Hapettimen sitoessa elektronin muodostuu pelkistin (hapetin pelkistyy) ja pelkistimen luovuttaessa elektronin muodostuu hapetin (pelkistin hapettuu).
|
|
- Reino Hukkanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kennon komponenteista elektrolyytti ja vastaelektrodi Elektrolyytti muodostuu liuottimesta sekä hapetin-pelkistin-parista (redox pair). Jälkimmäinen on ionipari, joka pystyy luovuttamaan (pelkistin) ja sitomaan (hapetin) varausta (elektroneja) sekä siirtämään sitä paikasta toiseen liuottimessa. Hapettimen sitoessa elektronin muodostuu pelkistin (hapetin pelkistyy) ja pelkistimen luovuttaessa elektronin muodostuu hapetin (pelkistin hapettuu). Selvitetään elektrolyytin toimintaa kennossa jodidi-trijodidi-parin (I /I 3 ) avulla. Aktiivisella elektrodilla I -ionit hapettuvat eli luovuttavat elektroneja e väriainekationeille: 3I 2e + I 3.
2 Kennon komponenteista elektrolyytti ja vastaelektrodi Platinoidulla vastaelektrodilla I 3 platinapinnoitteen välityksellä: I 3 + 2e 3I. pelkistyy eli sitoo elektroneja Jotta edelliset reaktiot pysyvät käynnissä, tulee ionien siirtyä elektrodien välillä. Saadaan sähkövirta aktiiviselta elektrodilta vastaelektrodille. Jotta koko kennolle saadaan energiatilamalli, huomataan, että vastaelektrodilla kvasi-fermi-energiaa vastaava suure on vastaelektrodilla tapahtuvan reaktion redox-energia E redox. Nyt koko kennon energiatilamallia voidaan havainnollistaa seuraavalla kuvalla.
3 Kennon komponenteista elektrolyytti ja vastaelektrodi E Puolijohde Väriaine Vastaelektrodi e E(S ) E F e E redox E(S) Kennon jännite vastaa kvasi-fermi-energian ja redox-energian eroa: e 0 V = E F E redox.
4 Kennon komponenteista elektrolyytti ja vastaelektrodi Tärkeitä ominaisuuksia Ensimmäinen edellytys kennoon kelpaavalta elektrolyytiltä on redox-energian suotuisa sijainti väriainekationin perustilaan nähden. Tämä mahdollistaa väriainekationien pelkistymisen elektrolyytin vaikutuksesta. Tyypillisesti elektrolyytin hapetin-pelkistin-parina käytetään jodiditrijodidi-paria (I /I 3 ). Sen redox-energia on reilusti ruteniumväriaineen perustilan yläpuolella (n. 0.7eV ). Muita tärkeitä hapetin-pelkistin-parin ominaisuuksia ovat ainakin seuraavat:
5 Kennon komponenteista elektrolyytti ja vastaelektrodi - heikko valon absorptio näkyvällä alueella, - hapetin-pelkistin-parin hyvä liukoisuus liuottimeen, - ionien suuri diffuusiokerroin liuottimessa, - hapetin- sekä pelkistin-muodon hyvä kemiallinen stabiilisuus. Liuottimelta vaadittavia ominaisuuksia puolestaan ovat seuraavat: - liuottimen tulee pysyä nestemäisenä vähintään lämpötilavälillä 40 C 80 C, - liuotin ei saa liuottaa väriainetta,
6 Kennon komponenteista elektrolyytti ja vastaelektrodi - sopiva viskositeetti, - halpa hinta ja myrkyttömyys. Tyypilliset liuottimet ovat orgaanisia. Esimerkkinä liuottimista on asetonitriili, jota käyttämällä on saatu suurin hyötysuhde. Kuitenkin - se haihtuu jo 82 C:ssa, - se on myrkyllinen. Vaihtoehtoisilla liuottimilla on päästy eroon näistä ongelmista, mutta hyötysuhde on laskenut.
7 Kennon komponenteista elektrolyytti ja vastaelektrodi Valmistus I /I 3 -redox elektrolyytti valmistetaan lisäämällä liuottimeen jodia I 2, kaliumjodidia KI, litiumjodidia LiI, sekä kahta muuta jodipitoista yhdistettä. Vastaelektrodin platinapinnoite voidaan tehdä monella eri menetelmällä, ja pinnoitteen stabiilisuus riippuu suuresti tästä menetelmästä.
8 Kotelointi Kuvassa periaatekuva kennon koteloinnista. Eristyskotelolta vaadittavia ominaisuuksia ovat seuraavat:
9 Kotelointi - se ei saa läpäistä elektrolyyttiä, happea ja vettä, - se ei saa olla kemiallisesti aktiivinen elektrolyytin ja muiden kennon komponenttien kanssa, - sen tulee tarttua hyvin vastaelektrodiin ja johtavaan alustaan. Useita materiaalivaihtoehtoja on kokeiltu, esim. epoksia sekä sopivalla polymeerikalvolla päällystettyä alumiinifoliota.
10 Tutkimustavasta Kennon toiminnassa hyödynnetään puolijohteen ja elektrolyytin rajapinnalla tapahtuvia kemiallisia reaktioita, jotka tapahtuvat mikroskooppisessa mittakaavassa. Toisaalta kennon avulla tuotetaan sähköenergiaa, joka ilmaistaan jännitteen ja virran avulla (makroskooppisia suureita). Tutkimusalue pitää siis sisällään ongelman mikroskooppisessa ja makroskooppisessa mittakaavassa käytettävien mallien välisestä yhteydestä. Koska tätä yhteyttä ei täysin tunneta, varsinaista mallintamisen ideaa ei päästä kunnolla hyödyntämään kennon kehittämiseksi: - mikroskooppisten yksityiskohtien vaikutusta kennon toimin-
11 Tutkimustavasta taan ei voida kunnolla ennustaa. Yleensä kennon komponentteja yritetäänkin parantaa yrityksen ja erehdyksen menetelmällä: 1. tehdään jokin muutos mikroskooppisessa mittakaavassa, 2. rakennetaan kenno, 3. mitataan valmiista kennosta oleelliset ominaisuudet, vrt. oheinen taulukko. Toisaalta mallien avulla pystytään jossain määrin ymmärtämään ja ennustamaan kennon rakenteen vaikutuksia kennon toimintaan. Tällaisten mallien tulee pystyä kuvaamaan varauksen liikettä kennon sisällä.
12 Tutkimustavasta
13 Kennon mesoskooppinen mallintaminen Kuten fysiikassa yleisestikin, myös kennon tapauksessa käytännön mittaukset voidaan tehdä vain mittauskohteen reunalta. Tämä tarkoittaa, että mittauskohteen sisäosien vaikutuksien selvittämiseksi mitattaviin suureisiin tarvitsemme mallin, joka liittää suureiden arvot mittauskohteen reunalla niiden arvoiksi mittauskohteen sisällä. (Matemaattisesti tämä tarkoittaa ns. reunaarvotehtävää.) Ensimmäinen kysymys on mitä suureita tarvitaan?. Kennon jännite ja virta voidaan antaa potentiaalin φ ja virranti-
14 Kennon mesoskooppinen mallintaminen heyden J avulla seuraavasti: V = φ(johtava alusta) φ(vastaelektrodi), I = J nda. elektrodin reunapinta Toisaalta kennoon (taajuudella f) saapuva säteilyteho voidaan antaa fotonivuon J hν avulla: P light = hf J hν nda, jossa hf on fotonin energia. kennon reunapinta
15 Kennon mesoskooppinen mallintaminen Suureet φ, J ja J hν saavat arvoja jokaisessa pisteessä kennon sisällä, eli ne mallintavat tapahtumia kennon sisällä. Tässä tapauksessa ongelmana on määrittää nämä suureet tunnetulla säteilyteholla ja tunnetulla kuormaresistanssilla. Perusidea on se, että haetaan tarpeeksi ehtoja jotka suureiden tulee toteuttaa. Nämä ehdot saadaan fysiikan laeista. ehdot kootaan yhtälöksi, jonka ratkaisuna saadaan suureiden arvot jokaisessa pisteessä kennon sisällä. Jotta voimme hyödyntää tunnettuja fysiikan lakeja, tarvitsemme tietoa kemiallisesta koostumuksesta kennossa.
16 Kennon mesoskooppinen mallintaminen Aiemmin kuvatun toimintaperiaatteen mukaan tiedämme (?), että kennon sisällä on ainakin johtavuusvyön elektroneja, loukkuuntuneita elektroneja, I -ioneja ja I 3 -ioneja. Koska tavoitteena on mesoskooppinen malli, kuvaamme kemiallista koostumusta ainetiheyksillä, esimerkkinä johtavuusvyön elektronien tiheys n c ja fotonien tiheys n hν. Kennon toimintatilanteessa muut ainetiheydet ovat likimain vakioita, joten meille riittää hakea ehdot n c :n ja n hν :n ratkaisemiseksi. Esimerkki tarvittavista fysiikan laeista on jatkuvuuslaki: missä tahansa tilavuudessa kemiallisista reaktioista syntyvä aine täs-
17 Kennon mesoskooppinen mallintaminen mää tilavuudesta pois siirtyvän aineen ja tilavuuden ainemäärän muutoksen kanssa. Esimerkiksi johtavuusvyön elektroneille tämä voidaan ilmaista formaalisti J c nda + t n c dv = r c dv kaikilla tilavuuksilla V, V V V missä J c on johtavuusvyön elektronivuo ja r c on johtavuusvyön elektronien syntymisnopeus. Toinen esimerkkilaki liittyy siihen, mistä ainevuo aiheutuu. Sanotaan kyseistä lakia ainevuon syntymislaiksi. Lain mukaan aine liikkuu pienenevän potentiaalin suuntaan ja häviää jos potentiaali ei muutu. Formaalisti tämä tarkoittaa meidän tapauksessamme,
18 Kennon mesoskooppinen mallintaminen että J c = L c gradφ, jossa L c on vakio. Kennon tapauksessa potentiaali φ jaetaan vielä kemialliseen ja sähköiseen osaan: φ = φ ch + φ el. Osoittautuu, että kennon aktiivisella elektrodilla sähköinen osa φ el on lähes merkityksetön. Pääosin kemiallinen osa φ ch synnyttää siis elektronivuon, ja siten sähkövirran. Jos vielä oletetaan, että fotonivuo vaimenee exponentiaalisesti aktiivisen elektrodin alueella, päädytään lopulta malliin, jossa
19 Kennon mesoskooppinen mallintaminen johtavuusvyön elektronitiheys n c (x) toteuttaa diffuusio-reaktio - yhtälön: jossa x (D n c x )(x) + k r(n c (x) n eq c (x)) 2 = αj hf e αx, J hf on fotonivuon x-komponentti, n eq c on johtavuusvyön elektronitiheys pimeässä, D on johtavuusvyön elektronien diffuusiovakio, k r on elektronien elektronien rekombinaation nopeusvakio, α on aktiivisen elektrodin absorptiovakio.
20 Kennon mesoskooppinen mallintaminen Tästä voidaan ratkaista n c (jos annetaan vielä sopivat reunaehdot). Kahdessa seuraavassa kuvassa on esitettynä aktiivisen elektrodin alueella (välillä 0 x d) johtavuusvyön elektronitiheys n c, potentiaali φ, virrantiheyden x-komponentti J x, ensin maksimitehopisteessä ja sitten avoimen piirin tilanteessa.
21 Kennon mesoskooppinen mallintaminen 3 x 1022 n c (1/m 3 ) x (µm) 10 φ (V) J x (ma/cm 2 ) x (µm) x (µm) 10 10
22 Kennon mesoskooppinen mallintaminen x n c (1/m 3 ) x (µm) φ (V) x (µm) 10 J x (ma/cm 2 ) x (µm) 10
23 Kennon mesoskooppinen mallintaminen Mallin avulla voidaan myös esim. selvittää k r :n ja aktiivisen elektrodin paksuuden (d) vaikutusta kennon VI-käyrään, vrt. seuraavat kuvat.
24 Kennon mesoskooppinen mallintaminen
25 Kennon mesoskooppinen mallintaminen
26 Parannusyrityksiä ja -mahdollisuuksia Seuraavassa on koottuna väriainekennon keskeisiä parannusyrityksiä ja -mahdollisuuksia. 1. Huokoinen puolijohde 2. Väriaine - Nanoputkien käyttö nanopartikkelien sijasta. - Nanopartikkelien päällystäminen ohuella metallioksidikerroksella. Tarkoituksena rekombinaation hidastaminen. - ns. sivuryhmien lisääminen rutenium-pohjaisiin väriainemolekyyleihin, jolloin ruteniumin etäisyys TIO 2 :n pinnasta kasvaa. Tarkoitus vähentää elektronien rekombinaatiota väriaineen kanssa.
27 Parannusyrityksiä ja -mahdollisuuksia - Rutenium-pohjaisen väriaineen korvaaminen orgaanisella väriaineella. Halvempi vaihtoehto. Vuonna 2007 saavutettu noin 7% hyötysuhde. 3. Elektrolyytti - Elektrolyytin muokkaaminen lisäaineiden avulla (esim. tbp). Tarkoituksena esim. rekombinaation hidastaminen ja I3 :n valoabsorption vähentäminen. Havaittu toimivan ja käytetään yleisesti. - Perinteisten orgaanisten liuottimien korvaaminen nestemäisillä suoloilla. Vuonna 2008 saavutettu yli 8%:n hyötysuhde. - Elektrolyytin korvaaminen vähemmän nestemäisellä ioneja johtavalla materiaalilla (kiinteät elektrolyytit ja
28 Parannusyrityksiä ja -mahdollisuuksia polymeerigeelit). Polymeerigeelillä saavutettu ainakin 7%:n hyötysuhde.
29 Yhteenveto Väriainekennon hinta-tehokkuus-suhde on erittäin kilpailukykyinen, jopa verrattuna fossiilisiin polttoaineisiin. Huokoisen nanorakenteisen elektrodin käyttö mahdollistaa tarpeeksi suuren väriainemäärän kiinnittämisen kennon aktiiviselle elektrodille, ja siten hyvin toimivan väriainekennon valmistamisen. Kennon toiminta perustuu väriaineen virittymiseen auringon valon vaikutuksesta. Toimintaan liittyy paljon erityyppisiä prosesseja, joiden yhtenäinen käsittely edellyttää poikkitieteellistä lähestymistapaa.
30 Yhteenveto Kennon tutkimuksessa kokeellinen puoli on vahvassa roolissa mikroskooppisen ja makroskooppisen maailman välisen yhteyden ollessa epämääräinen. Materiaalivalinnat eivät ole vakiintuneet, vaan eri komponenttien materiaaleille on useita vaihtoehtoja.
DEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Kuudennen luennon aihepiirit Tulevaisuuden aurinkokennotyypit: väriaineaurinkokenno Rakenne Toimintaperiaate Kehityskohteet 1 AURINKOKENNOJEN NYKYTUTKIMUS Aurinkokennotutkimuksessa
LisätiedotSMG-4450 Aurinkosähkö
Väriaineaurinkokenno Rakenne Toimintaperiaate Kehityskohteet SMG-4450 Aurinkosähkö Neljännen luennon aihepiirit 1 AURINKOKENNOJEN SUKUPOLVET Aurinkokennotyypit luokitellaan yleensä kolmeen sukupolveen.
LisätiedotVäriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde
Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 1. Johdanto 2. Rakenne ja toimintaperiaate 3. Kennon suorituskyvyn karakterisointi 4. Kennon komponenteista huokoinen puolijohde 5. Kennon komponenteista
LisätiedotKuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen
6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi
LisätiedotDEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Neljännen luennon aihepiirit Aurinkokennon virta-jännite-käyrän muodostuminen Edellisellä luennolla tarkasteltiin aurinkokennon toimintaperiaatetta kennon sisäisten tapahtumisen
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden
LisätiedotNormaalipotentiaalit
Normaalipotentiaalit MATERIAALIT JA TEKNOLOGIA, KE4 Yksittäisen elektrodin aiheuttaman jännitteen mittaaminen ei onnistu. Jännitemittareilla voidaan havaita ja mitata vain kahden elektrodin välinen potentiaaliero
LisätiedotKäsitteitä. Hapetusluku = kuvitteellinen varaus, jonka atomi saa elektronin siirtyessä
Sähkökemia Nopea kertaus! Mitä seuraavat käsitteet tarkoittivatkaan? a) Hapettuminen b) Pelkistyminen c) Hapetusluku d) Elektrolyytti e) Epäjalometalli f) Jalometalli Käsitteitä Hapettuminen = elektronin
LisätiedotElektrolyysi Anodilla tapahtuu aina hapettuminen ja katodilla pelkistyminen!
Elektrolyysi MATERIAALIT JA TEKNOLOGIA, KE4 Monet kemialliset reaktiot ovat palautuvia eli reversiibeleitä. Jo sähkökemian syntyvaiheessa oivallettiin, että on mahdollista rakentaa kahdenlaisia sähkökemiallisia
LisätiedotHapetus-pelkistymisreaktioiden tasapainottaminen
Hapetus-pelkistymisreaktioiden tasapainottaminen hapetuslukumenetelmällä MATERIAALIT JA TEKNO- LOGIA, KE4 Palataan hetkeksi 2.- ja 3.-kurssin asioihin ja tarkastellaan hapetus-pelkistymisreaktioiden tasapainottamista.
LisätiedotSÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen
Lisätiedotvetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa
Lisätiedot2.1 Sähköä kemiallisesta energiasta
2.1 Sähköä kemiallisesta energiasta Monet hapettumis ja pelkistymisreaktioista on spontaaneja, jolloin elektronien siirtyminen tapahtuu itsestään. Koska reaktio on spontaani, vapautuu siinä energiaa, yleensä
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon virta-jännite-käyrän muodostuminen Miksi aurinkokennon virta-jännite-käyrä on tietyn muotoinen? Miten aurinkokennon virta-jännite-käyrää
LisätiedotDEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Kolmannen luennon aihepiirit Reduktionistinen tapa aurinkokennon virta-jännite-käyrän muodon ymmärtämiseen Lähdetään liikkeelle aurinkokennosta, ja pilkotaan sitä pienempiin
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
LisätiedotVesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen
Vesi Hyvin poolisten vesimolekyylien välille muodostuu vetysidoksia, jotka ovat vahvimpia molekyylien välille syntyviä sidoksia. Vetysidos on sähköistä vetovoimaa, ei kovalenttinen sidos. Vesi Vetysidos
LisätiedotPuolijohteet. luku 7(-7.3)
Puolijohteet luku 7(-7.3) Metallit vs. eristeet/puolijohteet Energia-aukko ja johtavuus gap size (ev) InSb 0.18 InAs 0.36 Ge 0.67 Si 1.11 GaAs 1.43 SiC 2.3 diamond 5.5 MgF2 11 Valenssivyö Johtavuusvyö
LisätiedotSMG-4300: Yhteenveto kolmannesta luennosta. PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran.
SMG-4300: Yhteenveto kolmannesta luennosta PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran. Aurinkokennon maksimiteho P max voidaan lausua tyhjäkäyntijännitteen
LisätiedotSMG-4300: Yhteenveto ensimmäisestä luennosta
SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.
LisätiedotSähkökemia. Sähkökemiallinen jännitesarja, galvaaninen kenno, normaalipotentiaali
Sähkökemia Sähkökemiallinen jännitesarja, galvaaninen kenno, normaalipotentiaali Esimerkki 1 Pohdi kertauksen vuoksi seuraavia käsitteitä a) Hapettuminen b) Pelkistin c) Hapetusluku d) Elektrolyytti e)
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotTeddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate
LisätiedotKäyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
LisätiedotPerunapellosta virtaa! Jenna Salmijärvi ja Maija Torttila
Perunapellosta virtaa! Jenna Salmijärvi ja Maija Torttila Johdanto Kuva 1: Pokepallo Olet lähtenyt pelaamaan Pokèmon Go peliä. Päädyit keskelle perunapeltoa etsimään pokemoneja. Eteesi ilmestyi Snorlax!
LisätiedotSÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.
LisätiedotHapettuminen ja pelkistyminen: RedOx -reaktiot. CHEM-A1250 Luento
Hapettuminen ja pelkistyminen: RedOx -reaktiot CHEM-A1250 Luento 9 Sisältö ja oppimistavoitteet Johdanto sähkökemiaan Hapetusluvun ymmärtäminen Hapetus-pelkistys reaktioiden kirjoittaminen 2 Hapetusluku
Lisätiedotluku2 Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen
Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen 1 Ennakkokysymyksiä 2 Metallien reaktioita ja jännitesarja Fe(s) + CuSO 4 (aq) Cu(s) + AgNO 3 (aq) taulukkokirja s.155 3 Metallien
LisätiedotKäytännön esimerkkejä on lukuisia.
PROSESSI- JA Y MPÄRISTÖTEKNIIK KA Ilmiömallinnus prosessimet allurgiassa, 01 6 Teema 4 Tehtävien ratkaisut 15.9.016 SÄHKÖKEMIALLISTEN REAKTIOIDEN TERMODYNAMIIKKA JA KINETIIKKA Yleistä Tämä dokumentti sisältää
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
Lisätiedot1. Malmista metalliksi
1. Malmista metalliksi Metallit esiintyvät maaperässä yhdisteinä, mineraaleina Malmiksi sanotaan kiviainesta, joka sisältää jotakin hyödyllistä metallia niin paljon, että sen erottaminen on taloudellisesti
LisätiedotCHEM-A1200 Kemiallinen rakenne ja sitoutuminen
CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Hapot, Emäkset ja pk a Opettava tutkija Pekka M Joensuu Jokaisella hapolla on: Arvo, joka kertoo meille kuinka hapan kyseinen protoni on. Helpottaa valitsemaan
LisätiedotLuku 5: Diffuusio kiinteissä aineissa
Luku 5: Diffuusio kiinteissä aineissa Käsiteltävät aiheet... Mitä on diffuusio? Miksi sillä on tärkeä merkitys erilaisissa käsittelyissä? Miten diffuusionopeutta voidaan ennustaa? Miten diffuusio riippuu
LisätiedotLyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY
Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä
LisätiedotValosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo
Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
LisätiedotPUOLIJOHTEISTA. Yleistä
39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa
LisätiedotHapettuminen ja pelkistyminen: RedOx -reaktiot. CHEM-A1250 Luento
Hapettuminen ja pelkistyminen: RedOx -reaktiot CHEM-A1250 Luento 5 25.1.2017 Hapettuminen ja pelkistyminen Alun perin hapettumisella tarkoitettiin aineen yhtymistä happeen l. palamista: 2 Cu + O 2 -> 2
LisätiedotElektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist
Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa
LisätiedotMUTKU-PÄIVÄT Hämeenlinna 22-23.3.2010
MUTKU-PÄIVÄT Hämeenlinna 22-23.3.2010 Orgaanisten yhdisteiden elektrokineettinen hapetus -EKO teknologia - Lupaavia käyttökokemuksia Suomessa ja Ruotsissa Eko Harden Technologies Oy Erkki Lindberg puh
LisätiedotLaskun vaiheet ja matemaattiset mallit
Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta
Lisätiedot2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
LisätiedotDEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi
DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotTässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
LisätiedotReaktiosarjat
Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine
LisätiedotKanelihappokiteiden fotodimerisaatio ja röntgen-ramanmittaukset. Tuomas Talka
Kanelihappokiteiden fotodimerisaatio ja röntgen-ramanmittaukset Tuomas Talka Sisältö Mitä kanelihappo on ja miksi se kiinnostaa kiteenä? Kanelihapon dimerisaatio Raman-mittaukset ja dimerisaatioaste Röntgen-Raman-mittaukset
LisätiedotDEE Aurinkosähkön perusteet
DEE-53010 Aurinkosähkön perusteet Viidennen luennon aihepiirit Olosuhteiden vaikutus aurinkokennon toimintaan: Mietitään kennon sisäisten tapahtumien avulla, miksi ja miten lämpötilan ja säteilyintensiteetin
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
LisätiedotVinkkejä opettajille ja odotetut tulokset SIVU 1
Vinkkejä opettajille ja odotetut tulokset SIVU 1 Konteksti palautetaan oppilaiden mieliin käymällä Osan 1 johdanto uudelleen läpi. Kysymysten 1 ja 2 tarkoituksena on arvioida ovatko oppilaat ymmärtäneet
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotTURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V
TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotSISÄLLYSLUETTELO SYMBOLILUETTELO 4
1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ
LisätiedotKemiallinen mallinnus II: tulokset ja tulkinta. Astrokemia -kurssin luento
Kemiallinen mallinnus II: tulokset ja tulkinta Astrokemia -kurssin luento 4.4.2011 edellisissä luentokalvoissa esiteltiin kemiallisen mallintamisen perusteita, eli mitä malleihin kuuluu (millaisia efektejä
LisätiedotSuljetun lyijyakun toiminnan peruskäsitteitä
Suljetun lyijyakun toiminnan peruskäsitteitä Akun toiminta perustuu täysin sähkökemiallisiin ilmiöihin + ja - materiaalin välillä elektrolyytin mahdollistaessa kemiallisenreaktion. Akun pääosina ovat anodi,
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotKemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
LisätiedotLukion kemian OPS 2016
Lukion kemian OPS 2016 Tieteellisen maailmankuvan rakentuminen on lähtökohtana. muodostavat johdonmukaisen kokonaisuuden (ao. muutoksien jälkeen). Orgaaninen kemia pois KE1-kurssilta - yhdisteryhmät KE2-kurssiin
LisätiedotKemiallinen mallinnus I: mallintamisen perusteita. Astrokemia -kurssin luento
Kemiallinen mallinnus I: mallintamisen perusteita Astrokemia -kurssin luento 28.3.2011 mallinnuksella halutaan rakentaa fysikaalinen ja kemiallinen kuvaus kohteesta selvittämään havaittuja ominaisuuksia
LisätiedotHelsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20
Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24.5.2006 Etunimet Tehtävä 5 Pisteet / 20 Glukoosidehydrogenaasientsyymi katalysoi glukoosin oksidaatiota
Lisätiedot12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)
12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa
LisätiedotCHEM-A1400 Tulevaisuuden materiaalit (5 op) LABORATORIOTYÖN RAPORTTI
CHEM-A1400 Tulevaisuuden materiaalit (5 op) LABORATORIOTYÖN RAPORTTI TYÖ Litiumioniakku Ryhmä Ryhmän johtaja työ tehty palautus pvm Vastaa raportissa alla esitettyihin kysymyksiin. Tee raportista kuitenkin
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotTermodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:
Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään
LisätiedotLasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.
Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu
LisätiedotKemiallisia reaktioita ympärillämme Fysiikan ja kemian pedagogiikan perusteet
Kemiallisia reaktioita ympärillämme Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 Kemiallinen reaktio Kemiallinen reaktio on prosessi, jossa aineet muuttuvat toisiksi aineiksi: atomien
LisätiedotKEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.
KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
Lisätiedot1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
LisätiedotKeski-Suomen fysiikkakilpailu
Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee
LisätiedotProsessimittaukset. Miksi prosessikierroista tehdään mittauksia
Prosessimittaukset Miksi prosessikierroista tehdään mittauksia Saadaan informaatiota prosessiolosuhteista Tiedetään, että prosessissa tapahtuu oikeita asioita Osataan ohjata prosessia Virtausmittaukset
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotFyKe 7 9 Kemia ja OPS 2016
Kuvat: vas. Fotolia, muut Sanoma Pro Oy FyKe 7 9 Kemia ja OPS 2016 Kemian opetuksen tehtävänä on tukea oppilaiden luonnontieteellisen ajattelun sekä maailmankuvan kehittymistä. Kemian opetus auttaa ymmärtämään
LisätiedotMääritelmä, metallisidos, metallihila:
ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön
LisätiedotKEMIAN MIKROMAAILMA, KE2 VESI
VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotLääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen
Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
LisätiedotNeutriino-oskillaatiot
Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa
LisätiedotAiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
LisätiedotTehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
LisätiedotTeoreettisen fysiikan esittely
Teoreettisen fysiikan esittely Fysiikan laitos Oulun yliopisto 28.9.2012 Erkki Thuneberg Nämä kalvot on saatavissa osoitteessa http://www.oulu.fi/fysiikka/teoreettinen-fysiikka Sisältö Mitä on teoreettinen
LisätiedotULKOELEKTRONIRAKENNE JA METALLILUONNE
ULKOELEKTRONIRAKENNE JA METALLILUONNE Palautetaan mieleen jaksollinen järjestelmä ja mitä siitä saa- Kertausta daan irti. H RYHMÄT OVAT SARAKKEITA Mitä sarakkeen numero kertoo? JAKSOT OVAT RIVEJÄ Mitä
LisätiedotREAKTIOT JA TASAPAINO, KE5 KERTAUSTA
KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat
LisätiedotKaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka
Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Kertausta IONIEN MUODOSTUMISESTA Jos atomi luovuttaa tai
LisätiedotPUOLIJOHTEEN SÄHKÖNJOHTAVUUS
PUOLIJOHTEEN SÄHKÖNJOHTAVUUS 1 Johdanto Kiinteissä aineissa aineen elektronit ovat järjestyneet niin kutsutuille energiavöille. Hyvissä sähkönjohteissa ylin elektroneita sisältävä energiavyö on vain osittain
LisätiedotAMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE
AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja
LisätiedotJännite, virran voimakkuus ja teho
Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin
Lisätiedot(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
LisätiedotFysiikan, kemian ja matematiikan kilpailu lukiolaisille
Fysiikan, kemian ja matematiikan kilpailu lukiolaisille 28.1.2016 Kemian tehtävät Kirjoita nimesi, luokkasi ja lukiosi tähän tehtäväpaperiin. Kirjoita vastauksesi selkeällä käsialalla tehtäväpaperiin vastauksille
Lisätiedot