Matlabin perusteet. 1. Käyttöliittymä:
|
|
- Oskari Mäkinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matlabin perusteet Matlabin (MATrix LABoratory) perusfilosofia on, että se käsittelee kaikkia muuttujia matriiseina, joiden erikoistapauksia ovat vektorit ja skalaariluvut. Näin ollen se soveltuu erityisesti numeeriseen laskentaan. Lisää materiaalia löydät mm. kurssien AS Johdatus Matlab-ohjelmiston käyttöön 1 ja AS Johdatus Matlab-ohjelmiston käyttöön 2 materiaaleista sekä Matlabin sivuilta 1. Käyttöliittymä:
2 2. Peruskäsitteitä: >> % Kommentti alkaa %-merkistä >> % Muuttujan määrittely (case sensitive): >> a = 1; A = a A = 1 >> % Puolipiste piilottaa laskun vastauksen käyttäjältä ja >> % mahdollistaa useamman laskutoimituksen samalla rivillä. >> % Kätevä etenkin suurissa matriisien käsittelyssä. >> % Tietoa funktiosta saa komennolla help. >> help sin SIN Sine of argument in radians. SIN(X) is the sine of the elements of X. >> % Jos laskun tulosta ei talleta mihinkään muuttujaan, >> % se tallentuu muuttujaan nimeltä ans. >> sin(pi / ) >> % Huom. pi on Matlabin vakio piille (π). >> % Muuttujat voi vapauttaa komennolla clear <muuttujan nimi>. >> % Jos funktiolla on useampi paluuarvo tai parametri, niitä käytetään näin: >> [a, b] = f(x, y, z) Perusfunktioita: Trigonometria (rad): sin(x), cos(x), tan(x) Trigonometria (deg): sind(x), cosd(x), tand(x) Arkusfunktiot (rad): asin(x), acos(x), atan(x), atan2(y, x) Arkusfunktiot (deg): asind(x), acosd(x), atand(x) Eksponenttifunktio: exp() Luonnollinen logaritmi: log() 10-kantainen logaritmi: log10() Itseisarvo: abs() 3. Matriisit ja vektorit: >> % Matriisi voidaan määritellä seuraavasti: >> A = [1 2; 3 ]; B = A B = >> % Huomaa ero seuraavien laskutoimitusten välillä: >> A * B >> A.* B
3 >> % * = Matriisikertolasku (huom. dimensiot) >> %.* = Alkioittainen kertolasku (pistetulo) >> % Myös jakolaskusta (/) ja potenssista (^) on olemassa >> % sekä matriisi- että alkioittaisversiot (./ ja.^) >> % Matriisin tiettyyn alkioon voi viitata komennolla M(R, C) >> A(1, 2) 2 >> % Huomaa, että indeksointi alkaa ykkösestä >> % Lineaarinen rivi-/vaakavektori voidaan määritellä kahdella eri tavalla: >> % min:step:max operaattorilla... >> lin1 = 1:1:5 lin1 = >> %..tai linspace(min, max, count) -komennolla >> lin2 = linspace(1,5,5) lin2 = >> % Logaritminen rivi-/vaakavektori voidaan määritellä >> % logspace(emin, Emax, count) -komennolla, jossa E on kymmenpotenssi >> log = logspace(0,, 5) log = Matriisioperaatioita: size(x) Matriisin koko. Palauttaa X:n rivien ja sarakkeiden määrän length(x) Selvittää vektorin pituuden. Vastaa komentoa max(size(x)). transpose(x) tai X. Transpoosi X Hermitointi (X kompleksinen) inv(x) Käänteismatriisi det(x) Determinantti X\y Gaussin eliminaatio / PNS-ratkaisu eye(r, C) R x C identiteettimatriisi/-yksikkömatriisi ones(r, C) R x C ykkösmatriisi (täynnä 1) zeros(r, C) R x C nollamatriisi (täynnä 0)
4 . Kompleksiluvut: >> % Kompleksiluku voidaan määritellä karteesisessa muodossa seuraavasti: >> a = 1 + i * 2 a = i >> %... ja polaarimuodossa seuraavasti (huom. radiaanit): >> b = * exp(i * pi / ) b = i >> % Huom. i on Matlab-vakio imaginaariyksikölle. Operaatioita kompleksiluvuille: real(c) Reaaliosa imag(c) Imaginaariosa abs(c) Itseisarvo angle(c) Vaihekulma conj(c) tai c Konjugaatti ( vastaa kompleksisen matriisin hermitointia) 5. Piirtäminen: Matlabissa piirtäminen tapahtuu aina kahden vektorin välillä. Ensimmäinen vektoreista sisältää ne diskreetit vaaka-akselin pisteet, joissa piirrerräväksi haluttu funktion arvot lasketaan. Toinen vektoreista sitten sisältää juurikin nuo lasketut funktion arvot ensimmäisen vektorin määräämissä pisteissä. Piirtokäskyt: plot(x, y) semilogx(x, y) semilogy(x, y) loglog(x, y) polar(t, r) Lineaariset x- ja y-akselit Logaritminen x-akseli Logaritminen y-akseli Logaritmiset x- ja y-akselit Napakoordinaattiesitys Huom. Voit piirtää useamman käyrän samaan kuvaajaan samalla komennolla. Voit myös vaikuttaa käyrän ulkoasuun käyttämällä ulkoasumäärittelyjä. Ks. help Apukäskyt: grid axis hold xlim, ylim title() xlabel() ylabel() legend() subplot() spline() Ruudukko (mm. grid on, grid off) Akselit (mm. axis equal) Mahdollistaa useamman käyrän piirtämisen samaan kuvaan (mm. hold on, hold off) Akselien rajat Otsikko X-akselin tunniste Y-akselin tunniste Käyrien selite Monta pienempää kuvaajaa samaan kuvaan Interpolointi Huom. Voit lisätä kreikkalaisia kirjaimia merkkijonoihin ( ) kirjoittamalla \symboli. Esim. Kulmataajuus \omega.
5 6. Symbolinen laskenta (Laplace-muunnos): Symbolic Math Toolbox >> syms t; % Symbolinen muuttuja t >> F = * exp(-t); % Aikatason funktio (t symbolinen -> F symbolinen) >> pretty(f) % Kauniimpi ulkonäkö exp(t) >> L = laplace(f); pretty(l) % Laplace-muunnetaan: s + 1 >> F = ilaplace(l); pretty(f) % Ja edelleen käänteismuunnetaan: exp(t) Huom. Siirtofunktioita laskettaessa käänteismuunnoksessa voi esiintyä kompleksisia termejä, joista pääsee eroon täydentämällä Laplace-tason esityksen neliöiksi. 7. Siirtofunktioiden käsittely: Control System Toolbox >> % Siirtofunktio-objekti voidaan luoda käyttäen tf()-komentoa: >> bw = tf(1, [ ]) Transfer function: s^3 + 2 s^2 + 2 s + 1 >> % Askelvaste voidaan laskea kätevästi komennolla step() >> % Ilman määrittelyä [y, t] = step() piirtää askelvasteen kuvaajan >> [y, t] = step(bw); >> % Impulssivaste voidaan laskea vastaavasti komennolla impulse() >> % Vaste mielivaltaiselle herätteelle voidaan laskea lsim()-komennon avulla >> % Ilman määrittelyä y = lsim() piirtää kuvaajan, jossa on sekä >> % heräte että vaste >> t = 0:0.1:10; % Aikavektori >> u = sin(t); % Heräte >> y = lsim(bw, u, t); % Vaste Funktioita siirtofunktioiden käsittelyyn: pole() Siirtofunktion navat zero() Siirtofunktion nollat pzmap() Napanollakuvio zpk() Muodosta siirtofunktio nollista, navoista ja vahvistuksesta dcgain() Staattinen vahvistus (askelvasteen loppuarvo) bode() nichols() nyquist() rootlocus() margin() Boden diagrammi (vahvistus ja vaihe kulmataajuuden funktiona) Nicholssin diagrammi (vahvistus vaihesiirron funktiona) Nyquistin diagrammi (Re- ja Im-osien käyttäytyminen) Juuriura Vahvistus- ja vaihevarat Huom. Siirtofunktioista ja simuloinnista lisää kursseilla AS Analoginen säätö ja S Elektroniikka II.
Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006
Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten
LisätiedotMatemaattiset ohjelmistot A. Osa 2: MATLAB
Matemaattiset ohjelmistot 802364A Osa 2: MATLAB Mikko Orispää 30. lokakuuta 2013 Sisältö 1 MATLAB 2 1.1 Peruslaskutoimitukset......................... 2 1.2 Muuttujat................................ 3
LisätiedotSäätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002
Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty
LisätiedotTässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.
Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan
LisätiedotMatriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
LisätiedotOhjelman käynnistäminen
>> why Because he obeyed a good and young and smart and terrified and rich and rich and not very good and good and bald and not excessively tall and good programmer. Tässä materiaali on tarkoitettu insinööriopiskelijoille
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
LisätiedotOpiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto
Opiskelijan pikaopas STACK-tehtäviin Lassi Korhonen, Oulun yliopisto 21.3.2016 SISÄLLYSLUETTELO Oppaan käyttäminen... 2 Vastauksen syöttämisen perusteet... 2 Operaatiot... 2 Luvut ja vakiot... 3 Funktiot...
LisätiedotValitse ruudun yläosassa oleva painike Download Scilab.
Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download
LisätiedotSÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät / systeemitekniikka Jan 019
Lisätiedotmlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä osittaisderivaatoista: y 1... J F =.
LisätiedotBL40A0000 Säätötekniikan ja signaalinkäsittelyn
1 BL40A0000 Säätötekniikan ja signaalinkäsittelyn matemaattiset ohjelmistot Luennot ja harjoitukset Katja Hynynen, h. 6431, p. 040-548 8954 Katja.Hynynen@lut.fi Opetus ja suoritusvaatimukset OPETUS: Luentoja
LisätiedotMatriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.
Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.
LisätiedotHarjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)
Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Ensimmäinen harjoituskierros Aiheet Tutustuminen
LisätiedotMatriiseista. Emmi Koljonen
Matriiseista Emmi Koljonen 3. lokakuuta 22 Usein meillä on monta systeemiä kuvaavaa muuttujaa ja voimme kirjoittaa niiden välille riippuvaisuuksia, esim. piirin silmukoihin voidaan soveltaa silmukkavirtayhtälöitä.
Lisätiedotplot(f(x), x=-5..5, y=-10..10)
[] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä
LisätiedotOsatentti
Osatentti 3 1.4.016 Nimi: Opiskelijanumero: Ohjeet: Kirjoita vastaukset paperissa annettuun tilaan. Lisävastaustilaa on paperin lopussa. Käytä selvää käsialaa. Laskin EI ole sallittu. Tenttikaavasto jaetaan.
LisätiedotDifferentiaaliyhtälön ratkaisu. ELEC-C1230 Säätötekniikka. Esimerkki: läpivirtaussäiliö. Esimerkki: läpivirtaussäiliö
Differentiaaliyhtälön ratkaisu ELEC-C1230 Säätötekniikka Luku 3: Dynaamisen vasteen määrittäminen, Laplace-muunnos, siirtofunktio Systeemin ymmärtämisen ja hallinnan kannalta on olennaista tietää, miten
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
LisätiedotMatlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma
Matlab-perusteet Jukka Jauhiainen OAMK / Tekniikan yksikkö Hyvinvointiteknologian koulutusohjelma Tämän materiaalin tarkoitus on antaa opiskelijalle lyhyehkö johdanto Matlabohjelmiston perusteisiin. Matlabin
LisätiedotATK tähtitieteessä. Osa 2 - IDL perusominaisuudet. 12. syyskuuta 2014
12. syyskuuta 2014 IDL - Interactive Data Language IDL on tulkattava ohjelmointikieli, jonka vahvuuksia ovat: Yksinkertainen, johdonmukainen komentosyntaksi. Voidaan käyttää interaktiivisesti, tai rakentamalla
LisätiedotMatlabin perusteita Grafiikka
BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,
Lisätiedot1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
LisätiedotFunktion määrittely (1/2)
Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.
Lisätiedot1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
Lisätiedot1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Lisätiedoty z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
LisätiedotMuuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlkompleksianalyysi 1. mlk001.tex Ensiapuohjeita Sijoitus muuttujaan esim: >> z=(1+i)/(1-2*i) Puolipiste lopussa estää tulostuksen. Muuttujan sisällön
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää
LisätiedotPERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2
PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotSäätötekniikan ja signaalinkäsittelyn työkurssi
Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio
LisätiedotHannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus
Perusohjeita, symbolista laskentaa Geogebralla Kielen vaihtaminen. Jos Geogebrasi kieli on vielä englanti, niin muuta se Options välilehdestä kohdasta Language suomeksi (finnish). Esittelen tässä muutaman
LisätiedotLuvuilla laskeminen. Esim. 1 Laske 6 21 7
Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.
Lisätiedot1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
LisätiedotHarjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)
Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 MyCourses Kurssilla käytetään
LisätiedotKaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotTähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python
Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python 31. tammikuuta 2009 Ohjelmointi Perusteet Pythonin alkeet Esittely Esimerkkejä Muuttujat Peruskäsitteitä Käsittely
LisätiedotFUNKTION KUVAAJAN PIIRTÄMINEN
FUNKTION KUVAAJAN PIIRTÄMINEN Saat kuvapohjan painamalla @-näppäintä tai Insert/Graph/X-Y-POT. Kuvapohjassa on kuusi paikanvaraaja: vaaka-akselin keskellä muuttuja ja päissä minimi- ja maksimiarvot pystyakselin
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotHeikki Apiola, Juha Kuortti, Miika Oksman. 5. lokakuuta Matlabperusteita, osa 1
Matlab-perusteita, 5. lokakuuta 2015 Matlab-perusteita, Mikä on Matlab Matriisilaboratorio [Cleve Moler, Mathworks inc.] Numeerisen laskennan työskentely-ympäristö Suuri joukko matemaattisia ja muita funktioita,
Lisätiedot1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa
1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotSÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Teknillinen tiedekunta Älykkäät koneet ja järjestelmät helmikuu
LisätiedotHarjoitus 4 -- Ratkaisut
Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä
Lisätiedot0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut
0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z
LisätiedotMuuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlkompleksianalyysi 1. mlk001.tex Ensiapuohjeita Sijoitus muuttujaan esim: >> z=(1+i)/(1-2*i) Puolipiste lopussa estää tulostuksen. Muuttujan
LisätiedotFysiikan matematiikka P
Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.
LisätiedotPythonin alkeet Syksy 2010 Pythonin perusteet: Ohjelmointi, skriptaus ja Python
Pythonin alkeet Syksy 2010 Pythonin perusteet: Ohjelmointi, skriptaus ja Python 8. marraskuuta 2010 Ohjelmointi Perusteet Peruskäsitteitä Olio-ohjelmointi Pythonin alkeet Esittely Esimerkkejä Muuttujat
LisätiedotHarjoitus 10: Mathematica
Harjoitus 10: Mathematica Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Mathematica-ohjelmistoon Mathematican
LisätiedotFortran 90/95. + sopii erityisesti numeriikkaan:
Fortran 90/95 + sopii erityisesti numeriikkaan: + optimoivat kääntäjät tehokas koodi + mukana valmiiksi paljon varusfunktioita + kompleksiluvut + taulukko-operaatiot + operaattorit laajennettavissa myös
LisätiedotAikatason vaste vs. siirtofunktio Tehtävä
Aikatason vaste vs. siirtofunktio Tehtävä Millainen toisen kertaluvun siirtofunktio vastaa systeemiä jonka ylitys on 10% ja asettumisaika 4 min? Y s X s = 2 n s 2 2 2 n s n M p =e t r 1.8 n t s 4.6 n 1
LisätiedotMatriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017
Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8
LisätiedotKompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut
Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien
LisätiedotMATHCAD. Kokeilemalla voi tarkistaa tunnistaako MATHCAD halutun kerrannaisyksikön: Siis ei tunnistanut millinewtonia
YKSIKÖT Valitsemalla Tools/Worksheet Options/Unit System nähdään, että Mcad:ssa on käytettävissä SI,MKS-, CGS-, U.S- yksikkövalikoimat sekä vaihtoehto None, jolloin käytettävät yksiköt voi määritellä itse.
LisätiedotValintakoe
Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotEsimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi
Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
Lisätiedotmlgrafiikka 1. Piirrä samaan kuvaan funktioiden cos ja sin kuvaajat välillä [ 2π, 2π] Aloita tyyliin: 2. Piirrä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlgrafiikka 1. Piirrä samaan kuvaan funktioiden cos ja sin kuvaajat välillä [ 2π, 2π] Aloita tyyliin: x=linspace(-2*pi,2*pi); y1=cos(x); y2=sin(x);
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
Lisätiedot1 PID-taajuusvastesuunnittelun esimerkki
Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
LisätiedotHarjoitus 2 -- Ratkaisut
Harjoitus -- Ratkaisut Listat a Table-komento Huom. (*-merkki aloittaa kommentin ja *)-merkki päättää sen. Table x, x,. x:n arvo, viimeinen x:n arvo, askelpituus, 4, 9, 6, 5, 36, 49, 64, 8,,, 44, 69, 96,
LisätiedotHarjoitus 1 -- Ratkaisut
Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin
LisätiedotELEC-C5210 Satunnaisprosessit tietoliikenteessä Harjoitus M1,
ELEC-C5210 Satunnaisprosessit tietoliikenteessä Harjoitus M1, 16.3.2017 1. Syntaksista, vektoreista ja matriiseista: Tehtävän eri kohdat on tehtävä järjestyksessä. Myöhemmissä kohdissa oletetaan, että
Lisätiedotz muunnos ja sen soveltaminen LTI järjestelmien analysointiin
z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten
LisätiedotHarjoitus 1 -- Ratkaisut
Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin
LisätiedotHarjoitus 2 -- Ratkaisut
Harjoitus -- Ratkaisut Listat a Table-komento Huom. (*-merkki aloittaa kommentin ja *)-merkki päättää sen. In[5]:= Table x, x,. x:n arvo, viimeinen x:n arvo, askelpituus Out[5]=, 4, 9,, 5, 3, 49, 4, 8,,,
LisätiedotSÄÄTÖJÄRJESTELMIEN SUUNNITTELU
ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät helmikuu 2019 ENSO IKONEN PYOSYS
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra a, kevät 2019 Harjoitus 6 (ratkaisuja Maple-dokumenttina) > restart; with(linalg): # toteuta ihan aluksi!
Lineaarialgebra a, kevät 2019 Harjoitus 6 (ratkaisuja Maple-dokumenttina) restart; with(linalg): # toteuta ihan aluksi! Tehtävä 1. Säännöllisyys yhdellä yhtälöllä Koska matriisit A ja B ovat neliömatriiseja
LisätiedotMatlabperusteita, osa 1. Heikki Apiola Matlab-perusteita, osa 1. Heikki Apiola. 12. maaliskuuta 2012
Matlab-perusteita, 12. maaliskuuta 2012 Matlab-perusteita, Ohjelmahahmotelma 1. viikko: Matlab 2. viikko: Maple (+ annettujen Matlab tehtävien ratkaisuja) 3. viikko: Maple ja Matlab (lopputyöt) Matlab-perusteita,
LisätiedotMatematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
LisätiedotNumeerinen analyysi Harjoitus 3 / Kevät 2017
Numeerinen analyysi Harjoitus 3 / Kevät 2017 Palautus viimeistään perjantaina 17.3. Tehtävä 1: Tarkastellaan funktion f(x) = x evaluoimista välillä x [2.0, 2.3]. Muodosta interpoloiva polynomi p 3 (x),
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Lisätiedotz 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
Lisätiedotmlnonlinequ, Epälineaariset yhtälöt
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlnonlinequ, Epälineaariset yhtälöt 1. Historiallisesti mielenkiintoinen yhtälö on x 3 2x 5 = 0, jota Wallis-niminen matemaatikko käsitteli,
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotFunktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?
Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.
LisätiedotEsimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi
Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa
LisätiedotELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit
ELEC-C3 Säätötekniikka Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit Aikaisemmilla luennoilla on havainnollistettu, miten systeemien
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
Lisätiedot. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LisätiedotOppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotTehtävä 1. Vaihtoehtotehtävät.
Kem-9.47 Prosessiautomaation perusteet Tentti.4. Tehtävä. Vaihtoehtotehtävät. Oikea vastaus +,5p, väärä vastaus -,5p ja ei vastausta p Maksimi +5,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA
LisätiedotScilab 5.3.3 - ohjelman alkeisohjeet
Pohdin projekti Scilab 5.3.3 - ohjelman alkeisohjeet Käytön aloittaminen Ohjelma käynnistetään kaksoisklikkaamalla työpöydällä ohjelman kuvaketta ja ohjelman käyttö lopetetaan käyttämällä komentoa exit
LisätiedotMATEMATIIKAN JAOS Kompleksianalyysi
MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotMatematiikan johdantokurssi Johdatusta funktiosääntöihin ja piirtelyyn. Harjoitusta 9, tehtävien käsittelyä Maplella
Matematiikan johdantokurssi 2018 Harjoitusta 9, tehtävien käsittelyä Maplella Aikaisemmin tutustuimme alustavasti Mapleen, lausekkeiden käsittelyyn, jono- ja listarakenteisiin ja alkeisjoukko-oppiin. Nyt
Lisätiedot