Ohjelman käynnistäminen
|
|
- Ilmari Yrjö Saarnio
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 >> why Because he obeyed a good and young and smart and terrified and rich and rich and not very good and good and bald and not excessively tall and good programmer. Tässä materiaali on tarkoitettu insinööriopiskelijoille Matlabohjelmoinnin opiskeluun. Missään oppaassa ei voi opettaa kaikkia asioita, ei tässäkään. Pyrkimys on ollut käydä läpi perusteellisemmin niitä asioita, jotka ovat osoittautuneet tarpeellisiksi vuosien mittaan. Matlabin help on oikeasti hyödyllinen. Sitä kannattaa käyttää. Ja omaa mielikuvitusta. Oulu Jukka Jauhiainen Ohjelman käynnistäminen Nämä ohjeet pätevät Tekniikan yksikön verkosta käynnistyvään Matlab7-versioon. Ohjelmaa voi ajaa suoraan verkosta ilman minkäänlaisia asennuksia paikallisille koneille, joten se toimii (ainakin periaatteessa) missä tahansa Tekniikan yksikön verkkoon kytketystä koneesta. Verkosta saattaa löytyä vanhempiakin versioita (kuten esim. Matlab6p), mutta ne eivät toimi! Todennäköistä on, että Matlab ei löydy Windowsin START-valikosta tai työpöydältä. Yleensä se on käynnistettävä Windows Explorerin kautta klikkaamalla Tools -> Map Network Drive. Folderiksi valitaan \\s\apps\kotka\matlab7 Copyright Jukka Jauhiainen
2 Kyseisestä hakemistosta löytyy ikoni, jota tuplaklikkaamalla ohjelma käynnistyy. Joskus ohjelma ei käynnisty, vaan ruutuun ilmestyy "Licence Manager Error". Tässä tilanteessa ota yhteys ATK-tukeen (ensisijaisesti Pekka Hämäläinen). Käynnistyminen saattaa kestää verkon yli jonkin aikaa, joten ole kärsivällinen. Niin kauan kuin vasemmanpuoleisessa ikkunassa on teksti "initializing", on lataus käynnissä. Käyttöliittymä Käynnistyksen jälkeen käytössä on kolme ikkunaa, joihin osaan voi valita eri toimintoja. Tärkein ikkuna on komentoikkuna (Command Window). Sinne käyttäjä voi kirjoittaa haluamiaan komentoja. Oheisessa esimerkissä on lisäksi Workspaceikkuna, jossa näkyy sillä hetkellä käytössä olevat muuttujat. Muuttujaa tuplaklikkaamalla saa näyttöön Excel-tyylisen taulukon, jossa näkyy muuttujan arvot. Kolmas esimerkin ikkuna on Command History, jossa näkyy lista edellisistä komennoista. Ne voi toistaa tuplaklikillä. Myös unix-maailmasta tuttu nuoli ylös/alas toimii komentoikkunassa. Muitakin ikkunoita on, ne on valittavissa yläpalkin viewnapin takaa. Yksittäisten komentojen lisäksi on mahdollista kirjoittaa hyvinkin monimutkaisia komentosarjoja tiedostoihin (ns. M-tiedostot). Näin tehtyjä uusia funktioita voidaan käyttää kuin mitä tahansa Matlabin sisäänrakennettuja valmisfunktioita. Copyright Jukka Jauhiainen
3 Taustaa Nimi "matlab" tulee sanoista Matrix Laboratory. Matlab on siis suunniteltu ensisijaisesti matriisilaskentaan. Tämän ei pidä antaa pelottaa vaikka matriisin käsite olisikin outo. Vektori on yksiulotteinen (eli 1xn tai nx1) matriisi. Yksittäinen luku (eli skalaari) voidaan ajatella 1x1-matriisiksi. Esimerkiksi 3x3-matriisi on joukko lukuja, jotka on järjestetty 3 riviksi ja 3 sarakkeeksi. Matlab on tulkkaava ohjelmointikieli, eli se lukee rivi riviltä käyttäjän antamat komennot ja suorittaa niitä sitä mukaa. Virhetilanteessa ohjelman suoritus keskeytyy virheilmoitukseen. Tulkkavuudesta johtuu, että ohjelmien suoritus on hidasta verrattuna "oikeisiin" kääntäviin ohjelmointikieliin (esim. C).. Matlabin suosio perustuu pitkälti siihen, että siihen on saatavissa lukuisa laajennusosia, Toolboxeja, joiden ansiosta kaikkea ei tarvitse koodata itse alusta asti. Toolboxeja on saatavissa mm. signaalinkäsittelyyn, kuvankäsittelyyn, optimointiin, systeemisuunnitteluun jne. Niitä tulee myös koko ajan lisää. Tehtävä: Käy ohjelman tekijän MathWorks Inc:n kotisivulla. Kokeile kirjoittaa komentoriville komentoja help, helpwin, info ja demo. Tehtävä: Mitä komennot whos, cd, pwd ja clear tekevät? Peruskäsitteitä Copyright Jukka Jauhiainen
4 Muuttujat ja peruslaskutoimitukset Yksinkertaiselle muuttujalle voidaan sijoittaa arvo samanlaisella sijoituslauseella kuin ohjelmoinnissa. Esimerkiksi sijoitus >>a=1 määrittelee muuttujan a, jolle annetaan arvoksi 1. Muuttujien arvot näkyvät Workspace-ikkunassa ja ne voidaan tulostaa myös kirjoittamalla muuttujan nimi komentoriville ja painamalla ENTER. Peruslaskutoimitukset suoritetaan +, -, * ja /-operaattoreilla. Esimerkiksi komento a=a+1 lisää muuttujan a arvoon 1. Vastaavasti c=a-b laskee muuttujien a ja b erotuksen ja tallentaa tuloksen muuttujaan c. Tehtävä 3: Määrittele muuttujat a ja b, anna niille vaikkapa arvot 3 ja 2 ja kokeile peruslaskutoimituksia niillä. Rivin lopussa oleva puolipiste (;) estää tulostuksen näytölle. Tämä voi olla tarpeen jos tulostusta on paljon. Puolipiste ei toimi Matlabissa samalla tavalla kuin C:ssä. Se ei ole pakollinen rivin lopussa, mutta jos samalle komentoriville kirjoittaa useamman komennon, toimii puolipiste komentojen erottimena. Esimerkiksi >>a=1 >>b=2 >>a+b on sama asia kuin >>a=1;b=2;a+b Tulostaa summan ans-nimiseen muuttujaan tallennettuna. Ans sisältää aina viimeisimmän komennon tulostuksen. Jos tulos halutaan tallentaa pysyvämmin, se kannattaa sijoittaa johonkin toiseen muuttujaan, esim. >>c=a+b Valmisfunktioita Matlabissa on joukko sisäänrakennettuja matemaattisia funktioita, joista tavallisimpia ovat: sqrt(x) = luvun x neliöjuuri x^n = luvun x n:s potenssi exp(n) = e n Copyright Jukka Jauhiainen
5 log(n) = luonnollinen logaritmi luvusta n log10(n) = 10-kantainen logaritmi luvusta n sin(x), cos(x), tan(x) = trigonometriset funktiot, argumentti oltava radiaaneina asin(x), acos(x), atan(x) = trigonometriset käänteisfunktiot. Kompleksiluvut Kompleksiluku määritellään kirjoittamalla reaali- ja imaginääriosat summamuodossa. Matlab tunnistaa sekä i:n että j:n imaginääriyksiköksi. >> z=3+4i Tehtävä: Kokeile korottaa pelkkä vakio i tai j toiseen potenssiin. Mikä on tulos? Kompleksilukuihin liittyviä funktioita: Liittoluku: conj(z) Itseisarvo abs(z) Reaaliosa real(z) Imaginääriosa imag(z) Vaihekulma angle(z) Tehtävä: Laske luvun z=3+4i liittoluku, itseisarvo, reaaliosa, imaginääriosa ja vaihekulma. Copyright Jukka Jauhiainen
6 Yksiulotteiset vektorit Vektori on taulukko, jossa on lukuja peräkkäin. Matlabissa taulukkojen indeksointi alkaa aina YKKÖSESTÄ, ei nollasta kuten esimerkiksi C:ssä. Vektori voidaan määritellä komennolla: >>x=[eka:askel:vika]; missä eka on vektorin ensimmäinen alkio, askel sanoo paljonko arvoa kasvatetaan ja vika on viimeinen alkio. Askeleen voi jättää pois, jolloin oletus on 1. Vektorin tiettyyn alkioon viitataan antamalla vektorin nimi ja sen perään suluissa numero, joka kertoo, monenteenko alkioon viitataan. Siis >>x(n) Tulostaa vektorin x n:nnen alkion. Kaksoispisteen avulla voidaan määritellä tulostettavaksi joukko peräkkäisiä alkioita: >>x(n1:n2) Tulostaa vektorin sisällön alkaen indeksistä n1 ja päättyen indeksiin n2. Esimerkki: Tehdään vektori x, joka saa arvot 0:sta 10:een 0.1 välein. >>x=[0:0.1:10]; x:n sisällön voi tarkistaa kirjoittamalla komentoikkunaan x, tai tuplaklikkaamalla sitä Workspacessa (sen pitäisi ilmestyä sinne tuon komennon jälkeen). Tulostetaan seuraavaksi x:n 1. alkio : >>x(1) 0 Ellei jonkin operaation tulosta sijoiteta johonkin muuttujaan, Matlab sijoittaa sen automaattisesti muuttujaan ans. Se siis sisältää aina viimeisimmän laskutoimituksen tuloksen. Vastaavasti komento >>a=x(1) sijoittaa x:n ensimmäisen alkion arvon muuttujaan a (joka ilmestyy Workspaceen). Katsotaan seuraavaksi, mitä x:n 10 ensimmäistä alkiota ovat: >>x(1:10) Columns 1 through Copyright Jukka Jauhiainen
7 Columns 8 through Vektorin alkioihin voidaan myös sijoittaa arvoja. Esimerkiksi tässä asetetaan vektorin x 10 ensimmäiseen alkioon 0: >>x(1:10)=0; Pysty- ja vaakavektorit Matlabissa vektori voidaan esittää joko pysty- tai vaakavektorina. Oletusarvona Matlab tekee vaakavektorin. Sen voi muuttaa pystyvektoriksi eli transponoida komennolla x : >> x=[1:3] x = >> x' Tehtävä: Tee vektori x, joka sisältää kokonaisluvut 1-5 ja vektori y, joka sisältää luvut Kokeile yhteen-, vähennys, kerto- ja jakolaskuja. Mitä tapahtui? Summa ja erotus on määritelty matemaattisesti vektoreille siten, että operaatio kohdistuu vektorien vastinalkioihin. Sen sijaan tulon ja osamäärän tapauksessa Matlab pyrkii laskemaan aina matriisitulon. Tehtävä: Selitä, mitä seuraavat operaatiot tekevät: x*y x *y Vastinalkioiden kerto- ja jakolasku on toki myös mahdollista. Se määritellään laittamalla operaattorin eteen PISTE. Siis esimerkiksi x.*y. Tehtävä: Laske vektorien x ja y alkioittainen tulo ja osamäärä. Tehtävä: Tee Matlabilla vektorit, jossa on alkiot Matriisit a) 2, 4, 6, 8,..., 20 b) 10, 8, 6, 4, 2, 0, -2, -4,..., -10 c) 1, 1/2, 1/3, 1/4, 1/5,..., 1/10 d) 0, 1/2, 2/3, 3/4, 4/5,..., 9/10 Matriisi on kaksiulotteinen taulukko. Matriisin alkiot annetaan hakasulkujen sisällä rivi kerrallaan puolipisteillä erotettuna. Copyright Jukka Jauhiainen
8 Esimerkki: a=[1 2 3; 4 5 6; 7 8 9] a = >> a' Matriisin transponointi siis kääntää rivit sarakkeiksi ja päinvastoin. Peruslaskutoimituksiin matriiseilla pätevät samat periaatteet kuin edellä vektoreihin. Summa ja erotus on siten määritelty vain kahden samankokoisen matriisin kesken vastinalkioiden välillä. Matriisin a käänteismatriisi voidaan laskea komennolla inv(a). Tehtävä: Käytä edellä määriteltyä matriisia a. Tee myös vaakavektori b, joka sisältää luvut 1, 2 ja 3. Mitä laskutoimituksia a:n ja b:n välillä voi tehdä? Tehtävä: Matlabissa on valmiina joukko komentoja, joilla voidaan tehdä tiettyjä erikoismatriiseja. Tällaisia on esimerkiksi ones(n), zeros(n), eye(n), magic(n) jne. Mitä nämä komennot tekevät? Kirjaimen n tilalla on oltava positiivinen kokonaisluku. Lineaarisen yhtälöryhmän ratkaiseminen Lineaarinen yhtälöryhmä ratkeaa MATLABin takakeno-operaatiolla. Jos yhtälöitä on enemmän kuin tuntemattomia (kerroinmatriisin aste on pienempi kuin tuntemattomien lukumäärä) saadaan pienimmän neliösumman ratkaisu. Yhtälöryhmä 10x 1-7x 2 = 7-3x 1 +2x 2 +6x 3 = 4 5x 1 -x 2 +5x 3 = 6 voidaan esittää matriisimuodossa Ax=b. MATLABissa muodostetaan ratkaisua varten kerroinmatriisi A ja oikean puolen vektori b:» A=[10,-7,0;-3,2,6;5,-1,5] A = » b=[7,4,6]' b = Copyright Jukka Jauhiainen
9 Yhtälöryhmä ratkeaa takakenolla» x=a\b x = Tehtävä: Ratkaise Matlabilla yhtälöryhmä x 1 + x 2 + x 3 = x x x 3 = x x x 3 = 2.35 Tehtävä: Maalifirmalla on ylijäämä neljää erilaista vihreän sävyn maalia, joissa on neljää pigmenttiä prosentteina seuraavasti: Maali 1 Maali 2 Maali 3 Maali 4 Pigmentti Pigmentti Pigmentti Pigmentti Nämä maalit halutaan sekoittaa niin, että saadaan muodikkaampaa väriä, jossa pigmenttejä on suhteessa 40:27:31:2. Missä suhteessa maalit on sekoitettava? Muodosta ongelman ratkaiseva yhtälöryhmä ja ratkaise se Matlabilla. Muita matriisilaskentaan liittyviä toimintoja Suuri joukko valmiita matriisifunktioita on käytettävissä. Esimerkiksi matriisin determinantti lasketaan funktion det avulla:» det(a) 27 käänteismatriisi, inv» inv(a) matriisin aste, ominaisarvot jne.» rank(a) 3» eig(a) Copyright Jukka Jauhiainen
10 Copyright Jukka Jauhiainen
Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma
Matlab-perusteet Jukka Jauhiainen OAMK / Tekniikan yksikkö Hyvinvointiteknologian koulutusohjelma Tämän materiaalin tarkoitus on antaa opiskelijalle lyhyehkö johdanto Matlabohjelmiston perusteisiin. Matlabin
LisätiedotValitse ruudun yläosassa oleva painike Download Scilab.
Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download
LisätiedotHarjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006
Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten
LisätiedotMatlab-perusteet Harjoitustehtävien ratkaisut
Matlab-perusteet Harjoitustehtävien ratkaisut Osa 1 Tehtävä: Määrittele muuttujat a ja b, anna niille vaikkapa arvot 3 ja 2 ja kokeile peruslaskutoimituksia niillä. >>a=1;b=2; >>a+b 3 >>a-b -1 >>a*b 2
LisätiedotMatriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.
Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.
LisätiedotMatriiseista. Emmi Koljonen
Matriiseista Emmi Koljonen 3. lokakuuta 22 Usein meillä on monta systeemiä kuvaavaa muuttujaa ja voimme kirjoittaa niiden välille riippuvaisuuksia, esim. piirin silmukoihin voidaan soveltaa silmukkavirtayhtälöitä.
LisätiedotBL40A0000 Säätötekniikan ja signaalinkäsittelyn
1 BL40A0000 Säätötekniikan ja signaalinkäsittelyn matemaattiset ohjelmistot Luennot ja harjoitukset Katja Hynynen, h. 6431, p. 040-548 8954 Katja.Hynynen@lut.fi Opetus ja suoritusvaatimukset OPETUS: Luentoja
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
LisätiedotMatemaattiset ohjelmistot A. Osa 2: MATLAB
Matemaattiset ohjelmistot 802364A Osa 2: MATLAB Mikko Orispää 30. lokakuuta 2013 Sisältö 1 MATLAB 2 1.1 Peruslaskutoimitukset......................... 2 1.2 Muuttujat................................ 3
LisätiedotMatriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
LisätiedotTalousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotMatlabperusteita, osa 1. Heikki Apiola Matlab-perusteita, osa 1. Heikki Apiola. 12. maaliskuuta 2012
Matlab-perusteita, 12. maaliskuuta 2012 Matlab-perusteita, Ohjelmahahmotelma 1. viikko: Matlab 2. viikko: Maple (+ annettujen Matlab tehtävien ratkaisuja) 3. viikko: Maple ja Matlab (lopputyöt) Matlab-perusteita,
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotOpiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto
Opiskelijan pikaopas STACK-tehtäviin Lassi Korhonen, Oulun yliopisto 21.3.2016 SISÄLLYSLUETTELO Oppaan käyttäminen... 2 Vastauksen syöttämisen perusteet... 2 Operaatiot... 2 Luvut ja vakiot... 3 Funktiot...
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
LisätiedotZeon PDF Driver Trial
Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
LisätiedotHarjoitus 10: Mathematica
Harjoitus 10: Mathematica Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Mathematica-ohjelmistoon Mathematican
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
LisätiedotATK tähtitieteessä. Osa 2 - IDL perusominaisuudet. 12. syyskuuta 2014
12. syyskuuta 2014 IDL - Interactive Data Language IDL on tulkattava ohjelmointikieli, jonka vahvuuksia ovat: Yksinkertainen, johdonmukainen komentosyntaksi. Voidaan käyttää interaktiivisesti, tai rakentamalla
LisätiedotLineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotTalousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
Lisätiedotplot(f(x), x=-5..5, y=-10..10)
[] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä
LisätiedotMatlabin perusteet. 1. Käyttöliittymä:
Matlabin perusteet Matlabin (MATrix LABoratory) perusfilosofia on, että se käsittelee kaikkia muuttujia matriiseina, joiden erikoistapauksia ovat vektorit ja skalaariluvut. Näin ollen se soveltuu erityisesti
LisätiedotTalousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo
Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
LisätiedotTalousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti
Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z
LisätiedotKurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.
7 Matriisilaskenta Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7.1 Lineaariset yhtälöryhmät Yhtälöryhmät liittyvät tilanteisiin, joissa on monta tuntematonta
LisätiedotT211003 Sovellusohjelmat Matlab osa 4: Skriptit, funktiot ja kontrollirakenteet
Ohjelmointi Matlab-komentoja voidaan koota ns. M-tiedostoon. Nimi tulee tiedoston tarkentimesta.m. Matlabilla voidaan ohjelmoida kahdella eri tavalla: Skriptit eli komentojonot eli makrot Funktiot eli
LisätiedotTässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.
Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Lisätiedot2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
LisätiedotTehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotScilab 5.3.3 - ohjelman alkeisohjeet
Pohdin projekti Scilab 5.3.3 - ohjelman alkeisohjeet Käytön aloittaminen Ohjelma käynnistetään kaksoisklikkaamalla työpöydällä ohjelman kuvaketta ja ohjelman käyttö lopetetaan käyttämällä komentoa exit
LisätiedotHeikki Apiola, Juha Kuortti, Miika Oksman. 5. lokakuuta Matlabperusteita, osa 1
Matlab-perusteita, 5. lokakuuta 2015 Matlab-perusteita, Mikä on Matlab Matriisilaboratorio [Cleve Moler, Mathworks inc.] Numeerisen laskennan työskentely-ympäristö Suuri joukko matemaattisia ja muita funktioita,
LisätiedotMatemaattiset ohjelmistot 1-2 ov, 2-3 op
Matemaattiset ohjelmistot 1-2 ov, 2-3 op Aloitustehtävät Perehdy netissä olevan oppaan http://mtl.uta.fi/opetus/matem_ohjelmistot/matlab lukuihin 0 Johdanto, 1 matriisit ja vektorit sekä 4 Ohjelmointi
LisätiedotKOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
LisätiedotLineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotValintakoe
Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
LisätiedotGaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
LisätiedotHarjoitus 1 -- Ratkaisut
Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin
LisätiedotMatriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotMatriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.
LisätiedotHarjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)
Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Ensimmäinen harjoituskierros Aiheet Tutustuminen
LisätiedotPERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2
PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä
LisätiedotLuvuilla laskeminen. Esim. 1 Laske 6 21 7
Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.
LisätiedotMS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
LisätiedotMatriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin
LisätiedotOctave-opas. Mikä on Octave ja miksi? Asennus
Octave-opas Mikä on Octave ja miksi? Asennus Käynnistys ja käyttöliittymä Komennot tiedostojen hallintaan SciTE-editor.m-tiedostot Ohjeita muualla Mikä on Octave ja miksi? Octave on numeeriseen laskentaan
LisätiedotNumeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45
Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset
Lisätiedot2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset.
Vaasan yliopiston julkaisuja, opetusmonisteita 49 har:linyryhmat03 Tehtävä 2.3 Ratkaise lineaariset yhtälörymät x + y z 5 x + 2y + 4z 16 a x + 2y + 2z 0 2x + z 14 b x + y z 5 x + 2y + 4z 16 x + 2y + 2z
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Lisätiedoty z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
LisätiedotMatriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa
Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun
Lisätiedot0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut
0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotHarjoitus 1 -- Ratkaisut
Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotNeliömatriisin adjungaatti, L24
Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin
LisätiedotTähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python
Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python 31. tammikuuta 2009 Ohjelmointi Perusteet Pythonin alkeet Esittely Esimerkkejä Muuttujat Peruskäsitteitä Käsittely
LisätiedotMatriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
LisätiedotOminaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
LisätiedotDifferentiaali- ja integraalilaskenta 1. Tietokoneharjoitus: ratkaisut
Johdanto Kokeile tavallista numeroilla laskemista: yhteen-, kerto- ja jakolaskuja sekä potenssiinkorotusta. 5 (3.1) Differentiaali- ja integraalilaskenta 1 Tietokoneharjoitus: ratkaisut Kurssin 1. alkuviikon
LisätiedotKäänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla
Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotMatriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017
Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotC-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa.
Taulukot C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa. Taulukon muuttujilla (muistipaikoilla) on yhteinen nimi. Jokaiseen yksittäiseen
LisätiedotPythonin alkeet Syksy 2010 Pythonin perusteet: Ohjelmointi, skriptaus ja Python
Pythonin alkeet Syksy 2010 Pythonin perusteet: Ohjelmointi, skriptaus ja Python 8. marraskuuta 2010 Ohjelmointi Perusteet Peruskäsitteitä Olio-ohjelmointi Pythonin alkeet Esittely Esimerkkejä Muuttujat
LisätiedotLineaarialgebra (muut ko)
Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotOhjelmoinnin jatkokurssi, kurssikoe 28.4.2014
Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Kirjoita jokaiseen palauttamaasi konseptiin kurssin nimi, kokeen päivämäärä, oma nimi ja opiskelijanumero. Vastaa kaikkiin tehtäviin omille konsepteilleen.
LisätiedotMatriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
LisätiedotJohdatus Ohjelmointiin
Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin
LisätiedotHarjoitus 3 -- Ratkaisut
Harjoitus 3 -- Ratkaisut 1 ' '-merkki kirjoitetaan =, ' '-merkki!=, ' '-merkki ==. Yhtälöiden ratkaisusta puhutaan lisää myöhemmin. a f x, y : If ehtolauseke x y, y tämä palautetaan, jos
LisätiedotMuuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlkompleksianalyysi 1. mlk001.tex Ensiapuohjeita Sijoitus muuttujaan esim: >> z=(1+i)/(1-2*i) Puolipiste lopussa estää tulostuksen. Muuttujan
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
LisätiedotAlgebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.
Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)
LisätiedotLineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
Lisätiedot