MS-C1420 Fourier-analyysi osa II
|
|
- Hannu Kinnunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta Fourier-sarjat ja Fourier-integraalit Poissonin summakaava Whittaker-Shannonin interpolointikaava 2 Vaimennetunen distribuution Fourier-muunnos 3 Aliasoituminen 4 Ikkunoitu Fourier-muunnos 5 Diskreettien signaalien konvoluutiot G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Fourier-kertoimien numeerinen laskeminen ( Jos 1-jaksollisesta signaalista s on saatu havainnot q(j) s j j, 1,..., 1 ja halutaan laskea Fourie-kertoimien ŝ(k) approksimaatioita niin voidaan menetellä seuraavalla tavalla: Muodostetaan ensin s:n korvikkeena funktio g(t) ( q(j)p t j ), missä p (t + 1) p (t) ja { 1, t, p (t), t k, k 1, 2,..., 1, ( ) ( ) jolloin siis g j q(j) s j kaikilla j. Tämän funktion Fourier-kertoimet ovat ĝ(k) ˆq(k) p (k). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 ), Miksi? Funktion g Fourier-kertoimiksi saadaan ĝ(k) 1 e i2πkt e i2πkj ) q(j)p (t j dt 1 q(j) e i2πk(t j ) ) p (t j dt e i2πkj q(j) 1 j j e i2πkt p (t) dt e i2πkj q(j) p (k) ˆq(k) p (k). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
2 Jaksollistetut funktiot Jos s L 1 () ja siitä tehdään jaksollien funktio s J kaavalla s J (t) s(t j) s(t + j) niin s J L 1 (/Z) ja ŝ J (k) ŝ(k), k Z. Tämä ei välttämättä onnistu jos ainoastaan oletetaan, että s L 2 (). Miksi Koska e i2πkj 1, k, j Z niin muuttujan vaihdolla t τ + j saadaan e i2πkt s(t) dt j+1 e i2πkt s(t) dt 1 e i2πk(τ+j) s(t+j) dt j 1 e i2πkτ s(t + j) dt 1 e i2πkτ s(t + j) dτ. Esimerkki jaksollistamisesta Jos > 1 ja p L 1 () on sellainen, että p() 1, p(j) kaikilla j Z \ {} ja p (t) p((t j)) niin silloin p (t + 1) p (t), p (t) 1 kun t ja p (t) kun t k ja k 1, 2,..., 1. Lisäksi pätee p (k) 1 ( ) k ˆp, k Z. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Poissonin summakaava Jos s L 1 (), s on jatkuva kokonaislukupisteissä ja jono j s(t + j) suppenee tasaisesti kun t ( δ, δ) kun missä δ > niin lim k s(k) lim k k ŝ(k) ja jos esim. k Z s(k) < ja k Z ŝ(k) < niin pätee ŝ(k). Huom! k Z s(k) k Z Soveltamalla tätä tulosta tyyppiä t s(t x), t e i2πxt s(t) ja t s(at) oleviin funktioihin ja niiden kombinaatioihin saadaan lisää kaavoja. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Miksi Poissonin summakaava on voimassa Kyse on oleellisesti siitä missä mielessä, jos lainkaan, käänteiskaava s J (t) k Z ei2πk t ŝ J (k) pätee kun t. Olkoon g(t) lim j s(t + j) jolloin g L1 (/Z) ja ĝ(k) ŝ(k). Oletuksesta, että jono j s(t + j) suppenee tasaisesti kun t (, δ) seuraa, että g on jatkuva pisteessä. Silloin pätee missä F 1 (F g)() lim (F g)() g() ( ) 2 sin(πt) sin(πt) ja koska toisaalta k k ei2πk ĝ(k) k k ŝ(k) niin saadaan väite g:n määritelmästä. Jos k Z s(k) < ja k Z ŝ(k) < rajat-arvot voidaan ottaa ja saadaan väite k Z s(k) k Z ŝ(k). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
3 Vaimennetut distribuutiot Whittaker-Shannonin interpolointikaava Jos s L 2 () ja ŝ(ν) kun ν > 1 2 niin s(t) k Z s(k)sinc (t k) t, missä sinc (t) sin(πt) πt jos t ja 1 jos t. Jos s L 1 () ja ŝ(ν) kun ν > 1 2 niin s L2 () ja oletuksesta s L 2 () seuraa, että k Z s(k)sinc (t k) < kaikilla t. S () { h : h on jatkuva ja lineaarinen funktio: S() C }. Jatkuvuus? Funktio h : S() C on jatkuva jos lim n h(ψ n ) h(ψ) kun ψ n, ψ S() ja lim n ψ n ψ eli lim n d(ψ n, ψ) missä d(ϕ, ψ) k m 2 (k+m) sup t t k (ϕ (m) (t) ψ (m) (t)) 1 + sup t t k (ϕ (m) (t) ψ (m) (t)). äin ollen funktio h : S() C on jatkuva jos jokaisella ψ S() ja jokaisella ɛ > on olemassa δ > siten että jos ϕ S() ja d(ϕ, ψ) < δ niin h(ϕ) h(ψ) < ɛ. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Vaimennetun distribuution Fourier-muunnos Jos h S () niin ĥ F(h) on vaimennettu distribuutio Huom! ĥ(ψ) h( ˆψ). Jotta voidaan osoittaa, että ĥ S () jos h S () pitää ensin osoittaa että Fourier-muunnos on jatkuva: S() S(). (Lineaarisuus on melkein itsestään selvä asia.) Esimerkki Jos s : C on mitallinen ja on olemassa m siten, että s(t) (1 + t ) m dt < niin voidaan määritellä vaimennettu distribuutio s D (tai pelkästään s) kaavalla s D (ψ) s(t)ψ(t) dt. Jos s D (ψ) kun ψ S(), eli s D, niin s(t) melkein kaikilla t. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Diracin δ-funktio Voidaan määritellä vaimennettu distribuutio δ T seuraavasti: δ T (ψ) ψ(t ). Jos p L 1 () on sellainen, että p(t) dt 1, esim. p(t) e πt2, ja merkitään p a (t) ap(at) niin p a (t T )ψ(t) dt ψ(t ), lim a joten δ T on funktioiden p a (t T ) raja-arvo distribuutiomielessä. Distribuution δ T Fourier-muunnos δ T on määritelmän mukaan distribuutio jonka arvo testifunktiolla ψ on δ T (ψ) δ T ( ˆψ) ˆψ(T ) e i2πt ν ψ(ν) dν, eli funktion t e i2πt ν generoima distribuutio. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
4 Diracin δ-funktio, jatk. Funktion p a (t T ) Fourier-muunnos on e i2πνt ap(a(t T )) dt a(t T ) τ e i2π ν a τ e i2πt ν p(τ) dτ i2πt e νˆp ( ν a ), koska dt 1 a dτ ja t τ a + T. Kun a saadaan raja-arvona funktio e i2πt ν koska lim a ˆp ( ) ν a ˆp() p(t) dt 1 oletuksen mukaan, jolloin taas nähdään että δ T :n Fourier-muunnos on funktio e i2πt ν (tai tämän funktion generoima distribuutio). Vaimennetun distribuution Fourier-muunnos on järkevästi määritelty! Jos s L 1 () tai s L 2 () niin Miksi? ŝ D (ŝ) D eli F(s D ) F(s) D. Jos esim. s L 1 () niin määritelmän mukaan F(s D )(ψ) s D ( ˆψ) s(t) ˆψ(t) dt. Koska sekä s että ψ L 1 () niin kertolaksukaavan nojalla, joka pätee myös kuin kuin molemmat funktiot ovat neliöintegroituvia, s(t) ˆψ(t) dt ŝ(t)ψ(t) dt (ŝ) D (ψ), ja koska ψ S() oli mielivaltainen, niin väite seuraa. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Vaimennetun distribuution derivaatta Jos h S () niin sen derivaatta h määritellään kaavalla h (ϕ) h(ϕ ). Kun todistetaann, että h on vaimennettu on ensin osoitettava, että derivointi on jatkuva funktio: S() S(). Miksi näin? Jos s on derivoituva funktio ja on olemassa m siten, että ( s(t) + s (t) )(1 + t ) m dt niin s D ja (s ) D ovat vaimennettuja distribuutioita ja pätee (s D ) (ψ) s D (ψ ) s(t)ψ (t) dt / s(t)ψ(t) dt + s (t)ψ(t) dt (s ) D (ψ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Operaatioita vaimennetuilla distribuutioilla Kun s on funktio C voimme määritellä seuraavat operaatiot: (T x s)(t) s(t x), (M x s)(t) e i2πxt s(t), (C x s)(t) s(xt) (missä x ) ja ehdosta L x s D (L x s) D missä L T, M tai S, niin saadaan seuraavat määritelmät vaimennetuille distribuutioille: (T x h)(ψ) h(t x ψ), (M x h)(ψ) h(m x ψ), ( ) (C x h)(ψ) h 1 x C 1 ψ. x Lisäksi jos ϕ C () ja sup t (1 + t ) k(m) ϕ (m) (t) < kaikilla m jollain k(m) niin määritellään funktion ϕ ja vaimennetun distribuution h tulo kaavalla (ϕh)(ψ) h(ϕψ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
5 Fourier-muunnos ja derivaatta Jos h S () niin Miksi? F(h) F(( i2πt)h), F(h ) (i2πt)f(h). Jaksollisen funktion Fourier-muunnos Jos s L 1 (/Z) niin s määrittelee myös funktion: C siten, että s(t) (1 + t ) 2 dt < ja silloin ŝ D k Z ŝ(k)δ k, F(h) (ψ) F(h)(ψ ) h(f(ψ )) h((i2πt)f(ψ)) (( i2πt)h)(f(ψ)) F(( i2πt)h)(ψ), missä ŝ(k) on s:n Fourier-kerroin ja δ τ (ψ) ψ(τ). ja F(h )(ψ) h (F(ψ)) h(f(ψ) ) h(f(( i2πt)ψ) F(h)((i2πt)ψ) ((i2πt)f(h))(ψ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Jaksollisen funktion Fourier-muunnos Määritelmän mukaan ŝ D (ψ) s(t) ˆψ(t) dt. Koska ˆψ S niin funktio ϕ(t) ˆψ( t + j) on jaksollinen ja äärettömän monta kertaa derivoituva. äin ollen se voidaan kirjoittaa Fourier-summana ϕ(t) k Z e i2πkt ˆϕ(k). Koska s on jaksollinen niin Jaksollisen funktion Fourier-muunnos, jatk. missä ŝ tarkoittaa jaksollisen funktion Fourier-muunnos. Toisaalta ˆϕ(k) äin ollen 1 e i2πkt ˆψ( t + j) dt e i2πkt ˆψ( t) dt ŝ D (ψ) k Z ŝ(k)ψ(k), e i2πkt ˆψ(t) dt ψ(k). s(t) ˆψ(t) dt j+1 j s(t)ψ(t) dt ˆϕ(m) k Z 1 1 s(t)ϕ( t) dt e i2πkt s(t) dt k Z ˆϕ(k)ŝ(k), eli ŝ D k Z ŝ(k)δ k. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
6 Aliasoituminen I Olkoon s jatkuva-aikainen signaali jonka Fourier-muunnos ŝ L 1 () jolloin s on ainakin jatkuva funktio siten, että lim t s(t). Jos nyt otetaan näytteitä s(k t), k Z, tästä signaalista niin Fourier-muunnoksen käänteiskaavan nojalla ne voidaan esittää Fourier-muunnoksen ŝ avulla seuraavasti: s(k t) e i2πk tν ŝ(ν) dν. Mutta funktio ν e i2πk tν on jaksollinen jaksolla ν 1 t joten jos nyt määritellään ŝ J, ν (ν) ŝ(ν j ν) niin s(k t) ν e i2πk tν ŝ J, ν (ν)dν ν 2 ν 2 e i2πk tν ŝ J, ν (ν)dν. äin funktio ŝ J, ν (ν) määrittää jonon s(k t) ja päinvastoin eikä jälkimmäisen jonon avulla ole mahdollista sanoa luvuista ŝ(ν j ν) muuta kuin niiden summa. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Aliasoituminen I, jatk. Toisaalta jos ŝ on nolla tietyn ν-pituisen välin ulkopuolella, niin silloin on mahdollista rekonstruida signaali lukujen s(k t) avulla Whittaker-Shannonin interpolointikaavan (modifikaation) avulla. Aliasoituminen II Tarkastellaan seuraavaksi mahdollisimman yksinkertainen signaali eli s(t) e i2πνt jonka taajuus on ν ja poikkeuksena edelliseen tapaukseen otetaan nyt vain näytettä q(k) s(t + k t), k, ämä näytteet määräytyvät yksikäsitteisesti tämän jonon diskreetistä Fourier-muunnoksesta ˆq(m) k mk i2π e s(t + k t) k mk i2π e e i2πν(t +k t) e i2πνt k e i2πk(ν t m ). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Aliasoituminen II, jatk. Funktion e i2πt jaksollisuudesta ja geometrisen sarjan summakaavasta seuraa, että e i2πνt, jos e i2π(mod (ν t,1) m ) 1, ˆq(m) e i2πνt 1 ei2π(mod (ν t,1) m) 1 e i2π(mod (ν t,1) m ), muuten. äin ollen ainoa tieto taajuudesta joka saadaan diskreetistä Fourier-muunnoksesta ja siten myös jonosta s(t + k t) on mod (ν t, 1) ja se näkyy siten, että diskreetti Fourier-muunnos saa itseisarvoltaan suurimmat arvonsa kun m mod (ν t, 1). Muista myös, että jokainen vaimennettu distribuutio on trigonometristen polynomien raja-arvo (tosin aika heikossa mielessä), ja yllä oleva lasku on myös sovellettavissa niihin. Aikataajuudessa rajoitettu signaali on Ainoa funktio s L 1 () jolle on olemassa M < siten, että s(t) kun t M ja ŝ(ν) kun ν M on s. Aikataajuudessa rajoitettu signaali on Olkoon s tällainen funktio. Määritellään sen avulla funktio q(t) s(4mt + M) jolloin nähdään, että q(t) kun kun t 1 2 ja kun t. Seuraavaksi muodostetaan tämän funktion jaksollistus q J (t) q(t j) jolle siis pätee, että q J(t) kun t [, 1 2 ]. Koska ˆq(ν) e i2π ν 4 ŝ( ν 4M ) niin ˆq(ν) kun ν 4M2. Erityisesti tämä tarkoittaa sitä, että q J :llä on ainoastaan äärellisen monta nollasta poikkeavaa Fourier-kerrointa koska q J (k) ˆq(k). äin ollen q voidaan esittää Fourier-summana q(t) m k m e i2πkt ˆq(k), ja voimme olettaa, että ˆq( m) + ˆq(m) > jos s jolloin q. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
7 Aikataajuudessa rajoitettu signaali on, jatk. Koska Fourier-summa sisältää vain äärellisen monta termiä niin q on äärettömän monta kertaa jatkuvasti derivoituva ja koska q(t) kun < t < 1 2 niin myös kaikki sen derivaatat ovat tällä välillä ja jatkuvuuden nojalla myös pisteessä t eli q(j) () (i2πm) j m k m ( ) k j ˆq(k). m yt pätee lim j m 1 k m+1 ( k m) j ˆq(k)e i2πkt joten saadaan lim j (( 1) j ˆq( m) + ˆq(m)), josta seuraa, että ˆq( m) ˆq(m) ja s. Ikkunoitu Fourier-muunnos Jos s signaali ja w on ikkuna -funktio niin s:n w-ikkunoitu Fourier-muunnos on F (s, w)(τ, ν) e i2πνt s(t)w(t τ) dt. eli F (s, w)(τ, ν) F(sT τ w)(ν) ja oletetaan, että w on valittu siten, että signaalin s(t)t τ w(t) Fourier-muunnos on hyvin määritelty. (Useimmiten ikkunafunktio w reaalinen, esim w(t) e βt2 jolloin kompleksikonjugoinnilla ei ole merkitystä.) Miksi ikkunointia? Ikkunoitu Fourier-muunnos antaa jotakin informaatiota signaalin s sisältämistä taajuuksista lyhyellä aikavälillä mutta ei ole suinkaan ainoa korjausyritys Fourier-muunnoksen heikoimpiin puoliin, jotka liittyvät siihen, että sen arvo tietyssä pisteessä riippuu signaalin arvoista kaikissa pisteissä. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Miksi ikkunointia? Kuten Fourier-sarjojen kohdalla voidaan todeta, saadaan yleensä parempi tulos kun signaali rekonstruoidaan Fourier-kertoimista jos käytetään painotettu summa k k ŝ(k)ei2πkt kuin jos lasketaan k ŝ(k)ei2πkt. Tässä tapauksessa käytetään siis diskreettiä Esimerkki Alla olevassa kuvassa on esitetty signaalin s ikkunoidun Fourier-muunnoksen itseisarvo ikkunafunktiolla w(t) e 4t2 missä s(t) sin(2π5t) kun t 1, s(t) sin(2π1t) kun 1 t 2 ja s(t) muuten. ikkunafunktiota w(k) k. Toisin sanoen, kun lasketaan Fourier-muunnoksia ja käänteismuunnoksia voi olla hyvä idea käyttää ikkunointia kiinteällä τ:n arvolla (esim. ) ja valita ikkunafunktioksi esim. e ɛt2 missä ɛ on pieni positiivinen luku. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
8 Ikkunoidun Fourier-muunnoksen käänteismuunnos ja energia Jos w S() (mikä on järkevä valinta) ja sup t s(t) (1 + t ) m < jollain m niin Fourier-muunnoksen käänteismuunnoksella saadaan s(t) (w(t τ)) 1 ei2πνt F (s, w)(τ, ν) dν, jos w(t τ). Mutta jos sen sijaan, että käänteismuunnoskaavassa jaetaan w(t τ):llä kerrotaan w(t τ):lla ja integroidaan τ:n suhteen saadaan 1 s(t) e i2πνt F (s, w)(τ, ν)w(t τ) dν dτ w(τ) 2 dτ Koska ĥ(ν) 2 dν h(t) 2 dt ja ν F (s, w)(τ, ν) on Fourier-muunnos niin F (s, w)(τ, ν) 2 dν dτ s(t) 2 w(t τ) 2 dt dτ w(τ) 2 dτ s(t) 2 dt w(τ) 2 dτ ŝ(ν) 2 dν, eli ikkunoitu Fourier-muunnos jakaa signaalin energian toisella tavalla tasoon 2. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Ikkunoitu Fourier-muunnos konvoluutiona Määritelmän mukaan F (s, w)(τ, ν) e i2πνt s(t)w(t τ) dt. Oletetaan, että ikkuna-funktio w S(). Seuraavaksi esitetään funktio t e i2πνt w(t τ) Fourier-muunnoksena ja käänteismuunnoksen avulla todetaan, että e i2πνt w(t τ) e i2πνt e i2π(t τ)µ ŵ(µ) dµ e i2πt(µ+ν) e i2πτµ ŵ(µ) dµ µ + ν γ e i2πtγ e i2πτ(ν γ) ŵ(γ ν) dγ. yt ŵ(γ ν) ŵ(ν γ)ja näin ollen funktio t e i2πνt w(t τ) on funktion γ e i2πτ(ν γ) ŵ(ν γ) Fourier-muunnos. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Ikkunoitu Fourier-muunnos konvoluutiona, jatk. Kertolaskukaavan nojalla pätee F (s, w)(τ, ν) ŝ(γ)e i2πτ(ν γ) ŵ(ν γ) dγ (ŝ (M τ ŵ))(ν). missä siis M x ψ(t) e i2πxt ψ(t). Huomaa, että kertolaskukaavan käyttö kuten edellä edellyttää että esim s L 1 () tai s L 2 () mutta vaimennetun distribuution Fourier-muunnoksen määritelmä on sama kaava joten yllä oleva tulos pätee myös jos s on vaimennettu distrubuutio koska jos h S () ja ψ S() niin (h ψ)(x) on distribuution h arvo testifunktiolla t ψ(x t). Diskreetti konvoluutio Jos a : Z C ja b : Z C ovat esim. sellaisia, että a(j) < ja a(j) < niin niiden konvoluutio a b on (a b)(k) c(k) a(k j)b(j), k Z. Kun tällaisen signaalin Fourier-muunnos on niin pätee â(ν) e i2πνj a(j), â b(ν) â(ν)ˆb(ν). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
9 Diskreetti jaksollinen konvoluutio Jos signaalit a : Z C ja b : Z C ovat jaksollisia jaksolla niin niiden (jaksollinen) konvoluutio a J b on ja pätee Konvoluutio :ssa (a J b)(k) a(k j)b(j), â J b(m) â(m)ˆb(m), m Z. Jos a : Z C ja b : Z C ovat sellaisia että a(j) b(j) kun j < niin k (a b)(k) a(k j)b(j), k, ja (a b)(k) kun k < ja kaikilla k on laskettava ainoastaan äärellinen summa. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Konvoluution laskeminen Fourier-muunnoksen avulla Jos luvut a(j) ja b(j) tunnetaan kun j,..., 1 ja halutaan laskea (a b)(k) k a(k j)b(j), k,..., 1, niin voidaan menetellä seuraavalla tavalla: Määritellään { a(j), j,..., 1, a 2 (j) a 2 (j) a 2 (j + 2), j Z,, j,..., 2 1, { b(j), j,..., 1, b 2 (j) b 2 (j) b 2 (j + 2), j Z,, j,..., 2 1, Sitten lasketaan jolloin c F 1 2 (F 2(a 2 ) F 2 (b 2 )) c(k) (a b)(k), k,..., 1. G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 Miksi? Koska jaksollisten jononjen konvoluution diskreetti Fourier-muunnos on Fourier-muunnosten tulo niin c a 2 J b 2 eli c(k) 2 a 2 (k j)b 2 (j), k Z. Koska b 2 (j) b(j) kun j,..., 1 ja b 2 (j) kun j,..., 2 1 niin c(k) a 2 (k j)b(j), k Z. Mutta jos nyt k 1 ja k + 1 j 1 niin + 1 k j 1 jolloin + 1 k j josta seuraa, että a 2 (k j) a 2 (k j + 2). Koska lisäksi a 2 (k j) a(k j) kun j k 1 niin Miksi?, jatk. c(k) k a 2 (k j)b(j) k a(k j)b(j), k,..., 1. Jos lisäksi pätee a(j) b(j) kun j ja 1 k 2 1 niin c(k) a 2 (k j)b(j) jk +1 a(k j)b(j) k a(k j)b(j). ja saadaan kaikki konvoluution termit indekseillä k, 1,..., 2 1 (ja tässä tapauksessa konvoluutio on kun k 2 1). G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta / 36
MS-C1420 Fourier-analyysi osa II
MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit
MS-C1420 Fourier-analyysi osa I
MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos
MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I
MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta
MS-C1420 Fourier-analyysi osa I
1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214
MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I
MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta
MS-C1420 Fourier-analyysi osa I
MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen
Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π
Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet
Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!
Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin
Positiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
Osa IX. Z muunnos. Johdanto Diskreetit funktiot
Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto
Luento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008
Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t
Mat Matematiikan peruskurssi L4, osa I
Fourier-sarjat..................... 3 Mat-.4 Matematiikan peruskurssi L4, osa I In matematics you don t understand tings. You just get used to tem. Jon von eumann G. Gripenberg Aalto-yliopisto 9. elmikuuta
Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42
Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien
Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
Signaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
Laplace-muunnos: määritelmä
Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla
4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu
8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
z muunnos ja sen soveltaminen LTI järjestelmien analysointiin
z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten
Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
SIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
Mat Matematiikan peruskurssi L4, osa II, todistuksia ym
Mat-.4 Matematiikan peruskurssi L4, osa II, todistuksia ym G. Gripenberg Aalto-yliopisto 4. maaliskuuta 2 G. Gripenberg Aalto-yliopisto L4, osa II, todistuksia ym. 4. maaliskuuta 2 / 68 Poissonin yhtälö...................
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
Ville Turunen: MS-C1420 Fourier-analyysi (5 opintopistettä)
Ville Turunen: MS-C142 Fourier-analyysi (5 opintopistettä) Esitiedot: Lineaarialgebra 1, Differentiaali- ja integraalilaskenta 1. 1 Johdanto Mitä Fourier-analyysi on? Fourier-analyysi on läsnä kaikkialla,
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
Cantorin joukko LUKU 8
LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja
Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan
A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Konvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
Kuinka määritellään 2 3?
Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt
8. marraskuuta 216 Laplace-muunnoksen määritelmä, olemassaolo ja perusom Integraalimuunnos Integraalimuunnos on yleisesti muotoa F(u) = K(t, u)f (t)dt missä K on integraalin ydin. Tässä K ja f ovat tunnettuja.
Toispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,
Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution
Jaksollisen signaalin spektri
Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta
= vakio = λ. V (x) V (0) = V (l) = 0.
6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän
Analyysin peruslause
LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Kompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos A! Modulaatioiden
2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu
2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,
Matematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.
Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
Ville Turunen: ( ) MS-C1420 Fourier-analyysi (5 opintopistettä)
Ville Turunen: (3.9.215) MS-C142 Fourier-analyysi (5 opintopistettä) Esitiedot: Matriisilaskenta, Differentiaali- ja integraalilaskenta 1. 1 Johdanto Mitä Fourier-analyysi on? Fourier-analyysia on kaikkialla,
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,
Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,
LUKU 6. Mitalliset funktiot
LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.
Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia
MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
ELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.
7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
f(x) sin k x dx, c k = 1
f ( n) n 3. Fourier n sarjoista I [1, 8.16, luku 11], [, luku 15], [3, luku IX, 8 9]. [5, luku I], [6, luku XII, 3], [7, luku 8], [8, luku 4], [9, luku 8] Trigonometrinen polynomi on muotoa a + ( ak cos
V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z
5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon
Sarjoja ja analyyttisiä funktioita
3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan
=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin
FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Dynaamisten systeemien identifiointi 1/2
Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion
1 Supremum ja infimum
Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,
Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio
Kokonaislukuoptimointi
Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun
Fourier-sarjat ja -muunnos
24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
MATP153 Approbatur 1B Harjoitus 4 Maanantai
MATP53 Approbatur B Harjoitus 4 Maanantai 3..05. Halutaan määritellä funktio f siten, että f() =. Missä pisteissä + funktio voidaan määritellä tällä lausekkeella? Missä pisteissä funktio on näin määriteltynä
Luento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;
3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun
6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
Tasainen suppeneminen ja sen sovellukset
Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja