1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT

Koko: px
Aloita esitys sivulta:

Download "1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT"

Transkriptio

1 1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama (häiriö) etenee systeemissä paikasta toiseen. Tällaisia häiriöitä (aaltoja) ovat esimerkiksi ääniaallot, veden pinnan aaltoilu, maanjäristykset, valo, tv- ja radiolähetykset sekä yleensä sähkömagneettiset aallot. Aaltoja on siis kaikkialla ja niitä joudutaan käsittelemään paljon esimerkiksi fysikaalisissa, teknillisissä ja biologisissa tieteissä. Tämän vuoksi tarvitaan teoreettista aaltoliikeoppia, joka yhtenäistää eri luonnontieteissä esiintyvien aaltoihin liittyvien ilmiöiden kuvausta. Kuvassa (a) väliaineena on jännitetty köysi. Köyttä häiritään heilauttamalla sen toista päätä ylös-alas-suunnassa nopeasti. Syntyy pulssi, joka etenee köyttä pitkin muotonsa säilyttäen. Köyden eri osaset läpikäyvät saman poikkeaman myöhempinä ajanhetkinä kuin köyden pää alussa. Koska osaset poikkevat poikittaissuunnassa (kohtisuorasti, transverse) häiriön etenemissuuntaa vastaan, niin aalto on ns. poikittainen aalto (transverse wave). Poikittaiseen aaltoon liittyy aina myös ns. polarisaation käsite. Jos köyden osasten liike tapahtuu yhdessä ainoassa tasossa, niin kysymyksessä on tasopolarisoitu eli lineaarisesti polarisoitu aalto. Huom! Sähkömagneettinen (ei-mekaaninen) aaltoliike on myös poikittaista aaltoliikettä. Siinä sähkö- ja magneettikentät värähtelevät kohtisuorasti aallon etenemissuuntaa vastaan. Tässä ja seuraavassa kappaleessa, tarkastelemme ns. mekaanisia aaltoja, ts. aaltoja, jotka tarvitsevat jonkin konkreettisen väliaineen missä edetä. Esimerkki tällaisesta aallosta on ääniaalto, joka etenee paineen muutoksina ilmassa. Esimerkkinä ei-mekaanisesta aallosta voidaan mainita vaikkapa valoaalto, joka voi edetä myös tyhjiössä. 1.1 AALTOJEN TYYPIT Mekaaninen aalto on häiriö, joka etenee jossakin materiaalissa eli ns. väliaineessa (medium). Aallon edetessä väliaineen hiukkaset (osaset, partikkelit) poikkeavat hetkellisesti tasapainoasemistaan. Aallon tyyppi riippuu siitä, mihin suuntaan poikkeaminen tapahtuu. Asiaa valaistaan seuraavan sivun kuvassa. Kuvassa (b) väliaineena on sylinterissä oleva neste tai kaasu. Väliaineeseen aiheutetaan häiriö heilauttamalla mäntää kerran nopeasti edestakaisin. Paineen muutos (pulssi) liikkuu pitkin sylinteriä siten, että väliainehiukkaset poikkeavat tasapainoasemistaan pulssin etenemissuunnassa. Aalto on ns. pitkittäinen aalto (longitudinal wave).

2 3 Kuvassa (c) väliaineen muodostaa astiassa oleva vesi, johon synnytetään pinta-aalto. Veden pinnalla etenevässä aallossa vesiosaset poikkeavat sekä poikittaisessa että pitkittäisessä suunnassa, joten aallolla on sekä poikittainen että pitkittäinen komponentti. Esimerkin aalloilla (kuten kaikilla) on kolme yhteistä seikkaa: 1) Häiriö etenee väliaineessa tietyllä vakionopeudella v, eli ns. aallon etenemisnopeudella (wave speed). On huomattava, että häiriön nopeus ei ole sama kuin väliaineen hiukkasten nopeus niiden värähdellessä tasapainoasemiensa ympäristössä. ) Väliaine itsessään ei etene paikasta toiseen. Se mikä etenee on häiriö (sen muoto). 3) Systeemin poikkeuttaminen tasapainoasemastaan vaatii energiaa. Aaltoliike kuljettaa siis mukanaan energiaa ja liikemäärää. Muita tyyppijakoja: Aaltoliikkeet voidaan luokitella myös sen mukaan, miten monessa dimensiossa (ulottovuudessa) aalto etenee: - 1-dimensionaalinen aaltoliike esim. aalto jännitetyssä langassa tai kitaran kielessä - -dimensionaalinen aaltoliike esim. värähtelevä levy tai pinta-aallot vedessä - 3-dimensionaalinen aaltoliike esim. ääni- ja valoaallot Lisää käsitteitä: - Pulssi: Jos esimerkiksi vieterin päätä poikkeutetaan vain kerran (kuva), niin jokainen vieterin osanen on levossa, kunnes aalto saapuu sen kohdalle. Aallon ohituksen jälkeen osanen on jälleen levossa. - Pulssijono: Esimerkiksi köyden päätä poikkeutetaan jatkuvasti. - Jaksollinen aalto: Jos köyden pään liikuttelu on jaksollista (periodista), syntyy periodinen aaltojono. Näistä yksinkertaisin on harmoninen aalto (kuva). 4 Voidaan osoittaa (Fourier-analyysi), että mikä tahansa periodinen aalto voidaan esittää harmonisten aaltojen lineaarikombinaationa. Tämän vuoksi harmoniset aallot ovat erityisen tärkeitä ja periaatteessa riittää tarkastella vain niiden teoriaa. - Aaltorintama on 3-ulotteisessa aallossa niiden pisteiden muodostama pinta, jossa aalto on samassa vaiheessa (esim. aaltojen harjojen muodostama pinta). Homogeenisessä ja isotrooppisessa väliaineessa aaltorintama on kohtisuorassa etenemissuuntaa vastaan. - Säde puolestaan on suora, joka on kohtisuorassa aaltorintamaa vastaan, ts. osoittaa aallon etenemissuuntaan. Pistemäinen lähde synnyttää palloaallon, jonka aaltorintamat ovat pallopintoja (kuva a). Kaukana lähteestä pallopinnat suoristuvat lähes tasoiksi. Kyseessä on tasoaalto (kuva b).

3 5 1. AALTOFUNKTIO JA AALTOYHTÄLÖ Aallon ominaisuuksien yksityiskohtaiseen matemaattiseen kuvaamiseen tarvitaan ns. aaltofunktio (wave function). Aaltofunktio on funktio, joka kertoo väliaineen hiukkasten poikkeaman tasapainosta millä tahansa ajanhetkellä. Funktio voi olla aaltofunktio vain, jos se toteuttaa ns. aaltoyhtälön (wave equation). Tarkastellaan esimerkkinä aallon (pulssin) etenemistä jännitetyssä langassa. Asetetaan lanka x- akselin suuntaiseksi ja olkoot langan osasten poikkeamat y- suuntaisia (kuva). Kysymyksessä on poikittainen aalto, jonka aaltofunktio on y f(,) xt. (1..1) Aaltofunktio kertoo paikassa x olevan langan osasen poikkeaman y ajanhetkellä t. Kysymyksessä on siis kahden muuttujan funktio. Tarkastellaan pitkässä kitkattomassa langassa etenevää pulssia. Ajanhetkellä t 0 langan muoto olkoon y f( x) (kuva alla). Kun kitkavoimat ovat pieniä, pulssi etenee langassa samanmuotoisena ja vakionopeudella v. Siten ajanhetkellä t langan muoto on 6 y f( xv t). (1..) Funktio antaa siis saman muodon pisteessä xv t ajanhetkellä t kuin mikä langalla oli ajanhetkellä t 0 pisteessä x 0. Funktio (1..) esittää positiivisen x-akselin suuntaan etenevää aaltoa. Vastaavasti on helppo päätellä, että negatiivisen x-akselin suuntaan etenevää aaltoa kuvaa funktio y f( xv t). Vuonna 1747 Jean Le Rond d'alambert otti matematiikassa käyttöön osittaisdifferentiaaliyhtälöt ja kirjoitti samana vuonna artikkelin värähtelevistä kielistä, jossa käsite differentiaalinen aaltoyhtälö esiintyy ensimmäisen kerran. Kysymyksessä on lineaarinen toisen kertaluvun osittaisdifferentiaaliyhtälö, joka yksiulotteisen aallon tapauksessa on muotoa y 1 y. (1..3) x v t On helppo todeta, että funktiot y f( xv t) toteuttavat tämän aaltoyhtälön. Aaltoyhtälö on yksi fysiikan tärkeimmistä yhtälöistä. Kaikki pulssit, aallot ja etenevät häiriöt, riippumatta siitä ovatko ne sinimuotoisia tai muuten periodisia, toteuttavat aaltoyhtälön. Kun aaltofunktio tunnetaan, siitä voidaan laskea poikkeaman y lisäksi mm. langan osasten nopeudet v y y (,) xt f(,) xt t t, (1..4) kiihtyvyydet v y ay (,) xt f(,) xt (1..5) t t ja langan muoto millä ajanhetkenä tahansa.

4 7 Vielä aallon nopeudesta (vauhdista) v : Kun aallon etenemistä seurataan ajan funktiona, tietyltä aallon vaiheelta (esim. pulssin huippukohdalta) vaaditaan, että poikkeama y säilyy vakiona, ts. on myös oltava xv t = vakio. Kokonaisdifferentiaali d dx dt 1dx v dt 0 x t Antaa tuloksen dx dt = v Nopeus on ns. vaihenopeus. Esimerkki: Esittääkö funktio yexp( xv t) aaltoa? 1. tapa: kyllä esittää, sillä se on muotoa y f( xv t). Aalto etenee positiivisen x-akselin suuntaan. Huomaa, että kysymyksessä ei ole periodinen aalto.. tapa: käytetään aaltoyhtälöä y exp( xvt) exp( xv t) y x x y v exp( xvt) v exp( xvt) v y t t Kun nämä tulokset sijoitetaan aaltoyhtälöön (1..3) y y, mikä on totta, ts. funktio toteuttaa yhtälön ja esittää siten aaltoa. Esimerkki: Jännitetyssä köydessä etenevän pulssin muotoa ajanhetkellä t 0 kuvaa SI-yksiköissä funktio y3 /(x 1). Mikä funktio kuvaa pulssia ajanhetkellä t, kun pulssi etenee positiivisen x-akselin suuntaan vauhdilla m/s? Hahmottele pulssi koordinaatistoon ajan hetkillä t 0 ja t 1 s. 8 Vaatimus on, että muuttujat x ja t esiintyvät muodossa xv t. On siis kirjoitettava 3 3 y, ( xvt) 1 ( x t) 1 missä siis v m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä ja aika t on sekunteina. Jos yksiköt kirjoitetaan näkyviin, niin edellä esitetty tulos on muotoa 3 3 m y. m ( x t) 1 m Ohessa Mathematica-ohjelmalla piirretyt kuvaajat vaadituilla ajanhetkillä t 0 ja t 1 s. Kuvaajassa vaaka-akseli (x-akseli) ja pystyakseli (poikkeama- eli y-akseli) ovat metreinä. s Kuvaajista nähdään, että yhden sekunnin aikana pulssi on todellakin edennyt metriä ja vielä siten, että sen muoto säilyy.

5 9 1.3 HARMONINEN AALTO Mielenkiintoinen ja tärkeä erikoistapaus aallosta on ns. harmoninen aalto, joka on muotoa sin ( v ) tai y Acos k( x t) y A k x t v. (1.3.1) Näissä A ja k ovat vakioita, joiden arvoja voidaan muutella aallon silti menettämättä harmonisuuttaan. Nyt sin cos( / ), joten siniä ja kosinia erottaa toisistaan vain /:n radiaanin vaihesiirto. Jatkossa riittää siis tarkastella vain jompaa kumpaa näistä harmonisista funktioista. Valitaan sini: y Asin k( xv t). (1.3.) Harmoninen aalto on kahden muuttujan (x ja t) funktio. Seuraavassa tarkastelemme kahta tavallisimpaa harmonisen aallon esitystapaa: (a) Olkoon t vakio Kuvassa on aallon aallonpituus ja A amplitudi. Pisteissä x ja x aallolla on sama poikkeama (siis y), joten v v Asin k( x t) k Asin kx ( t) Asin kx ( t) Koska sinin periodi on tunnetusti, saadaan v. 10 k k. (1.3.3) Tässä k on ns. etenemisvakio eli ns. aaltoluku. (b) Olkoon x vakio Kuvassa T on aallon periodi eli jakson aika ja A on amplitudi. Hetkillä t ja t T aallolla on sama poikkeama, joten v v Asin k( x t) k T Asin kx ( t) Asin kx ( ( t T)) v v. Nyt saadaan kvt v, (1.3.4) kt ( / ) T T missä 1 (1.3.5) T on aallon taajuus. Usein taajuutta merkitään myös f:llä. Aaltoliikkeen yhteydessä (varsinkin optiikassa) symboli on kuitenkin vakiinnuttanut asemansa. Kulmataajuus määritellään yhtälöllä f. (1.3.6)

6 11 Edellä esille tulleita suureita käyttäen harmoninen aalto voidaan esittää mm. seuraavissa muodoissa: y Asin k( xv t), y Asin kx t, x t y Asin T. Kaikissa tapauksissa sinifunktion argumenttia, joka riippuu siis paikasta ja ajasta, sanotaan aallon vaiheeksi (vaihekulma). Esimerkiksi k( xv t) kxt. (1.3.7) Usein vaiheessa tarvitaan myös vakio-osa, jolloin kirjoitetaan kxt, (1.3.8) missä 0 on muuttujista x ja t riippumaton ns. vaihevakio. Monesti kokonaisvaihe kirjoitetaan myös järjestyksessä 0 t kx. (1.3.9) Näin voidaan tehdä, mutta on muistettava, että valittua järjestystä ei kannata muuttaa kesken kaiken. Tässä kurssissa käytämme pääasiassa järjestystä (1.3.8). Kun x ja t muuttuvat siten, että vaihe pysyy vakiona, poikkeama y Asin säilyy myös vakiona. Vakiovaiheisuus kuvaa aallon tietyn pisteen liikettä; pisteen nopeus on sama kuin aallon nopeus. Aallon tämä ns. vaihenopeus saadaan siis laskemalla (ks. sivu 7) josta d k( dx v dt) 0, dx dt v. 0 1 Esimerkki: Etenevää aaltoa kuvaa SI-yksiköissä funktio y( x, t) 0.35sin 3 x10 t / 4. Määritä aallon amplitudi, aaltoluku, aallonpituus, kulmataajuus, taajuus ja vauhti sekä etenemissuunta. Laske lisäksi kohdassa x 0.10 m olevan väliainehiukkasen poikkeama ajanhetkellä t 0. - amplitudi A 0,35m (Huom! Yksiköt kirjoitettava näkyviin) - aaltoluku k 3 (1/m) - aallonpituus m k 3 - kulmataajuus 10 (1/s) - taajuus f 5Hz (Huom! 1/s = Hz = Hertsi) 1 - vauhti v m5 3.33m/s 3 s - etenee positiivisen x akselin suuntaan. Vauhti saadaan myös vaiheesta 3 x10 t /4 differentioimalla d 3 dx 10 dt 0, josta dx 10 v 3.33m/s. dt 3 Aalto etenee positiivisen x-akselin suuntaan. Poikkeama paikassa x 0.10 m hetkellä t 0. y(0.10,0) 0.35sin / 4, 0.35sin 3 /10 / sin 11 / 0 = 0.346m.

7 Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx t), y Ae joka Eulerin kaavalla avautuu muotoon y Acos( kxt) iasin( kxt). Kompleksiesitys sisältää siis sekä sini- että kosiniaallon. Erilaisia ilmiöitä tarkasteltaessa on usein laskennollisesti kätevämpää operoida kompleksiesityksellä kuin todellisella sini- tai kosinimuodolla. Monesti kirjoitetaan y x t i( kx t) (, ) Re{ Ae }, jonka reaaliosa siis esittää todellista (reaalista) aaltoa (kosinimuodossa). On myös tavallista, että aallossa reaaliosan ottamista tarkoittava symboli Re jätetään kirjoittamatta. Tällöin on syytä olla varovainen. Jos aaltoon kohdistuvat laskuoperaatiot ovat lineaarisia (yhteenlasku, vakiolla kertominen,...), niin reaaliosa voidaan ottaa vasta lopputuloksesta ja näin saadaan oikea tulos. Mutta, jos laskutoimitukset eivät ole lineaarisia (neliöjuuri, toiseen korottaminen,...) reaaliosa on otettava ennen operaation suorittamista. Tästä on yksi tärkeä poikkeus. Jos lasketaan neliöllisen lausekkeen aikakeskiarvoa, riittää kun reaaliosa otetaan vasta lopputuloksesta. Esimerkki: Kirjoita aallon y( x, t) Asin( kxt ) kompleksiesitys siten, että yxt (,) on kompleksiesityksen reaaliosa. 0 i Koska y( x, t) Re{ Ae } Acos Asin( / ), kompleksiesityksen on oltava muotoa y Ae. i( kx t 0 /) AALLON NOPEUS Fysikaaliset suureet, jotka määräävät poikittaisen aallon etenemisnopeuden köydessä ovat köyden jännitysvoima (tension) ja köyden massa pituusyksikköä kohti. Jälkimmäista sanotaan myös lineaariseksi massatiheydeksi. Jännitysvoimalla puolestaan tarkoitetaan sitä voimaa, joka tarvittaisiin pitämään köyden osia edelleen yhdessä, jos köysi leikattaisiin poikki. Jännityksen lisääminen kasvattaa palauttavaa voimaa, joka pyrkii oikaisemaan köyden häiriön edetessä siinä. On helppo kuvitella, että jännityksen lisääminen kasvattaa aallon nopeutta. On myös helppo arvata, että massan kasvattaminen hidastaa nopeutta, koska köyden liikkeet tulevat jähmeämmiksi. Johdetaan seuraavassa aallon nopeudelle kaava, ja katsotaan siitä sattuivatko arvauksemme kohdalleen. Seuraavassa kuvassa tarkastellaan täysin notkeaa köyttä, jonka massa pituusyksikköä kohti on (kg/m) ja johon tasapainoasemassa kohdistuu jännitysvoima F. Oletetaan lisäksi, että köysi on painoton, joten se kuvassa (a) on täsmälleen suorassa.

8 15 Hetkellä t 0 köyden päähän kohdistetaan lisävoima F y ylöspäin, jolloin köysi lähtee nousemaan. Köysi on painoton, joten noustessaan se muodostaa kuvan (b) mukaisen kolmion, missä piste P erottaa liikkuvan osan vielä liikkumattomasta. Köyden liike on nyt se häiriö (pulssi, aalto), jonka jo aikaisemmin olemme todenneet etenevän vakionopeudella. Nyt siis piste P liikkuu vakionopeudella v. Vakiovoima F y ei tässä tapauksessa johda kiihtyvään liikkeeseen, koska massa, johon voima kohdistuu, kasvaa koko ajan. Siis pisteen P vasemmalla puolella oleva köyden osa liikkuu ylöspäin vakionopeudella v y. Jos liike olisi kiihtyvä, piste P etenisi myös kiihtyvällä nopeudella ja syntyisi ristiriita. Hetkellä t köyden pää on noussut matkan v y t ja piste P edennyt matkan v t (kuvan b tilanne). Voimien ja köyden muodostamista kolmioista voimme kirjoittaa Fy F yt v v t Fy y F v v. Seuraavaksi sovellamme mekaniikasta tuttua impulssiteoreemaa. Voiman F y impulssi Ft, y joka on kehittynyt aikavälillä 0 t, menee liikkuvan köydenosan liikemäärän muutokseksi mv y 0. Tulee F t mv. Tässä m v t on liikkuvan köydenosan massa. On siis y y v y F t vv t y, v ja kun tästä ratkaistaan v, saadaan F v. (1.4.1) 16 Intuitiivinen pohdiskelumme alussa johti siis oikeaan tulokseen. Aallon nopeus kasvaa, kun jännitysvoima ( F ) kasvaa ja pienenee, kun massa pituusyksikköä kohti ( ) kasvaa. Kaavan neliöjuurta emme intuitiivisesti keksineet, mutta se paljastuu helposti yksikkötarkastelulla. Tuloksessa (1.4.1) jännitysvoima F edustaa väliaineen (köyden) kimmoisuutta ja lineaarinen massatiheys sen hitautta. Yleisesti pätee kaikille systeemeille kimmoisuus v (1.4.) hitaus Esimerkki: Kolme L:n pituista köyttä yhdistetään, jolloin kokonaispituudeksi tulee 3L. Ensimmäisen osan lineaarinen massatiheys on 1, toisen 41 ja kolmannen 3 1/4. Yhdistettyyn köyteen kohdistetaan jännitysvoima F. a) Mikä jännitysvoima vaikuttaa osaköysissä? b) Kuinka kauan pulssilta kestää kulkea köyden läpi? Huomaa, että jännitysvoima F vaikuttaa köyden molemmissa päissä. Jos se vaikuttaisi vain toisessa, köysi joutuisi kiihtyvään liikkeeseen (muistele mekaniikkaa). a) Jokaisessa osaköydessä vaikuttaa sama jännitysvoima F. Jos esimerkiksi ensimmäisen ja toisen osaköyden liitoskohdassa

9 17 ensimmäiseen osaan vaikuttaisi jokin muu voima (esim. F /3), niin ensimmäinen osaköysi joutuisi kiihtyvään liikkeeseen, koska sen toisessa päässä vaikuttaa F. b) Pulssin kulkuaika köyden läpi on L L L tkok t1 t t3 L v1 v v3 1 3 F F F L1 L. F F 1.5 AALLON ENERGIA Tarkastellaan taas köydessä positiivisen x-akselin suuntaan etenevää poikittaista aaltoa. Viereisessä kuvassa on esitetty hyvin pieni osa värähtelevästä köydestä pisteen a ympäristöstä. Pisteeseen a kohdistuu jännitysvoima F sekä pystysuorassa suunnassa liikkeen aiheuttava voima F y. Tämä voima F y on juuri se voima, jonka tekemä työ siirtyy köyttä pitkin eteenpäin oikealle. Köyden vasemmassa päässä tämä voima synnytetään käden liikkeellä, ks. kuva sivulla Köyden suunnassa (kulmakerroin y/ x) kokonaisvoima syntyy kahdesta komponentista, kuva (b), ja kuvan perusteella yxt (,) Fy(,) x t F, (1.5.1) x missä negatiivinen merkki on tarpeen, koska suhde Fy / F on negatiivinen silloin kun köyden kulmakerroin (slope) y/ x on positiivinen. Kun piste a liikkuu y-suunnassa, voima F y tekee työtä. Teho on yxt (,) yxt (,) Pxt (,) Fy(,) xtvy(,) F. (1.5.) x t Tämä on hetkellinen teho, jolla pisteen a vasemmalla puolella oleva köyden osa siirtää energiaa pisteeseen a. Kaava siis kertoo millä teholla energiaa virtaa köyttä pitkin oikealle. Kaava on voimassa kaikenlaisille köydessä eteneville aalloille. Sinimuotoisten eli harmonisten aaltojen tapauksessa aaltofunktio on y( x, t) Asin( kx t), josta yxt (,) kacos( kxt), x yxt (,) Acos( kxt), t ja hetkelliseksi tehoksi tulee Kun vielä käytetään relaatioita P( x, t) FkA cos ( kx t). (1.5.3) v k ja v F /, saadaan P( x, t) F A cos ( kx t). (1.5.4) Tästä näemme, että energia ei koskaan virtaa aallon etenemissuuntaa vastaan (teho aina positiivinen).

10 19 Funktion cos ( kx t) keskimääräinen arvo on 1/, joten keskimääräiseksi tehoksi saamme 1 Pav F A. (1.5.5) Energian siirtymisnopeus on siis verrannollinen amplitudin neliöön ja taajuuden neliöön. Yleistys: 1 Pav (hitaus) (kimmoisuus) A (1.5.6) Esimerkki: Köyttä ( kg/m) jännitetään 80.0 N:n voimalla. Millä keskimääräisellä teholla köyteen on syötettävä energiaa, jos siihen halutaan synnyttää harmoninen aalto, jonka taajuus on 60 Hz ja amplitudi 6.00 cm? Sovelletaan tulosta (1.5.5) kg/m F 80.0 N (1 N = 1 kg m/s ) 60 1/s A m 1 Pav F A = kg m 51W. s s kg m Nm J W 3 s s s 0 Esimerkki: Jännitetyssä langassa, jonka lineaarinen massatiheys on kg/m, etenee harmoninen aalto. 1 1 y( x, t).30mm cos (6.98 m ) x(74 s ) t Millä keskimääräisellä teholla aalto kuljettaa energiaa? Keskimääräinen teho yhtälöstä (1.5.5) Pav F A v A A, k missä ensin on käytetty tulosta (1.4.1) F v. k k Aaltofunktiosta luemme: amplitudi 3 A.3010 m kulmataajuus 74 s -1 aaltoluku k 6.98 m -1, ja lineaarinen massatiheys on Lopulta tulee Pav kgm 3 m ms = W. v ja sitten kg/m. kg m kgm m Nm J Yksikkötarkastelu: m W. 3 m s s s s s

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava,

Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava, 8 Ratkaisu: Vaatimus on, että muuttujat x ja t esiintyvät muodossa x-v t. On siis kirjoitettava 3 3 y = =, ( x- vt) + 1 ( x- t) + 1 missä siis v = m/s. Tulos on SI-yksiköissä, joten x ja y ovat metreinä

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa

Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa Kompleksiesitys: Harmoninen aalto esitetään usein kompleksimuodossa 13 i( kx-w t) %, y = Ae joka Eulerin kaavalla avautuu muotoon y% = Acos( kx- wt) + iasin( kx-wt). Kompleksiesitys sisältää siis sekä

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

766329A Aaltoliike ja optiikka

766329A Aaltoliike ja optiikka 76639A Aaltoliike ja optiikka Seppo Alanko Oulun yliopisto Fysiikan laitos Kevät 5 Perustuu oppikirjoihin: H. D. Young and R. A. Freedman University Physics, Addison-Wesley th ed., and th ed., 4 F. L.

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

2 AALTOLIIKKEIDEN YHDISTÄMINEN

2 AALTOLIIKKEIDEN YHDISTÄMINEN 1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

= 0.175m, 0.525m, 0.875m,...

= 0.175m, 0.525m, 0.875m,... 9 (a) Esitä seisovan aallon aaltofunktio. (b) Paikallista ne köyden pisteet, jotka eivät liiku ollenkaan. (c) Paikallista ne köyden pisteet, jotka liikkuvat eniten ja laske vastaavat maksimipoikkeamat,

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

16 Ääni ja kuuleminen

16 Ääni ja kuuleminen 16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Luento 14: Ääniaallot ja kuulo

Luento 14: Ääniaallot ja kuulo Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA

3.1 PITKITTÄISEN AALLON NOPEUS JA ENERGIA 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves) Tarkastelemme nyt ääntä lähinnä

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Luento 14: Ääniaallot ja kuulo

Luento 14: Ääniaallot ja kuulo Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan

Lisätiedot

Sinin muotoinen signaali

Sinin muotoinen signaali Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

HARJOITUS 4 1. (E 5.29):

HARJOITUS 4 1. (E 5.29): HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot