuje a ja a kääteislukuje keskiarvo o suurempi kui luvu a kääteisluku. Ratkaisu. Lukuje a ja a kääteislukuje keskiarvo o a ) = a a a a )a ) = a a > a a = a. 4. Kumpi luvuista o suurempi? 0 006 0 007 ja 0007 0 008 Ratkaisu. Arvioidaa äide lukuje erotusta: 0 006 0 007 0007 0 008 = 0006008 0 008 0 006 0 007007 0 007 0 007 ) 0 008 ) = 0008 0 006 0 007 0 007 ) 0 008 ) Siis esimmäie luku o suurempi. = 0006 00 0) 0 007 ) 0 008 ) = 8 0 006 0 007 ) 0 008 ) > 0. 44. Olkoot a, ja sellaisia reaalilukuja, että a =. Osoita, että eitää kaksi luvuista voivat olla suurempia kui yksi. a, ja a
Ratkaisu. Tehdää se vastaoletus, että kaikki kolme lukua olisivat suurempia kui yksi. Tällöi olisi: a ) ) ) > a 8a 4a ) a ) a > a ) a ) <. Toisaalta olisi myös a ) mikä o ristiriidassa aiemma epäyhtälö kassa. 45. a) Olkoot a > >. Osoita, että a ) = a a > =, a a >. ) Olkoot a, R. Osoita, että a a a. ) Olkoot 0 < a <. Osoita, että a > a. a Ratkaisu. a) Koska luvut a ja a ovat positiivisia, saa iillä kertoa ja jakaa epäyhtälöitä puolittai. Täte: a a > a > a a a > a a a a a a > a aa ) > a ) a >. ) Symmetria vuoksi voidaa olettaa, että a. Koska tapauksessa a = todistettava epäyhtälö molemmat puolet ovat yhtäsuuret, riittää todistaa väite vai tapauksessa a >. Tässä tapauksessa a > 0 ja voidaa päätellä: a a a a a a a a ) a ) a, missä viimeie epäyhtälö tieteki pätee. ) Koska luku a o positiivie, voi sillä kertoa epäyhtälöitä puolittai. Tehdää ii: a a > a a a > a a a a a > a a a ) ) a a ) a ) > 0 a ) > 0. Tässä viimeie epäyhtälö pätee koska > a. 46. Etsi e reaaliluvut x, joille x > x. Ratkaisu. Tutkitaa esi, löytyykö ratkaisuita x, joille x >. Ku x >, voidaa päätellä: x > x < x) x) < x x < 0, ja selvästikää tarkasteltava epäyhtälö ei voi ratketa. Halutuille ratkaisuille pätee siis, että x <. Tällöi voidaa päätellä: x > x > x) x) > x x > 0. Tässä viimeisi epäyhtälö toteutuu täsmällee silloi ku x 0. Siis ratkaisuiksi saadaa e reaaliluvut x, joille x 0 ja x <, tai yhtäpitävästi: x ], 0[ ]0, [.
47. Olkoot x reaaliluku ja Z. Osoita, että x x). Ratkaisu. Olkoo aettu kiiteä x [, [. Todistetaa väite iduktiolla parametri Z suhtee. Tapauksessa = väite yksikertaistuu muotoo x x, missä itse asiassa pätee aia yhtäsuuruus, ja asia o selvä. Oletetaa, että x x) jollaki Z. Tällöi x) = x) x) x) x) = )x x )x, ja yt väite seuraa iduktioperiaatteesta. 48. Olkoot x > reaaliluku. Osoita, että Ratkaisu. Väite seuraa suoraa havaiosta 49. Olkoot a,, R. Osoita, että x x x > x. x x = x x x )x ) = x x > x x = x. a a a. Ratkaisu. Käyttämällä aritmeettisharmoista epäyhtälöä saadaa a a a = a a a a a =a ) a ) 9 a ) a a a 9 =a ) a ) = 9 =. 50. Olkoot a,, ja d sellaisia positiivisia reaalilukuja, että a d = 4. Osoita, että tällöi a a d a d d 6. Ratkaisu. Koska väli ]0, [ reaaliluvuille x pätee aia x x, voidaa arvioida: a a d a d d ) a a d a d d = 4 4 4 4 a = a d a a d a d a d a d a d a d a d a d a d = a a d a d d a d = ) d a d ) d a d a d) a d = 6.