Numeeriset menetelmät
|
|
- Eeva-Liisa Nieminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Numeeriset menetelmät Luento 10 To Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To p. 1/35 p. 1/35
2 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f 1 ) h3 12 f (η) Simpsonin kaava/sääntö b a f(x)dx = h 3 (f 0 + 4f 1 + f 2 ) h5 90 f(4) (η) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 2/35 p. 2/35
3 Integroimisvälin jakaminen Jos integroimisväli [a, b] pitkä: Matala-asteiset polynomit antavat epätarkkoja tuloksia Korkea-asteiset polynomit usein oskilloivat Ratkaisu: Jaetaan integroimisväli lyhyempiin osaväleihin Käytetään osaväleillä matala-asteisia kaavoja Numeeriset menetelmät Syksy 2011 Luento 10 To p. 3/35 p. 3/35
4 Esimerkki: Puolisuunnikassääntö [a, b] n kpl h:n pituisia osavälejä [x i, x i+1 ] x i = x 0 + ih, (i = 0, 1,..., n) x 0 = a, x n = b, h = (b a)/n Puolisuunnikassääntö yhdellä osavälillä: xi+1 x i f(x)dx h 2 (f i + f i+1 ) E[f] i = h3 12 f (x i + ξ i h), ξ i ]0, 1[ Numeeriset menetelmät Syksy 2011 Luento 10 To p. 4/35 p. 4/35
5 Esimerkki jatkuu b a f(x)dx = = h 2 n 1 i=0 n 1 i=0 xi+1 x i f(x)dx h 2 (f i + f i+1 ) ( f n 1 i=1 f i + f n ) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 5/35 p. 5/35
6 Esimerkki jatkuu Virhetermi: E[f] = n 1 i=0 E[f] i = h3 12 n 1 i=0 E[f] h3 12 n max f (x) x [a,b] f (x i + ξ i h) = h2 (b a) max 12 f (x) x [a,b] ( h = (b a)/n nh = b a ) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 6/35 p. 6/35
7 Esimerkki: Simpsonin kaava [a, b] 2n kpl h:n pituisia osavälejä [x i, x i+1 ] x i = x 0 + ih, (i = 0, 1,..., 2n) x 0 = a, x 2n = b, h = (b a)/2n Simpsonin kaava kahdella osavälillä: x2i+2 x 2i f(x)dx h 3 (f 2i + 4f 2i+1 + f 2i+2 ) E[f] 2i = h5 90 f(4) (x 2i + ξ 2i h), ξ 2i ]0, 2[ Numeeriset menetelmät Syksy 2011 Luento 10 To p. 7/35 p. 7/35
8 Esimerkki jatkuu b a f(x)dx = = h 3 n 1 i=0 n 1 i=0 x2i+2 x 2i f(x)dx h 3 (f 2i + 4f 2i+1 + f 2i+2 ) ( f 0 + 4f 1 + 2f 2 + 4f f 2n 2 + 4f 2n 1 + f 2n ) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 8/35 p. 8/35
9 Esimerkki jatkuu Virhetermi: E[f] = n 1 i=0 E[f] 2i = h5 90 E[f] h5 90 n max n 1 i=0 x [a,b] f(4) (x) f (4) (x 2i + ξ 2i h) = h4 (b a) max 180 x [a,b] f(4) (x) ( h = (b a)/2n nh = (b a)/2 ) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 9/35 p. 9/35
10 Yleinen integrointikaava b a Aikaisemmin: f(x)w(x)dx = k i=1 A i f(x i ) + E[f] Etukäteen kiinnitetty, tasavälinen pisteistö x i Johdettiin painokertoimet A i Seuraavaksi: Sekä x i :t että A i :t vapaita parametreja 2k parametria paras mahdollinen tarkkuusaste 2k 1 Numeeriset menetelmät Syksy 2011 Luento 10 To p. 10/35 p. 10/35
11 Parametrien määrääminen P k = enintään k-asteiset polynomit [a, b]:llä Lause: Olkoon q P k (q 0) siten, että b a q(x)p(x)w(x)dx = 0 p P k 1 Olkoot x i polynomin q nollakohdat ja A i = b a l j (x)w(x)dx = b a k m=1 m j x x m x j x m w(x)dx Kaavan tarkkuusaste on 2k 1 Numeeriset menetelmät Syksy 2011 Luento 10 To p. 11/35 p. 11/35
12 Todistus Aikaisemmin tarkka kaikille f P k 1 Olkoon f P 2k 1 f = qp + r, missä p, r P k 1 f(x i ) = q(x i ) }{{} =0 p(x i ) + r(x i ) = r(x i ) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 12/35 p. 12/35
13 Todistus jatkuu b a f(x)w(x)dx = = = b q(x)p(x)w(x) dx } a {{ } b =0 a k i=1 r(x) w(x)dx = }{{} P k 1 A i f(x i ) + k i=1 b a r(x)w(x) dx A i r(x i ) }{{} =f(x i ) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 13/35 p. 13/35
14 Gaussin ja Legendren kaavat Olkoon w 1 ja [a, b] = [ 1, 1] Lauseen polynomi q on Legendren polynomi: L 0 (x) = 1 L 1 (x) = x L m+1 (x) = 2m + 1 m + 1 xl m(x) m m + 1 L m 1(x), m = 1, 2,... Legendren polynomien juuret ovat reaalisia, yksinkertaisia ja välillä ] 1, 1[ Numeeriset menetelmät Syksy 2011 Luento 10 To p. 14/35 p. 14/35
15 Gaussin ja Legendren kaavat k = 1: L 1 (x) = x x 1 = 0 ( l j (x) = k m=1 m j x x m x j x m ja l 1 (x) = 1, jos k = 1 ) A 1 = l 1 (x)dx = 1 1 f(x)dx 2f(0) 1dx = 2 Numeeriset menetelmät Syksy 2011 Luento 10 To p. 15/35 p. 15/35
16 Gaussin ja Legendren kaavat k = 2: L 2 (x) = 3 2 xl 1(x) 1 2 L 0(x) = x2 x 1 = 1 3, x 2 = Numeeriset menetelmät Syksy 2011 Luento 10 To p. 16/35 p. 16/35
17 Gaussin ja Legendren kaavat k = 2 jatkuu: A 1 = 1 1 l 1 (x)dx = 1 1 x x 2 x 1 x 2 dx = 1 A 2 = 1 1 l 2 (x)dx = 1 1 x x 1 x 2 x 1 dx = f(x)dx f( 1/ 3) + f(1/ 3) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 17/35 p. 17/35
18 Gaussin ja Legendren kaavat k = 3: L 3 (x) = 5 3 xl 2(x) 2 3 L 1(x) = 3 2 x x3 3 3 x 1 = 5, x 2 = 0, x 3 = + 5 Numeeriset menetelmät Syksy 2011 Luento 10 To p. 18/35 p. 18/35
19 Gaussin ja Legendren kaavat k = 3 jatkuu: 1 1 A 1 = A 2 = A 3 = (x x 2 )(x x 3 ) (x 1 x 2 )(x 1 x 3 ) dx = 5 9 (x x 1 )(x x 3 ) (x 2 x 1 )(x 2 x 3 ) dx = 8 9 (x x 1 )(x x 2 ) (x 3 x 1 )(x 3 x 2 ) dx = 5 9 f(x)dx 5 9 f( 3/5) f(0) f( 3/5) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 19/35 p. 19/35
20 Esimerkki Tehtävä: 1 1 e x dx (Arvo viiden numeron tarkkuudella: ) k = 1: 1 1 e x dx 2e 0 = 2 k = 2: 1 1 e x dx e 1/ 3 + e 1/ Numeeriset menetelmät Syksy 2011 Luento 10 To p. 20/35 p. 20/35
21 Yleinen integroimisväli Gaussin ja Legendren kaavoissa integroimisväli [ 1, 1] Yleinen väli [a, b] saadaan muuttujanvaihdolla b a f(x)dx = b a 2 x = b a 2 z + a + b f( b a 2 z + a + b 2 )dz Numeeriset menetelmät Syksy 2011 Luento 10 To p. 21/35 p. 21/35
22 Esimerkki [a, b] = [0, 2] x = z = z + 1 k = 2: 2 0 e x dx = 1 1 e z 1 dz = e 1/ e 1/ Numeeriset menetelmät Syksy 2011 Luento 10 To p. 22/35 p. 22/35
23 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen vaikuttaa valitun menetelmän tarkkuusaste d käytetyn osavälin pituus h Automaattinen integrointialgoritmi valitsee sellaisen menetelmän, joka sopii kyseiselle tehtävälle Adaptiivinen integrointialgoritmi määrää osavälien pituudet siten, että ennalta asetettu tarkkuusvaatimus toteutuu Numeeriset menetelmät Syksy 2011 Luento 10 To p. 23/35 p. 23/35
24 Integrointiohjelmistot Käyttäjä määrittelee välin [a, b] tekee aliohjelman, joka laskee f:n arvoja asettaa tarkkuusvaatimuksen ε (raja absoluuttiselle ja/tai suhteelliselle virheelle) Ohjelma päättää, onko tarkkuusvaatimus saavutettavissa laskee integraalin halutulla tarkkuudella palauttaa vastauksen (ja muuta tietoa) Numeeriset menetelmät Syksy 2011 Luento 10 To p. 24/35 p. 24/35
25 Rombergin menetelmä Lasketaan integraali osavälin pituudella h Lasketaan integraali osavälin pituudella h/2 Richardsonin ekstrapolaatio: Muodostetaan em. likiarvoista lineaarikombinaatio siten, että sen virhe on pienempi kuin kummankin likiarvon virhe Osavälin puolittamista jatketaan kunnes virhe on riittävän pieni Numeeriset menetelmät Syksy 2011 Luento 10 To p. 25/35 p. 25/35
26 Rombergin menetelmä Sovelletaan puolisuunnikassääntöön x i = x 0 + ih, (i = 0, 1,..., n) x 0 = a, x n = b, h = (b a)/n Lause: Jos f on 2m kertaa jatkuvasti derivoituva, niin puolisuunnikassäännön virhetermi voidaan kirjoittaa muodossa E[f] = m j=1 α j h 2j missä kertoimet α j eivät riipu h:sta Numeeriset menetelmät Syksy 2011 Luento 10 To p. 26/35 p. 26/35
27 Rombergin menetelmä Merkitään: I = b a f(x)dx Merkitään: T k,0 = puolisuunnikassäännön antama likiarvo I:lle, kun osavälien pituus on h k = (b a)/2 k Lause I = T k,0 + α 1 h 2 k + α 2 h 4 k + α 3 h 6 k + Numeeriset menetelmät Syksy 2011 Luento 10 To p. 27/35 p. 27/35
28 Rombergin menetelmä jatkuu I = T k,0 + α 1 h 2 k + α 2 h 4 k + α 3 h 6 k + Puolitetaan h k ( hk ) 2 ( hk ) 4 ( hk ) 6 I = T k+1,0 + α 1 + α2 + α = T k+1, α 1h 2 k α 2h 4 k α 3h 6 k + Numeeriset menetelmät Syksy 2011 Luento 10 To p. 28/35 p. 28/35
29 Rombergin menetelmä jatkuu I = T k,0 + α 1 h 2 k + α 2 h 4 k + α 3 h 6 k + ( 1) I = T k+1, α 1h 2 k α 2h 4 k α 3h 6 k + 4 3I = 4T k+1,0 T k,0 3 4 α 2h 4 k α 3h 6 k I = 4 3 T k+1,0 1 3 T k,0 1 4 α 2h 4 k 5 16 α 3h 6 k Numeeriset menetelmät Syksy 2011 Luento 10 To p. 29/35 p. 29/35
30 Rombergin menetelmä jatkuu I = 4 3 T k+1,0 1 3 T k,0 }{{} =T k+1,1 1 4 α 2h 4 k 5 16 α 3h 6 k T k+1,1 ensimmäinen Rombergin ekstrapolaatio T k,0 ja T k+1,0 ovat O(h 2 )-approksimaatioita, mutta T k+1,1 on O(h 4 )-approksimaatio Jatketaan samalla tavalla, puolittamalla h k uudestaan Numeeriset menetelmät Syksy 2011 Luento 10 To p. 30/35 p. 30/35
31 Rombergin menetelmä jatkuu I = T k+1,1 1 4 α 2h 4 k 5 16 α 3h 6 k (muutetaan merkintöjä) I = T k,1 + β 1 h 4 k + β 2 h 6 k + Puolitetaan h k I = T k+1,1 + β 1 ( hk 2 ) 4 + β2 ( hk 2 ) 6 + = T k+1, β 1h 4 k β 2h 6 k + Numeeriset menetelmät Syksy 2011 Luento 10 To p. 31/35 p. 31/35
32 Rombergin menetelmä jatkuu I = T k,1 + β 1 h 4 k + β 2 h 6 k + ( 1) I = T k+1, β 1h 4 k β 2h 6 k I = 16T k+1,1 T k,1 3 4 β 3h 6 k I = T k+1, T k,1 }{{} =T k+1, β 3h 6 k Numeeriset menetelmät Syksy 2011 Luento 10 To p. 32/35 p. 32/35
33 Rombergin menetelmä jatkuu T k+1,2 toinen Rombergin ekstrapolaatio, O(h 6 )-approksimaatio... missä I = T k+1,j+1 + O(h 2j+4 ) T k+1,j+1 = 4j+1 T k+1,j T k,j 4 j+1 1 Numeeriset menetelmät Syksy 2011 Luento 10 To p. 33/35 p. 33/35
34 Rombergin menetelmä jatkuu Rombergin ekstrapolaatit taulukkona: T 0,0 T 1,0 T 1,1 T 2,0 T 2,1 T 2,2. Lasketaan riveittäin: T k,0 uusi puolisuunnikasaapproksimaatio, muut arvot ekstrapoloidaan Numeeriset menetelmät Syksy 2011 Luento 10 To p. 34/35 p. 34/35
35 Rombergin menetelmä jatkuu Jatketaan kunnes T k,k on riittävän tarkka approksimaatio integraalille Lopetuskriteeri esimerkiksi T k,k T k 1,k 1 ε T k,k Numeeriset menetelmät Syksy 2011 Luento 10 To p. 35/35 p. 35/35
Numeeriset menetelmät
Numeeriset menetelmät Luento 11 Ti 11.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 11 Ti 11.10.2011 p. 1/34 p. 1/34 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen
Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37
Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset
Numeerinen integrointi ja derivointi
Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion
Numeeriset menetelmät
Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion
Numeeriset menetelmät
Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
Numeerinen integrointi
Numeerinen integrointi hum 8.0. Numeerinen integrointi Numeerisia integrointimenetelmiä on useita. Käsitellään tässä yhteydessä kuitenkin vain Gauss in integrointia, joka on elementtimenetelmän yhteydessä
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Numeerinen integrointi
Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43
Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
Potenssisummia numeerisella integroinnilla
Solmu /9 Potenssisummia numeerisella integroinnilla Jorma Merikoski Matematiikan tilastotieteen laitos Tampereen yliopisto Johdanto Olkoon f välillä [a, b] tkuva reaalifunktio. Lukion pitkän matematiikan
Numeeriset menetelmät
Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Integrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
Numeerinen integrointi
Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Yhden muuttujan funktion minimointi
Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai
MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit
MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R
Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!
MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse
Numeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
Määrätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
f[x i ] = f i, f[x i,..., x j ] = f[x i+1,..., x j ] f[x i,..., x j 1 ] x j x i T n+1 (x) = 2xT n (x) T n 1 (x), T 0 (x) = 1, T 1 (x) = x.
Kaavakokoelma f[x i ] = f i, f[x i,..., x j ] = f[x i+,..., x j ] f[x i,..., x j ] x j x i T n+ (x) = 2xT n (x) T n (x), T (x) =, T (x) = x. n I,n = h f(t i + h 2 ), E,n = h2 (b a) f (2) (ξ). 24 i= I,n
x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu
2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)
Harjoitustehtävien ratkaisut
Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali
integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm
Luku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
Numeeriset Menetelmät
Numeeriset Menetelmät Kurssilla käydään läpi laskennallisen matematiikan perusteet. Opitaan kuinka matematiikkaa oikeasti käytetään sekä millaisia perustehtäviä ratkaistaan numeerisesti. (Monimutkaisemmat
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
Numeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
Pienimmän neliösumman menetelmä
Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen
Numeeriset menetelmät
Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N
jakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
Numeeriset menetelmät Pekka Vienonen
Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R
Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.
Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,
1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29
Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()
Schildtin lukio
MAA1.9.15 Scildtin lukio LIKIARVO MUISTA: tavallisesti matematiikassa pyritään aina tarkkoiin arvoiin! Kuitenkin esim. mittaustulokset ovat aina likiarvoja. o Luvun katkaiseminen: näin tekevät mm. jotkut
MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.
MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla
VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava
VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,
Perusidea: Jaetaan väli [a, b] osaväleihin ja muodostetaan osavälejä vastaavat suorakulmiot/palkit, joiden korkeus funktion arvot kyseisellä välillä.
Lähtötilanne Lähtötilanne Tavoite: Määritellään funktion f : [a, b] R integraali siten, että integraalin arvo yhtyy funktion f kuvaajan ja x-akselin väliin jäävän alueen pinta-alaan. Perusidea: Jaetaan
BM20A1501 Numeeriset menetelmät 1 - AIMO
6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337
8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
1 Määrittelyjä ja aputuloksia
1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Funktioiden approksimointi ja interpolointi
Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
Harjoituskokeiden ratkaisut Painoon mennyt versio.
Harjoituskokeiden ratkaisut 8.6.7 Painoon mennyt versio. PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ RATKAISUT, HARJOITUSKOE SIVU.7.7 Koe a) i) =,, = kpl ii) 9,876 =,9876,99 = 9,9 iii),66,66 =,7 =,7
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
. Lasketaan valmiiksi derivaattoja ja niiden arvoja pisteessä x = 2: f(x) = x + 3x 3 + x 2 + 2x + 8, f(2) = 56, f (x) = x 3 + 9x 2 + 2x + 2, f (2) = 7, f (x) = 2x 2 + 8x + 2, f (2) = 86, f (3) (x) = 2x
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
MS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55
Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen
Keskusteluaiheita Discussion papers
LA ELINKEINOELÄMÄN TUTKIMUSLAITOS THE RESEARCH INSTITUTE OF THE FINNISH ECONOMY Lönnrotinkatu 4 B, 00120 Helsinki 12, Finland. tel. 601322 Keskusteluaiheita Discussion papers * Yrjö o. Vartia : TUNNETUISSA
2.2.1 Ratkaiseminen arvausta sovittamalla
2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu
Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
H5 Malliratkaisut - Tehtävä 1
H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
4 Integrointimenetelmiä
4 Integrointimenetelmiä 4. Määräämätön integraali Määritelmä 4.. Olkoon funktio f jatkuva välillä I. Tällöin funktion f integraalifunktioiden (välillä I) joukkoa sanotaan funktion f määräämättömäksi integraaliksi
DIFFERENTIAALI- JA INTEGRAALILASKENTA
DIFFERENTIAALI- JA INTEGRAALILASKENTA Timo Mäkelä Tässä tekstissä esitellään yhden muuttujan reaaliarvoisten funktioiden differentiaalilaskentaa sekä sarjoja. Raja-arvot Raja-arvoja voidaan laskea käyttämällä
Dierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
Luento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on
Harjoitus 7 -- Ratkaisut
Harjoitus 7 -- Ratkaisut 1 Solve osaa ratkaista polynomiyhtälöitä, ainakin astelukuun 4 asti. Erikoistapauksissa korkeammankin asteen yhtälöt ratkeavat. Clear a, b, c, d, e, x ; Solve a x 3 b x 2 c 0,
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
4.3.7 Epäoleellinen integraali
Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään
Numeeriset menetelmät
Numeeriset menetelmät Luento 1 Ti 6.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 1 Ti 6.9.2011 p. 1/28 p. 1/28 Numeriikan termejä Simulointi: Reaalimaailman ilmiöiden jäljitteleminen (yleensä)
Luentoesimerkki: Riemannin integraali
Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"
Numeerinen analyysi Harjoitus 1 / Kevät 2017
Numeerinen analyysi Harjoitus 1 / Kevät 2017 Palautus viimeistään perjantaina 3.3. Tehtävä 1: Oheinen MATLAB-funktio toteuttaa eksponenttifunktion evaluoinnin. 1 function y = seriesexp ( x ) 2 oldsum =
A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7
1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi