Luento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot

Koko: px
Aloita esitys sivulta:

Download "Luento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot"

Transkriptio

1 Luento 3 7 Ydinfysiikka Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot

2 Ytimien ominaisuudet Ydin koostuu nukleoneista eli protoneista ja neutroneista Ydin on useimmiten pallonmuotoinen, ja sen säde R riippuu nukleonien kokonaismäärästä eli massaluvusta A: / 3 R = R 0 A Ytimen säde Tässä R 0 kokeellisesti mitattu vakio 5 R0 = 2 0 m = 2 fm Massaluku on ytimen massan arvoa lähimpänä oleva kokonaisluku, kun massa ilmoitetaan atomimassayksiköissä (u), u = (28) 0 27 kg Koska ytimen tilavuus ja massa ovat molemmat verrannolisia massalukuun A, on kaikilla ytimillä suunnilleen sama tiheys: ρ ydin kg/m = 0 5 g/cm 3 Nuklidit ja isotoopit Protonien lukumäärää ytimessä kutsutaan varausluvuksi Z ja neutronien lukumäärää neutroniluvuksi N Siten A = Z + N 2

3 Erilaisia ytimiä, joilla Z,N luvut poikkeavat toisistaan, kutsutaan nuklideiksi, ja niitä nuklideja, joilla on sama varausluku Z, mutta eri neutroniluku, kutsutaan saman alkuaineen isotoopeiksi Esimerkiksi uranin (Z = 92) tavallisimmat isotoopit ovat U ja U 3

4 4 Massoja kg u Elektroni: kg u Neutroni: kg u Protoni: = = = = = = e n p m m m

5 Massavaje ja ytimen sidosenergia Kun pannaan yhteen kuusi elektronia, kuusi protonia ja kuusi neutronia, syntyy hiiliatomi, isotooppi 2 C Sen massa on hieman pienempi kuin osiensa massojen summa Massaeroa kutsutaan massavajeeksi Vastaavaa energiaa E B = massavaje x c 2 kutsutaan ytimen sidosenergiaksi: E B = ( ZM H + Nm n A Z M ) c 2 Vetyatomin massa Atomin massa Esimerkki Kaikkein voimakkaimmin sidottu ydin on on u Lasketaan sidosenergia: Ni Sen atomimassa E B = ( 28( u) + 34( u) u) = 5453 MeV (93 5 MeV/u) c 2 Vähintään tämä energia tarvitaan hajottamaan ydin osiinsa Sidosenergia nukleonia kohti on 5453 MeV/62 = 8795 MeV 5

6 Kuvassa on sidosenergia nukleonia kohti massaluvun funktiona Nikkelillä sidosenergia on suurin Tässä kuvassa ovat tiukummin sidotut ytimet tarkemmin 6

7 Ydinmalleja Ydintä pitää koossa vahva vuorovaikutus, jonka aiheuttamaa voimaa kutsutaan ydinfysiikassa ydinvoimaksi Ydinvoiman piirteitä ovat: -voittaa protonien välisen sähköisen repulsion -lyhyt kantama, luokkaa 0-5 m º ytimen koko -ei riipu nukleonin varauksesta eli on sama neutronille ja protonille (ns isospinsymmetria) -ydinvoima vaikuttaa vain lähellä toisiaan olevien nukleonien kesken -suosii neutroni-protoni-parien syntymistä (spinit vastakkaiset) ja pari-parien syntyä (helium=2p+2n on erinomaisen vakaa ydin) Ydin on niin monimutkainen monen kappaleen systeemi, ettei sen rakennetta ja ominaisuuksia voi laskea from the first principles vaan täytyy turvautua yksinkertaistaviin malleihin Tunnettuja malleja ovat nestepisaramalli ja kuorimalli Nestepisaramallissa ydintä verrataan pisaraan nestettä, koska nesteen tavoin ytimen tiheys on suunnilleen vakio ja sitä voi ajatella pitävän koossa lyhyen kantaman voima ja pintajännitys Malli selittää varsin hyvin ytimien massat ja auttaa ymmärtämään ytimien hajoamisia Kuorimalli on sukua monielektronisen atomin keskeiskenttämallille Siinä nukleoni liikkuu potentiaalissa, joka saadaan eräänlaisena keskiarvona kaikkien muiden nukleonien vaikutuksesta 7

8 Potentiaalin oletetaan olevan kuvan esittämän näköinen kuoppa Sama muoto pätee sekä neutroneille että protoneille Protoneille tämä ei ole kuitenkaan koko totuus, sillä niiden kesken vaikuttaa attraktiivisen ydinvoiman lisäksi repulsiivinen sähköinen voima 8

9 Koska protonien ja neutronien tuntemat potentiaalit eroavat toisistaan, niin tekevät myös niiden energiaspektrit Kuorimallin mukaan erityisen vakaita ytimiä ovat sellaiset, joissa on protoneita tai neutroneita 2, 8, 20, 28, 50, 82 tai 26 kappaletta Näitä sanotaan maagisiksi ytimiksi On olemassa myös kaksoimaagisia ytimiä, joissa sekä Z että N ovat maagisia lukuja Maagiset ytimet vastaavat kuorimallissa tiloja, joissa on täysi kuori tai alikuori Ytimien stabiilisuus ja radioaktiivisuus Useimmat ytimistä eivät ole pysyviä, vaan ne hajoavat emittoiden hiukkasia ja sähkömagneettista säteilyä Tätä kutsutaan radioaktiivisuudeksi Alla on nuklidikartta, jossa on merkitty mustalla ruudulla stabiilit ytimet Linkki interaktiiviseen nuklidikarttaan: 9

10 Stabiilien ytimien sidosenergia on suuri Alla on kuva kevyiden aineiden titaaniin (Z = 22) asti sidosenergialle sukua olevasta suureesta (M-A)c 2 (M on massa yksiköissä u) Stabiilit ytimet löytyvät laakson pohjalta Alfahajoaminen Alfahiukkanen (a) on 4 He ydin: 2 protonia + 2 neutronia, siten että kokonaisspin = 0 Ytimet, jotka ovat epästabiileja suuren kokonsa takia, ovat a-aktiivisia eli ne säteilevät a-hiukkasia siirtyen samalla lähemmäksi stabiilisuusaluetta Kuten aiemmin todettiin, nukleonit ryhmittyvät ydinvoiman vaikutuksesta ytimessä mielellään 2p2n-ryhmiksi, ja siksi nukleoneja myös poistuu ytimestä näinä yhdistelminä, a- hiukkasina 0

11 Kuvassa on esimerkkinä radiumin isotoopin a-hajoaminen radoniksi Zö Z - 2 N ö N - 2 A ö A - 4 Alfahiukkanen tunneloituu potentiaalivallin läpi Potentiaali muodostuu lyhyen kantaman attraktiivisesta ydinvoimasta (kuoppa) ja repulsiivisesta Coulombin voimasta, joka pienenee pitempiä etäisyyksiä kohti Energiataso-kaavio: Hajoamisessa vapautuu energiaa 487 MeV, joko pelkästään a-hiukkasen liike-energiana tai osittain myös fotonina (kun hajoaminen vie radonin viritystilalle)

12 Esimerkki Alfahajoaminen on mahdollinen, jos äitiatomin massa on suurempi kuin neutraalin tytäratomin ja neutraalin heliumatomin massojen summa Radiumin hajoamiseen liittyvät massat: Ra Rn He u, u, u Koska Δm = u ( u u ) = u, on alfahajoaminen energian säilymisen kannalta mahdollinen Massaerotus vastaa energiaa 2 E = Δm c = ( u )( 93 5 MeV/u) = 487 MeV Paitsi energia, hajoamisessa säilyy myös liikemäärä Jos äitiatomi on levossa, on hajoamistuotteilla yhtä suuret, vastakkaissuuntaiset liikemäärät p Liike-energia voidaan laskea klassisesta kaavasta K = mv 2 /2, joten kun liikemäärät mv ovat samat, liike-energiat ovat käänteisessä suhteessa massoihin Täten a-hiukkasen saama osuus liike-energiasta on 222 ( 4 87MeV ) = 4 78 MeV

13 Beetahajoaminen Beetahajoamisia on kolmea lajia, joihin jokaiseen liittyy ytimessä tapahtuva p ö n tai n ö p transitio: Beeta-miinus-hajoaminen: n p + e + ν e (e - = b - ) Beeta-plus-hajoaminen: antineutriino p n + e + + ν e (e + = b + ) Elektronisieppaus: p + e n + ν e Ensimmäinen näistä reaktioista tapahtuu myös sellaisenaan, siis vapaalle neutronille, koska neutronin massa on suurempi kuin hajoamistuotteiden massojen summa (neutriinon massa on mitättömän pieni, vähemmän kuin ev) Toinen reaktio on mahdollinen vain ytimen ympäristössä, jossa reaktiossa on mukana myös ydinvoiman potentiaalienergiaa, jota vapautuu ytimen muuttuessa toiseksi ytimeksi Kolmas reaktio saa samoin tarvitsemaansa energiaa ydinpotentiaalista Ytimen ulkopuolella reaktio on mahdollinen, kun alkutilan hiukkasilla on riittävästi liike-energiaa kattamaan sen, mikä syntyvän neutronin massaenergiasta jäisi muuten puuttumaan 3

14 Beetahajoamisen syynä on nukleonien, elektronin ja neutriinon välillä tapauhtuva ns heikko vuorovaikutus (heikko ydinvoima) Tässä esimerkkinä elektronin energiaspektri tritiumin beetahajoamisessa Spektrin loppupäästä voi saada tietoa neutriinon massasta Elektronin energian maksimiarvo riippuu neutriinon lepoenergian määrästä 4

15 Gammahajoaminen Nukleonien liike ytimessä on kvantittunutta Ytimellä on diskreetti joukko mahdollisia energiatiloja Niistä yksi on perustila ja muut ovat viritystiloja Ydin voi joutua viritystilaan joko radioaktiivisessa hajoamisessa tai kun sitä pommitetaan suurienergiaisilla hiukkasilla Ydin siirtyy perustilaan säteilemällä fotonin tai useita fotoneita Tätä kutsutaan gammasäteilyksi ja ilmiötä gammahajoamiseksi Gammasäteiden energiat ovat tyypillisesti energia-alueella noin 0 kev 5 MeV Sivun kuvassa näkyi radonin gammahajoaminen viritystilalta perustilalle Luonnollinen radioaktiivisuus Luonnossa on paljon radioaktiivisia isotooppeja Niitä on syntynyt ja yhä syntyy tähtien päättäessä päivänsä supernovaräjähdyksissä Monet radioaktiiviset isotoopit hajoavat hyvin hitaasti, joten ne ovat pitkään seuranamme Tämä on luonnollista radioaktiivisuutta Radioaktiivisia isotooppeja myös valmistetaan keinotekoisesti Esimerkiksi lääketieteessä ja sairaanhoidossa tarvittavat isotoopit ovat niin lyhytikäisiä, ettei niitä löydy luonnosta vaan ne pitää valmistaa kiihdyttimillä törmäyttämällä stabiileita ytimiä protoneilla tai isommilla ioneilla Radioaktiivisen isotoopin hajoaminen on usein monipolvinen ja haarainen hajoamisketju, jossa monessa portaassa hajoamistuotekin on radioaktiivinen Seuraavalla sivulla on uraani- 238:n hajoamisketju 5

16 6

17 Eksponentiaalinen hajoamislaki Oletetaan, että hetkellä t näytteessä on N(t) radioaktiivista ydintä Aikavälinä t t + dt radioaktiivisten ydinten määrä muuttuu määrällä dn(t) Suure dn ( t ) dt on näytteen hajoamisnopeus eli aktiivisuus Luonnollisesti aktiivisuus on sitä suurempi mitä suurempi näyte on kyseessä, joten aktiivisuus on suoraan verrannollinen N(t):hen: dn( t dt ) = λn( t ) Verrannollisuuskerrointa l kutsutaan hajoamisvakioksi Hajoamisvakion arvo vaihtelee ytimestä toiseen Hajoamisvakio on se todennäköisyys, jolla yksittäinen ydin hajoaa aikayksikön kuluessa Integroimalla edellinen yhtälö saadaan radioaktiivisten ydinten määräksi hetkellä t N( t λt Hajoamislaki; hajoamat- ) = N 0 e, tomien ydinten määrä jossa N 0 on radioaktiivisten ydinten määrä hetkellä t = 0 7

18 Puoliintumisaika T /2 on se aika, jona näytteestä puolet hajoaa: T e λ = 2 / 2 Ottamalla puolittain luonnollinen logaritmi saadaan T ln2 λ / 2 = = λ Keskimääräiseksi ytimen elinajaksi tai lyhyesti elinajaksi kutsutaan suuretta / 2 T mean = T = λ ln2 Aktiivisuuden yksiköitä ovat becquerel (Bq) on curie (Ci) Bc:n aktiivisuus tarkoittaa yhtä hajoamista sekunnissa ja Ci:n aktiivisuus tarkoittaa 370 x 0 0 hajoamista sekunnissa eli Ci = 370 x 0 0 Bq 8

19 Ydinreaktiot Ytimet muuttuvat toisikseen paitsi hajoamisissa myös keskinäisten törmäysten tuloksena Esimerkkinä Rutherfordin klassinen koe He+ 7N 8O+ H Rutherford sai heliumytimet radioaktiivisista hajoamisista, mutta yleensä ammutaan kiihdyttimellä kiihdytettyjä ytimiä kiinteään kohtioon Ydinreaktioita säätelevät monet säilymislait: energia, liikemäärä, impulssimomentti, varaus, nukleonien kokonaismäärä, Massa ei yleensä säily eli törmäykset eivät ole elastisia Massan muutos energiaksi muutettuna on nimeltään reaktioenergia Q Reaktiossa A + B ö C + D Q = ( M A + M B M C M D ) c 2 Jos Q > 0, reaktiossa muuttuu massaenergiaa liike-energiaksi (exoerginen reaktio) Jos Q < 0, reaktiossa alkutilan liike-energiaa muuttuu lopputilan massaenergiaksi (endoerginen reaktio) Endoerginen reaktio ei voi tapahtua, ellei alkutilassa ole riittävästi liike-energiaa eli vähintään Q = kynnysenergia 9

20 Fissio Fissiossa epästabiili ydin jakaantuu eli fragmentoituu kahdeksi keskenään suunnilleen samankokoiseksi ytimeksi Spontaani fissio tapahtuu itsestään, indusoidussa fissiossa ydin absorboi neutronin ja hajoaa sitten Esimerkkinä indusoidusta fissiosta uraanin hajoaminen: U + U n n U* U* Ba+ Xe Kr + 3 Kr + 2 Fissiotuotteiden liike-energia on hyvin suuri, noin 200 MeV Tämä johtuu siitä, että hajoamisessa syntyvät keskialueen (massaluvussa) ytimet ovat paljon syvemmässä potentiaalikuopassa (suuri negatiivinen energia) kuin uraani 0 0 n, n Uraanin fragmentaatiotuotteiden massajakautuma 20

21 Nestepisaramallissa fissio voidaan selittää ytimen deformuitumisen avulla Fuusio Fuusiossa kaksi tai useampi kevyt ydin yhtyy ja muodostaa raskaamman ytimen Tässäkin vapautuu runsaasti energiaa, sillä kevyemmät ytimet ovat matalammassa energiakuopassa kuin raskaammat Kuvassa on esimerkkinä reaktioketju, jossa protonit fuusioituvat niin, että lopulta muodostuu heliumia Tämä on tärkeä tapahtuma tähdissä, ja useiden tähtien energian lähde Huomaa, että beetahajoamisella on rekatioketjussa tärkeä rooli neutronien muodostajana 2

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Ydinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Ydinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Ydinfysiikka Atomin ydin kuuluu silmillemme näkymättömään maailmaan, mutta ydinfysiikan ilmiöt ovat osa modernia teknologiaa. Esim ydinvoima, ydinfysiikan käyttö lääketieteessä, ydinjätteet. Luennon tavoite:

Lisätiedot

2.2 RÖNTGENSÄTEILY. (yli 10 kv).

2.2 RÖNTGENSÄTEILY. (yli 10 kv). 11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Ydinfysiikkaa. Tapio Hansson

Ydinfysiikkaa. Tapio Hansson 3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016 Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

FYSN300 Nuclear Physics I. Välikoe

FYSN300 Nuclear Physics I. Välikoe Välikoe Vastaa neljään viidestä kysymyksestä 1. a) Hahmottele stabiilien ytimien sidosenergiakäyrä (sidosenergia nukleonia kohti B/A massaluvun A funktiona). Kuvaajan kvantitatiivisen tulkinnan tulee olla

Lisätiedot

6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA

6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA 6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA Atomin elektronirakenne tunnettiin paljon ennen ytimen rakenteen tuntemista: elektronien irrottamiseen atomista tarvitaan paljon pienempiä energioita (muutamia ev)

Lisätiedot

Radioaktiivinen hajoaminen

Radioaktiivinen hajoaminen radahaj2.nb 1 Radioaktiivinen hajoaminen Radioaktiivinen hajoaminen on ilmiö, jossa aktivoitunut, epästabiili atomiydin vapauttaa energiaansa a-, b- tai g-säteilyn kautta. Hiukkassäteilyn eli a- ja b-säteilyn

Lisätiedot

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT Radioaktiivisessa hajoamisessa on neljä perusmuotoa: fissio alfahajoaminen betahajoaminen sisäinen siirtymä Viime vuosikymmeninä on havaittu paljon harvinaisempiakin

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Tarja K. Ikäheimonen, Roy Pöllänen, Anne Weltner, Olavi Pukkila, Wendla Paile, Jorma Sandberg, Heidi Nyberg, Olli J. Marttila, Jarmo

Lisätiedot

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia. Vinkkejä tenttiin lukemiseen Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä luentomuistiinpanojen

Lisätiedot

NUKLIDIEN PYSYVYYS. Stabiilit nuklidit

NUKLIDIEN PYSYVYYS. Stabiilit nuklidit VI NUKLIDIEN PYSYVYYS Stabiilit nuklidit Luonnon 92 alkuaineessa on kaiken kaikkiaan 275 pysyvää nuklidia. Näistä noin 60%:lla on sekä parillinen (even) protoniluku että parillinen (even) neutroniluku.

Lisätiedot

A Z X. Ydin ja isotoopit

A Z X. Ydin ja isotoopit Ydinfysiikkaa Ydin ja isotoopit A Z X N Ytimet koostuvat protoneista (+) ja neutroneista (0): nukleonit (Huom! nuklidi= tietty ydinlaji ) Ydin pysyy kasassa, koska vahvan vuorovaikutuksen aiheuttama vetävä

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

1 Johdanto. 2 Lähtökohdat

1 Johdanto. 2 Lähtökohdat FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

FYS08: Aine ja Energia

FYS08: Aine ja Energia FYS08: Aine ja Energia kurssin muistiinpanot Rami Nuotio päivitetty 6.12.2009 Sisältö 1. Sähkömagneettinen säteily 3 1.1. Sähkömagneettinen säteily 3 1.2. Mustan kappaleen säteily 3 1.3. Kvantittuminen

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen TURUN AMMATTIKORKEAKOULU työohje 1(8) 5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen 1. TYÖN TAVOITE 2. TEORIAA 2.1. Aktivointi Työssä perehdytään radioaktiivisuuteen ja radioaktiivisen säteilyn

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

YDIN- JA SÄTEILYFYSIIKAN PERUSTEET

YDIN- JA SÄTEILYFYSIIKAN PERUSTEET 1 YDIN- JA SÄTEILYFYSIIKAN PERUSTEET Jorma Sandberg ja Risto Paltemaa SISÄLLYSLUETTELO 1.1 Atomi- ja ydinfysiikan peruskäsitteitä... 12 1.2 Radioaktiivinen hajoaminen... 19 1.3 Ydinreaktiot ja vaikutusala...

Lisätiedot

Ydinfysiikka lääketieteellisissä sovelluksissa

Ydinfysiikka lääketieteellisissä sovelluksissa Ydinfysiikka lääketieteellisissä sovelluksissa Ari Virtanen Professori Jyväskylän yliopisto Fysiikan laitos/kiihdytinlaboratorio ari.j.virtanen@jyu.fi Sisältö Alkutaival Sädehoito Radiolääkkeet Terapia

Lisätiedot

MODERNIA FYSIIKKAA, SÄHKÖ- JA MAGNEETTIKENTTIÄ YO-TEHTÄVIEN LAAJENNUKSINA

MODERNIA FYSIIKKAA, SÄHKÖ- JA MAGNEETTIKENTTIÄ YO-TEHTÄVIEN LAAJENNUKSINA 2009 pietarsaaren lukio Vesa Maanselkä MODERNIA FYSIIKKAA, SÄHKÖ- JA MAGNEETTIKENTTIÄ YO-TEHTÄVIEN LAAJENNUKSINA Yo-kirjoituksissa usein kysyttyjen aiheiden kertausta Aiheittain niputettuja yo-tehtäviä

Lisätiedot

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1 FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko 19.12.2012, klo 10-11, LS1 Isotooppilääketiede Radioaktiivisuus Radioaktiivisuuden yksiköt Radiolääkkeet Isotooppien ja radiolääkkeiden valmistus 99m

Lisätiedot

c) Missä ajassa kappale selvittää reitin b-kohdan tapauksessa? [3p]

c) Missä ajassa kappale selvittää reitin b-kohdan tapauksessa? [3p] Fysiikan valintakoe 11.5.2016 klo 9-12 1. Kappale lähtee levosta liikkeelle pisteessä A (0,3) ja liukuu kitkattomasti, ensin kaltevaa tasoa pitkin pisteeseen B (x,0) ja siitä edelleen vaakaatasoa pitkin

Lisätiedot

Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa

Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa Aki Puurunen JYVÄSKYLÄN YLIOPISTO FYSIIKAN LAITOS Pro Gradu -tutkielma Ohjaaja: Jaana Kumpulainen 3. lokakuuta 2011 Tiivistelmä Kiihdytinlaboratoriossa

Lisätiedot

55 RADIOAKTIIVISUUS JA SÄTEILY

55 RADIOAKTIIVISUUS JA SÄTEILY 55 RADIOAKTIIVISUUS JA SÄTEILY 55.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina (ytimen

Lisätiedot

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI 1 Sisällysluettelo 1. Luonnossa esiintyvä radioaktiivinen säteily... 2 1.1. Alfasäteily... 2 1.2. Beetasäteily... 3 1.3. Gammasäteily... 3 2. Radioaktiivisen

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan kev keskimääräinen elinaika ja puoliintumisaika.

Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan kev keskimääräinen elinaika ja puoliintumisaika. FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.

Lisätiedot

RADIOHIILIAJOITUS. Pertti Hautanen. Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino

RADIOHIILIAJOITUS. Pertti Hautanen. Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino RADIOHIILIAJOITUS Pertti Hautanen Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino Esipuhe Päädyin tekemään Pro Gradu -tutkielmani radiohiiliajoituksesta löydettyäni

Lisätiedot

lyijyajoituksella Pro Gradu Mikko Koikkalainen 8. lokakuuta 2013 Ohjaaja: Ari Jokinen JYVÄSKYLÄN YLIOPISTO FYSIIKAN LAITOS

lyijyajoituksella Pro Gradu Mikko Koikkalainen 8. lokakuuta 2013 Ohjaaja: Ari Jokinen JYVÄSKYLÄN YLIOPISTO FYSIIKAN LAITOS Järvisedimenttien iänmääritys lyijyajoituksella Pro Gradu Mikko Koikkalainen 8. lokakuuta 2013 JYVÄSKYLÄN YLIOPISTO FYSIIKAN LAITOS Ohjaaja: Ari Jokinen Esipuhe Päädyin kirjoittamaan graduani ydinfysiikasta

Lisätiedot

766326A Atomifysiikka 1 - Syksy 2013

766326A Atomifysiikka 1 - Syksy 2013 766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni 3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja

Lisätiedot

FY8_muistiinpanot. Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. 10. marraskuuta 2013 10:00

FY8_muistiinpanot. Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. 10. marraskuuta 2013 10:00 FY8 Sivu 1 FY8_muistiinpanot 10. marraskuuta 2013 10:00 Opettajamme tekemät PowerPoint-muistiinpanopohjat puuttuvat tästä tiedostosta tekijänoikeussyistä. FY8 Sivu 2 Sähkömagneettinen säteily s. 5 11.

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/9 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia. Vinkkejä tenttiin lukemiseen Friday 11 May 2018 Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä

Lisätiedot

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360)

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,

Lisätiedot

Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme.

Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme. Ionisoiva säteily Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme. Ionisoivan säteilyn ominaisuuksia ja vaikutuksia on vaikea hahmottaa arkipäivän kokemusten

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/8 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu positiivisesti varautuneista protoneista ja neutraaleista neutroneista. Samalla alkuaineella on aina

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

40D. RADIOAKTIIVISUUSTUTKIMUKSIA

40D. RADIOAKTIIVISUUSTUTKIMUKSIA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 40D. RADIOAKTIIVISUUSTUTKIMUKSIA 1. TYÖN TAVOITE 2. TEORIAA Työssä tutustutaan radioaktiiviseen säteilyn kuvaamisessa käytettäviin käsitteisiin ja fysikaalisiin lakeihin,

Lisätiedot

Atomi- ja ydinfysiikan peruskäsitteitä. Seppo Sipilä

Atomi- ja ydinfysiikan peruskäsitteitä. Seppo Sipilä Atomi- ja ydinfysiikan peruskäsitteitä Seppo Sipilä Aineen perushiukkaset Varaus Massa [kg] elektroni, e - -q 9.1096 10-31 protoni, p +q 1.6726 10-27 (1836 m e ) neutroni, n 0 1.6749 10-27 (1839 m e )

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje

EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje Pohjois-Suomen yksikkö Q 15/25/2006/1 Rovaniemi 20.2.2006 EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje Pertti Turunen 2006 GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä 20.2.2006 Tekijät

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 1 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 1 Ytimen rakenne Luentomonisteen sivulla 3 oleva nuklidien N Z-diagrammi

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/8 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. A. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Hiukkasfysiikkaa. Tapio Hansson

Hiukkasfysiikkaa. Tapio Hansson Hiukkasfysiikkaa Tapio Hansson Aineen Rakenne Thomson onnistui irrottamaan elektronin atomista. Rutherfordin kokeessa löytyi atomin ydin. Niels Bohrin pohdintojen tuloksena elektronit laitettiin kiertämään

Lisätiedot

9. JAKSOLLINEN JÄRJESTELMÄ

9. JAKSOLLINEN JÄRJESTELMÄ 9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Alkuaineita luokitellaan atomimassojen perusteella

Alkuaineita luokitellaan atomimassojen perusteella IHMISEN JA ELINYMPÄRISTÖN KEMIAA, KE2 Alkuaineen suhteellinen atomimassa Kertausta: Isotoopin määritelmä: Saman alkuaineen eri atomien ytimissä on sama määrä protoneja (eli sama alkuaine), mutta neutronien

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Neutriino-oskillaatiot

Neutriino-oskillaatiot Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Oppikirja (kertauksen vuoksi)

Oppikirja (kertauksen vuoksi) Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain

Lisätiedot

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 Prof. Filip Tuomisto Fuusion perusteet, torstai 10.3.2016 Päivän aiheet Fuusioreaktio(t) Fuusion vaatimat olosuhteet Miten fuusiota voidaan

Lisätiedot

Säteilyn historia ja tulevaisuus

Säteilyn historia ja tulevaisuus Säteilyn historia ja tulevaisuus 1. Mistä Maassa oleva uraani on peräisin? 2. Kuka havaitsi röntgensäteilyn ensimmäisenä ja millä nimellä hän sitä kutsui? 3. Miten alfa- ja beetasäteily löydettiin? Copyright

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Ydin- ja hiukkasfysiikka

Ydin- ja hiukkasfysiikka Oulun yliopisto 766344A Ydin- ja hiukkasfysiikka Minna Patanen Nano- ja molekyylisysteemien tutkimusyksikkö Luonnontieteellinen tiedekunta 24. toukokuuta 2017 2 Sisältö 1 Ydinfysiikka 1 1.1 Ytimen ominaisuuksia........................

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

GEIGERIN JA MÜLLERIN PUTKI

GEIGERIN JA MÜLLERIN PUTKI FYSP106/K3 GEIGERIN J MÜLLERIN PUTKI 1 Johdanto Työssä tutustutaan Geigerin ja Müllerin putkeen. Geigerin ja Müllerin putkella tarkoitetaan tietynlaista säteilymittaria. Samaisesta laitteesta käytetään

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2017

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2017 PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2017 Prof. Filip Tuomisto Reaktorifysiikan perusteita, torstai 5.1.2017 Ydinenergiatekniikka lämmön- ja siten sähköntuotanto ydinreaktioiden avulla

Lisätiedot

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm)

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm) SÄTEILY YTIMET JA RADIOAKTIIVISUUS ATOMI -atomin halkaisija 10-10 m -ytimen halkaisija 10-14 m ATOMIN OSAT: 1) YDIN - protoneja (p) ja neutroneja (n) 2) ELEKTRONIVERHO - elektroneja (e - ) - protonit ja

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Kosmologia ja alkuaineiden synty. Tapio Hansson

Kosmologia ja alkuaineiden synty. Tapio Hansson Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Opintojaksosta P Säteilyfysiikka, -biologia ja -turvallisuus osuus Säteilyfysiikka

Opintojaksosta P Säteilyfysiikka, -biologia ja -turvallisuus osuus Säteilyfysiikka Opintojaksosta 761116P Säteilyfysiikka, -biologia ja -turvallisuus osuus Säteilyfysiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 11 Moniste on koottu ja kopioitu monesta eri lähteestä, joista

Lisätiedot