Scilab ohjelman alkeisohjeet
|
|
- Tauno Salo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Pohdin projekti Scilab ohjelman alkeisohjeet Käytön aloittaminen Ohjelma käynnistetään kaksoisklikkaamalla työpöydällä ohjelman kuvaketta ja ohjelman käyttö lopetetaan käyttämällä komentoa exit tai quit. Ohjelmiston Scilab komentorivi näyttää seuraavalta --> Ohjelman käytön aikana tietyn komennon käytöstä saa apua komennolla help komento. Muuttujan luominen Sijoitusoperaattorina Scilabissa on yhtäsuuruusmerkki =. Luotaessa muuttuja, jolle halutaan antaa jokin arvo, voidaan kirjoittaa esimerkiksi --> a = 6 --> b = 7 Laskutoimitukset Peruslaskutoimitukset ovat summa, erotus, tulo, osamäärä, potenssiin korotus ja neliöjuuri, jotka voidaan suorittaa seuraavilla operaattoreilla +, -, *, /, ^, sqrt() Erityisesti on huomattava, että esimerkiksi polynomilausekkeiden käsittelyssä kertoimen ja kirjainosan väliin on kirjoitettava aina kertomerkki. Editori Scilabia voidaan käyttää suoraan komentoikkunassa ts. laskut ja muut operaatiot voidaan kirjoittaa suoraan komentoikkunan näyttöön. Scilabia kannattaa kuitenkin käyttää editorin Scipad avulla, jolloin pienen harjoittelun jälkeen Scilabin käyttö nopeutuu ja helpottuu huomattavasti. Editorin voi käynnistää kirjoittamalla komentoikkunaan edit tai klikkaamalla kuvakepalkin ensimmäistä kuvaketta Launch SciNotes. Editorille kirjoitettua komentokokoelmaa kutsutaan scriptiksi tai ohjelmakoodiksi. Editorin scripti ajetaan klikkaamalla editorin ylälaidasta Execute ja edelleen file with echo, tai näppäinyhdistelmällä Ctrl+L. Ideana editorin käytössä on, että sinne voidaan kirjoittaa useita komentoja ja laskuja peräkkäin, ja Scilab suorittaa kaikki komennot kerralla. Jos huomataan jokin virhe tai halutaan kokeilla komentojonoa muilla muuttujien arvoilla, niin tällöin ei tarvitse kirjoittaa koko komentosarjaa uudestaan.
2 Esimerkki Kirjoita seuraavan kuvan mukainen teksti Editoriin ja aja se Scilabilla (Ctrl+L). Vaihda tämän jälkeen kuusitukin mittoja ja aja laskentaohjelma uudelleen.
3 Vektoreista Vektorilaskenta tasossa ja myös moniulotteisissa avaruuksissa on Scilabilla varsin yksinkertaista. Aluksi on määriteltävä vektorit ja huomioitava, että vaakavektorit ja pystyvektorit ovat nyt eri asioita. Vaakavektori voidaan syöttää kahdella eri tavalla -->// Tapa 1: -->a=[1 2 3] -->// Tapa 2: -->a=[1,2,3] Pystyvektori tulee ymmärtää vaakavektorin transpoosina ts. = ts. transpoosi saadaan ns. heittomerkin avulla. -->// Tapa 1: -->a=[4 5 6] -->// Tapa 2: -->a=[4,5,6] -->// Tapa 3: -->a=[4;5;6] Viimeinen muoto on nyt myös 3x1-matriisi, joka on sama asia kuin 1x3-vektorin transpoosi. Seuraavaksi määritetään joitain vektorilaskennan peruslaskutoimituksia. Yhteenlasku Vähennyslasku -->a+b Transpoosi -->a-c -->a Vektorin a normi eli itseisarvo -->norm(a) Vektoreiden a ja b pistetulo = cos(, ) //jos a on vaakavektori ja b pystyvektori: -->a*b //jos a ja b ovat pystyvektoreita: -->a *b
4 Kolmiulotteisessa avaruudessa voidaan laskea vektoreiden a ja ristitulo muodostamalla uusi funktio ristituloa varten: -->function y=cross(a,b) y=[a(2)*b(3)-a(3)*b(2);-(a(1)*b(3)-a(3)*b(1));a(1)*b(2)-a(2)*b(1)] endfunction Nyt voidaan laskea kolmiulotteisten vektoreiden ja ristitulo : -->cross(a,b) Edelleen vektorien, ja skalaarikolmitulo : missä a on vaakavektori Esimerkki -->a*(cross(b,c)) Määritä vektoreiden = [3 5 9] ja = [6 2 9] välisen kulman suuruus funktion arccos(x) avulla. -->a=[3,5,9], b=[6,2,9] -->acos((a*b')/(norm(a)*norm(b))) ans = Tulos on radiaaneina, joten asteina se on -->ans*(180/%pi) ans = Matriisit Matriisin määrittäminen Matriisin alkiot laitetaan hakasulkujen väliin vaakariveittäin. Rivien alkiot voidaan erottaa pilkulla tai välilyönnillä toisistaan ja rivit enterin painalluksella tai puolipisteellä. Seuraavaksi esitellään kolme erilaista tapaa määritellä matriisi = >"Tapa 1"; -->A=[0,1,0;2,3,1;5,3,2] -->"Tapa 2"; -->A=[0 1 0;2 3 1; 5 3 2]
5 -->"Tapa 3"; -->A=[ > >5 3 2] Matriisien yhteen-, vähennys- ja kertolasku Scilabissa voidaan suorittaa matriisien yhteen-, vähennys- ja kertolaskuja. Yhteen- ja vähennyslaskussa täytyy kuitenkin ottaa huomioon, että matriisien kertaluvut pitää olla samat. Matriisin kertaluvun saa selville komennolla size: -->size(a) ans = Matriisien yhteen- ja vähennyslasku suoritetaan käyttämällä merkkejä + ja -. -->C=B+A -->B=C-A Kertolaskussa kertojan sarakkeiden lukumäärä tulee olla sama kuin kerrottavan rivien lukumäärä. Kertolaskua merkitään symbolilla *. -->C=A*B Matriisin transpoosi, determinantti ja käänteismatriisi Matriisille voidaan Scilabissa määrittää determinantti ( ), transpoosi ja käänteismatriisi : Determinantti Transpoosi --> det(a) -->A' Käänteismatriisi -->inv(a) Kompleksiluvuista Imaginaariyksikköä merkitään Scilabissa %i. Esimerkiksi luku =1+2 syötetään seuraavasti. -->z=1+2*%i Kompleksiluvun reaaliosa ja imaginaariosa saadaan seuraavilla komennoilla. -->real(z) -->imag(z)
6 Vastaavasti kompleksiluvun liittoluku ja itseisarvo -->conj(z) -->abs(z). Kuvaajista Funktion kuvaajan piirtäminen tapahtuu yleensä komennolla plot, mutta muitakin piirtokomentoja löytyy esimerkiksi vaikkapa 3D-piirtämiseen. Komennolla help plot saadaan apua piirtämiseen. Kuvaajien ulkoasua, esim. väriä ja viivan tyyliä jne. voidaan muuttaa. Esimerkiksi komennoilla xlabel, ylabel ja title voidaan nimetä akselit ja itse kuva. Lisäksi on vielä huomattava, että itse kuvaaja piirtyy omaan ikkunaan. Jos haluat että kuvaajia ei piirretä samaan ikkunaan, käytä komentoa clf(), joka tyhjentää ikkunan. Seuraavassa esimerkkejä funktioiden kuvaajien piirtämisestä Scilab 5.1.1:llä. Esimerkkejä Esimerkki 1. Esimerkki 2. Esimerkki 3. Esimerkki 4. --> x=-5:0.1:5; // Muuttujan x arvot. Puoli- --> plot(x,x.^2) // piste estää tulostuksen. --> clf(); // Tyhjennetään ikkuna. --> x=linspace(-3*%pi,3*%pi,100); // Muuttujan x arvot. --> y=sin(x); --> plot(x,y) --> x=-3:0.1:3; --> plot(x,x.^2,'r--',x,x.^3,'b-')// Punainen käyrä katkovii- // valla, sekä sininen // käyrä yhtenäisellä vii- // alla --> x=-3*%pi:0.1:3*%pi; --> plot(x,sin(x)) --> title('käyrä y=sin(x)') --> xlabel('x') --> ylabel('sin(x)') --> legend('sin(x)')
7 Esimerkki 5. Editorilla kuvia piirrettäessä kannattaa ohjelmakoodi ajaa kuvassa ylhäällä näkyvää Execute-kuvaketta klikkaamalla tai Execute valikosta Ctrl+L tai pelkkä Ctrl+L. Näin menetellen Scilabin komentoikkunaan ei tulostu komentoja, vaan Scilab piirtää kuvan erilliseen ikkunaan
Valitse ruudun yläosassa oleva painike Download Scilab.
Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download
LisätiedotHarjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006
Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten
LisätiedotMatemaattiset ohjelmistot A. Osa 2: MATLAB
Matemaattiset ohjelmistot 802364A Osa 2: MATLAB Mikko Orispää 30. lokakuuta 2013 Sisältö 1 MATLAB 2 1.1 Peruslaskutoimitukset......................... 2 1.2 Muuttujat................................ 3
LisätiedotTässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.
Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan
LisätiedotOhjelman käynnistäminen
>> why Because he obeyed a good and young and smart and terrified and rich and rich and not very good and good and bald and not excessively tall and good programmer. Tässä materiaali on tarkoitettu insinööriopiskelijoille
LisätiedotMatriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
LisätiedotMatriiseista. Emmi Koljonen
Matriiseista Emmi Koljonen 3. lokakuuta 22 Usein meillä on monta systeemiä kuvaavaa muuttujaa ja voimme kirjoittaa niiden välille riippuvaisuuksia, esim. piirin silmukoihin voidaan soveltaa silmukkavirtayhtälöitä.
LisätiedotMatlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma
Matlab-perusteet Jukka Jauhiainen OAMK / Tekniikan yksikkö Hyvinvointiteknologian koulutusohjelma Tämän materiaalin tarkoitus on antaa opiskelijalle lyhyehkö johdanto Matlabohjelmiston perusteisiin. Matlabin
LisätiedotMatriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.
Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
LisätiedotMatlabin perusteita Grafiikka
BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,
LisätiedotBM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
LisätiedotMatriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.
LisätiedotVektorialgebra 1/5 Sisältö ESITIEDOT: vektori
Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena
LisätiedotHarjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)
Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Ensimmäinen harjoituskierros Aiheet Tutustuminen
LisätiedotLuonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta
Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on
Lisätiedot1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
LisätiedotMatriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin
LisätiedotHarjoitus 2 -- Ratkaisut
Harjoitus -- Ratkaisut Listat a Table-komento Huom. (*-merkki aloittaa kommentin ja *)-merkki päättää sen. Table x, x,. x:n arvo, viimeinen x:n arvo, askelpituus, 4, 9, 6, 5, 36, 49, 64, 8,,, 44, 69, 96,
LisätiedotMatriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa
Lisätiedot1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotHarjoitus 2 -- Ratkaisut
Harjoitus -- Ratkaisut Listat a Table-komento Huom. (*-merkki aloittaa kommentin ja *)-merkki päättää sen. In[5]:= Table x, x,. x:n arvo, viimeinen x:n arvo, askelpituus Out[5]=, 4, 9,, 5, 3, 49, 4, 8,,,
Lisätiedotplot(f(x), x=-5..5, y=-10..10)
[] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä
LisätiedotBL40A0000 Säätötekniikan ja signaalinkäsittelyn
1 BL40A0000 Säätötekniikan ja signaalinkäsittelyn matemaattiset ohjelmistot Luennot ja harjoitukset Katja Hynynen, h. 6431, p. 040-548 8954 Katja.Hynynen@lut.fi Opetus ja suoritusvaatimukset OPETUS: Luentoja
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotSuora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
LisätiedotTyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5
MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää
LisätiedotMatlabperusteita, osa 1. Heikki Apiola Matlab-perusteita, osa 1. Heikki Apiola. 12. maaliskuuta 2012
Matlab-perusteita, 12. maaliskuuta 2012 Matlab-perusteita, Ohjelmahahmotelma 1. viikko: Matlab 2. viikko: Maple (+ annettujen Matlab tehtävien ratkaisuja) 3. viikko: Maple ja Matlab (lopputyöt) Matlab-perusteita,
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Lisätiedot110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotHarjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)
Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 MyCourses Kurssilla käytetään
LisätiedotPERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2
PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä
LisätiedotHeikki Apiola, Juha Kuortti, Miika Oksman. 5. lokakuuta Matlabperusteita, osa 1
Matlab-perusteita, 5. lokakuuta 2015 Matlab-perusteita, Mikä on Matlab Matriisilaboratorio [Cleve Moler, Mathworks inc.] Numeerisen laskennan työskentely-ympäristö Suuri joukko matemaattisia ja muita funktioita,
Lisätiedotmonissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.
.. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotHarjoitus 10: Mathematica
Harjoitus 10: Mathematica Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Mathematica-ohjelmistoon Mathematican
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedoty z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear
LisätiedotOpiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto
Opiskelijan pikaopas STACK-tehtäviin Lassi Korhonen, Oulun yliopisto 21.3.2016 SISÄLLYSLUETTELO Oppaan käyttäminen... 2 Vastauksen syöttämisen perusteet... 2 Operaatiot... 2 Luvut ja vakiot... 3 Funktiot...
Lisätiedot8. Yhtälöiden ratkaisuja Newtonilla, animaatioita
8. Yhtälöiden ratkaisuja Newtonilla, animaatioita Käsitellään puhtaana Maple-työnä ja myös Maple-Matlab-yhteistyönä. restart with plots : N d /evalf K f D f Nsymb d / K f D f lprint Nsymb +(*cos()-sin()-1)/(*sin())
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
Lisätiedot1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
LisätiedotHarjoitus 1 -- Ratkaisut
Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotMS-A0004 - Matriisilaskenta Laskuharjoitus 3
MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+
LisätiedotATK tähtitieteessä. Osa 2 - IDL perusominaisuudet. 12. syyskuuta 2014
12. syyskuuta 2014 IDL - Interactive Data Language IDL on tulkattava ohjelmointikieli, jonka vahvuuksia ovat: Yksinkertainen, johdonmukainen komentosyntaksi. Voidaan käyttää interaktiivisesti, tai rakentamalla
LisätiedotMatematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotEsimerkkejä derivoinnin ketjusäännöstä
Esimerkkejä derivoinnin ketjusäännöstä (5.9.008 versio 1.0) Esimerkki 1 Määritä funktion f(x) = (x 5) derivaattafunktio. Funktio voidaan tulkita yhdistettynä funktiona, jonka ulko- ja sisäfunktiot ovat
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
LisätiedotMATLABin alkeita J.Merikoski JYFL 2009 fysp120
MATLABin alkeita J.Merikoski JYFL 2009 fysp120 Tämän pikaoppaan tarkoitus on auttaa nopeaan alkuun matlab-ohjelmiston käytössä. Keskitymme fyysikolle (välittömästi) hyödyllisimpiin komentoihin ja rakenteisiin.
LisätiedotOrtogonaalinen ja ortonormaali kanta
Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä
LisätiedotTilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä
Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien
LisätiedotMuuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlkompleksianalyysi 1. mlk001.tex Ensiapuohjeita Sijoitus muuttujaan esim: >> z=(1+i)/(1-2*i) Puolipiste lopussa estää tulostuksen. Muuttujan
LisätiedotAsenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection.
Asentaminen Ohjelman voi ladata vapaasti webistä (http://rsbweb.nih.gov/ij/) ja siitä on olemassa versiot eri käyttöjärjestelmille. Suurimmalle osalle käyttäjistä sopii parhaiten valmiiksi käännetty asennuspaketti
LisätiedotVektorit. Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen...
12 Vektorit Vektorin luominen... 192 Vektorin tuominen näyttöön... 195 Vektorin koon ja alkioiden muokkaaminen... 195 Vektorin poistaminen... 196 TI -86 M1 M2 M3 M4 M5 F1 F2 F3 F4 F5 192 Luku 12: Vektorit
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
LisätiedotValokuvien matematiikkaa
Valokuvien matematiikkaa Avainsanat: valokuva, pikseli, päättely Luokkataso: 3.-5. luokka, 6.-9. luokka, lukio, yliopisto Välineet: Kynä, tehtävämonisteet (liitteenä), mahdollisiin jatkotutkimuksiin tietokone
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotPOHDIN - projekti. Funktio. Vektoriarvoinen funktio
POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotOrtogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
LisätiedotTW- EAV510 / TW- EAV510 AC: IPSeC- Ohjeistus
TW- EAV510 / TW- EAV510 AC: IPSeC- Ohjeistus IPSec- yhteys kahden TW- EAV510/TW- EAV510AC laitteen välille HUOM! Jos yhteyttä käytetään 3G/4G/LTE- verkon yli, pitää käytössä olla operaattorilta julkiset
LisätiedotMAA10 HARJOITUSTEHTÄVIÄ
MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5
LisätiedotOhjeita LINDOn ja LINGOn käyttöön
Ohjeita LINDOn ja LINGOn käyttöön LINDOn tärkeimmät komennot ovat com (command), joka tuloaa käytettävissä olevat komennot ruudulle, ja help, jonka avulla saa tietoa eri komennoia. Vaaukset kursiivilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotHannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus
Perusohjeita, symbolista laskentaa Geogebralla Kielen vaihtaminen. Jos Geogebrasi kieli on vielä englanti, niin muuta se Options välilehdestä kohdasta Language suomeksi (finnish). Esittelen tässä muutaman
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotL2TP LAN to LAN - yhteys kahden laitteen välille
TW- LTE- REITITIN: L2TP LAN to LAN - yhteys kahden laitteen välille Esimerkissä on käytetty kahta TW- LTE reititintä L2TP LAN to LAN - yhteydellä voidaan luoda VPN- verkko, jossa liikenne on sallittu molempiin
LisätiedotJohdatus Ohjelmointiin
Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin
LisätiedotAsenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection.
ImageJ ja metallografia juha.nykanen@tut.fi 19.2.2011 versio 1 Asentaminen Ohjelman voi ladata vapaasti webistä (http://rsbweb.nih.gov/ij/) ja siitä on olemassa versiot eri käyttöjärjestelmille. Suurimmalle
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
Lisätiedot1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
Lisätiedot1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
LisätiedotDeterminantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti
Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
LisätiedotDeterminantti. Määritelmä
Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)
LisätiedotKäänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
Lisätiedotz 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
LisätiedotSeuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla
Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja keskihajonnan
Lisätiedot(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.
Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva
LisätiedotEsimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68
Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8
LisätiedotTalousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti
Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotMatlabin perusteet. 1. Käyttöliittymä:
Matlabin perusteet Matlabin (MATrix LABoratory) perusfilosofia on, että se käsittelee kaikkia muuttujia matriiseina, joiden erikoistapauksia ovat vektorit ja skalaariluvut. Näin ollen se soveltuu erityisesti
LisätiedotEpäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.
Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä
LisätiedotExcelin käyttö mallintamisessa. Regressiosuoran määrittäminen. Käsitellään tehtävän 267 ratkaisu.
Excelin käyttö mallintamisessa Regressiosuoran määrittäminen Käsitellään tehtävän 267 ratkaisu. 1)Kirjoitetaan arvot taulukkoon syvyys (mm) ikä 2 4 3 62 6 11 7 125 2) Piirretään graafi, valitaan lajiksi
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotNeliömatriisin adjungaatti, L24
Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin
Lisätiedot