LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo
|
|
- Tuomo Esko Hiltunen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 LP-mallit, L19
2 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset resurssit? (max tai min) Jatko-ongelma: Miten optimi muuttuu, jos jokin mallin parametri muuttuu? Jatko-ongelma 2: Mitä enintään kannattaa maksaa yhdestä lisäresurssista?
3 (1/n) 2 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Tavoitefunktio. Sotilaan myyntihinta on 27e, ja siihen kuluu materiaalia 1eedestä. Jokainen valmistettu sotilas aiheuttaa lisäksi muuttuvia palkka- ja yleiskustannuksia keskimäärin 14eedestä. Junan myyntihinta on 21e, ja siihen kuluu 9eedestä materiaalia. Muuttuvia palkka- ja yleiskustannuksia jokainen juna aiheuttaa keskimäärin 1e. Rajoitteet. Resurssien kulutus. Sotilaiden ja junien valmistus tapahtuu kahdella osastolla: puutyöosastolla ja viimeistelyosastolla. Yksi sotilas vaatii 1 tunnin puutyötä ja 2 tuntia viimeistelyä. Vastaavasti yksi juna vaatii 1 tunnin puutyötä ja 1 tunnin viimeistelyä.
4 jatkuu (2/n) 3 Rajoitteet. Olemassaolevat resurssit. Yritys pystyy hankkimaan kaiken tarvitsemansa materiaalin, mutta puutyö- ja viimeistelyosastojen kapasiteetti on rajallinen. Käytettävissä on 8 tuntia puutyötä per viikko, ja 1 tuntia viimeistelytyötä per viikko. Rajoitteet. Lisäajoitteet. Lelujen kysynnästä tiedetään, että junien kysyntä on käytännössä rajoittamaton, mutta sotilaita saadaan kaupaksi korkeintaan 4 per viikko. Kysymys: Miten yritys voi maksimoida katetuottonsa? Muodostetaan ongelmasta LP-malli.
5 Ratkaisu (3/n) 4 (1) Päätösmuuttujat x 1 = puusotilaiden valmistus (kpl/viikko) = puujunien valmistus (kpl/viikko) (2) Tavoitefunktio Muodostamme tavoitefunktion z(x 1, ), jolle etsimme suurinta mahdollista arvoa. Tavoitefunktio on nyt katetuotto. z = R(x 1, ) C(x 1, ) tuotto kustannus {}}{{}}{ = (27x ) (1x 1 + 9x }{{} x ) }{{} materiaali palkat yms. = 3x 1 + 2
6 Ratkaisu (4/n) 5 (3) Rajoitteet Selvitämme jokaisen tuotantoa rajoittavan tekijän erikseen Puutyö: resurssitarve = 1x (h/viikko) Käytettävissä oleva resurssi = 8 (h/viikko) 1. rajoite: x Viimeistelytyö: resurssitarve = 2x (h/viikko) Käytettävissä oleva resurssi = 1 (h/viikko) 2. rajoite: 2x Kysyntärajoite: 3. rajoite: x 1 4 Merkkirajoitteet: 4. rajoite: x 1 5. rajoite:
7 Ratkaisu (5/n) 6 (4) LP-malli Kootaan kaikki oleellinen siistiksi paketiksi max z = 3x ehdoin x x x 1 4 x 1,
8 Ratkaisu (6/n) 7 (5) Graafinen ratkaisu Aloitetaan tarkastelu ensimmäisestä rajoitteesta x Jos kiinnitämme x 1 :n arvon (esim. x 1 = 5), niin emme saa antaa :lle liian suurta arvoa. tulee olla pienempi tai yhtä suuri kuin kuin 8 x 1 (esim. 8 5 = 3). (x 1, )-tasossa tulee pisteen olla siis suoran x 1 + = 8 alapuolella. Piirrämme suoran tasoon. Sitä varten selvitämme kaksi suoran pistettä A = (, 8), ja B = (8, )
9 Ratkaisu (7/n) 8 Ensimmäinen rajoite: x alapuoli A = (, 8), B = (8, ) 1 A 5 alapuoli käypä 5 1 x 1 B
10 Ratkaisu (8/n) 9 Toinen rajoite: 2x alapuoli C = (, 1), D = (5, ) 1 C 5 alapuoli käypä D 5 1 x 1
11 Ratkaisu (9/n) 1 Kolmas rajoite: x 1 4 vasen puoli E = (4, ) 1 5 vasen puoli käypä E 5 1 x 1
12 Ratkaisu (1/n) 11 Lopuksi piirrämme kaikki suorat samaan kuvaan. Huomaa, että merkkirajoitteet kieltävät pystyakselin vasemman puolen ( -akseli) sekä vaaka-akselin alapuolen (x 1 -akseli.
13 Ratkaisu (11/n) 12 x alapuoli A = (, 8), B = (8, ) 2x alapuoli C = (, 1), D = (5, ) x 1 4 vasen puoli E = (4, ) 1 C A 5 käypä alue B E D 5 1 x 1
14 Ratkaisu (12./n) 13 Seuraavaksi haemme käyvästä alueesta parhaan pisteen x 1 Merkitsemme kuvaan pisteet, joissa z = 3x = 9.
15 Ratkaisu (12.1/n) 14 Seuraavaksi haemme käyvästä alueesta parhaan pisteen x 1 Merkitsemme kuvaan pisteet, joissa z = 3x = 9.
16 Ratkaisu (12.2/n) 15 Seuraavaksi haemme käyvästä alueesta parhaan pisteen x 1 Merkitsemme kuvaan pisteet, joissa z = 3x = 12.
17 Ratkaisu (12.3/n) 16 Seuraavaksi haemme käyvästä alueesta parhaan pisteen x 1 Merkitsemme kuvaan pisteet, joissa z = 3x = 15.
18 Ratkaisu (12.4/n) 17 Seuraavaksi haemme käyvästä alueesta parhaan pisteen x 1 Merkitsemme kuvaan pisteet, joissa z = 3x = 18.
19 Ratkaisu (13/n) 18 Seuraavaksi haemme käyvästä alueesta parhaan pisteen. 1 5 optimi x 1 = 2 = 6 z = x 1 Merkitsemme kuvaan pisteet, joissa z = 3x = 18.
20 19 Käy läpi rajoitteet 1. kaksi pistettä rajoitesuoralta 2. mikä puoli käypä Piirrä koordinaatisto Piirrä rajoitesuorat ja käypä alue. Merkitse käypä alue kuvaan. Piirrä tavoitesuora jollakin z:n arvolla Päättele optimipiste Kirjoita vastaus
21 2 Tarkastellaan Giapetton esimerkin käyvän alueen sisä-pistettä (2, 2). 1 5 z = 3x = x 1 Pistettä voidaan siirtää vähän oikealle tai vasemmalle tai vähän ylöspäin tai alaspäin. Jokin näistä siirroksista parantaa tavoitefunktion arvoa. Optimi ei ole sisäpisteessä vaan REUNALLA.
22 21 n suhteen on olemassa neljä vaihtoehtoista tilannetta. Yksikäsitteinen ratkaisu. Ongelmalla yksi optimaalinen ratkaisu. (Esim Giapetto n ongelma edellä.) Ääretön määrä optimeja. Suuri määrä keskenään yhtä hyviä optimaalisia ratkaisuja. (Esim. 2 alla) Rajoittamaton optimi. Tavoitefunktion arvo saadaan miten suureksi tahansa (Esim. 3 alla) Käypä alue on tyhjä. Ongelmalle ei ole edes huonoa ratkaisua. (Esim. 4 alla)
23 (ääretön määrä optimeja) 22 Jos tavoitesuora on yhdensuuntainen jonkin rajoitesuoran kanssa tapahtuu usein, että kaksi tai useampia nurkkapisteitä ovat optimaalisia. Esim. 2. LP-malli max z = 5x s.t. x x x 1, 5 optimi x 1 2 = 5 x 1 z = 25 5 x 1
24 (rajoittamaton optimi) 23 Jos käypä alue vuotaa äärettömiin, voi käydä niin, että tavoitefunktion arvoa voidaan parantaa loputtomasti. Esim. 3. LP-malli max z = x 1 + s.t. x x 1, 5 rajoittamaton optimi engl. unbounded optimum 5 x 1
25 (tyhjä käypä alue) 24 Jos rajoitteet ovat ristiriitaiset niin ongelmalle ei löydy yhtään käypää ratkaisua. Esim. 4. LP-malli max z = x 1 + s.t. x x x 1, 5 käypä alue on tyhjä engl. no feasible solution 5 x 1
LP-mallit, L8. Herkkyysanalyysi. Varjohinta. Tietokoneohjelmia. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto.
LP-mallit, L8 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset
1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
Talousmatematiikan perusteet
kevät 19 / orms.30 Talousmatematiikan perusteet 8. harjoitus, viikko 11 (11.03..03.19) L Ma 12 A2 R0 Ti 14 16 F43 R01 Ma 12 14 F43 L To 08 A2 R02 Ma 16 18 F43 R06 To 12 14 F140 R03 Ti 08 F42 R07 Pe 08
Esimerkki 1 (Rehun sekoitus) 1
1 Karjankasvattaja käyttää luonnosta saadun nurmirehun lisäksi lisäravinnetta 200kg/päivä. Lisäravinne sekoitetaan maissista ja soijasta. Ravinteen ominaisuuksiin vaikuttaa raaka-aineiden proteiini- ja
Talousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 7. harjoitus, viikko 7 1. Oheisessa taulukossa on erään tuotteen hintaindeksejä. Laske hinnan keskimääräinen kasvuvauhti vuosina 2000-2005 vuosi indeksi
Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Harjoitus 8: Excel - Optimointi
Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
Operatioanalyysi 2011, Harjoitus 3, viikko 39
Operatioanalyysi 2011, Harjoitus 3, viikko 39 H3t1, Exercise 3.1. H3t2, Exercise 3.2. H3t3, Exercise 3.3. H3t4, Exercise 3.4. H3t5 (Exercise 3.1.) 1 3.1. Find the (a) standard form, (b) slack form of the
Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
OPERAATIOANALYYSI ORMS.1020
VAASAN YLIOPISTO Talousmatematiikka Prof. Ilkka Virtanen OPERAATIOANALYYSI ORMS.1020 Tentti 2.2.2008 1. Yrityksen tavoitteena on minimoida tuotannosta ja varastoinnista aiheutuvat kustannukset 4 viikon
Malliratkaisut Demot
Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu
Luento 3: Simplex-menetelmä
Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,
Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.
Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.
Harjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
Aki Taanila LINEAARINEN OPTIMOINTI
Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen
Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.
Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).
MS-C2105 Optimoinnin perusteet Malliratkaisut 4
MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta
Harjoitus 5 ( )
Harjoitus 5 (14.4.2015) Tehtävä 1 Figure 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen
Piiri K 1 K 2 K 3 K 4 R R
Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä
1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta
Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista
Kimppu-suodatus-menetelmä
Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.
3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
Matematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.
Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2
Lineaaristen monitavoiteoptimointitehtävien
Lineaaristen monitavoiteoptimointitehtävien ratkaiseminen Jerri Nummenpalo 17.09.2012 Ohjaaja: TkT Juuso Liesiö Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi
Mikä on paras hinta? Hinnoittele oikein. Tommi Tervanen, Kotipizza Group
Mikä on paras hinta? Hinnoittele oikein Tommi Tervanen, Kotipizza Group v VAIN 54 % YRITTÄJISTÄ OSAA HINNOITELLA TUOTTEEN TAI PALVELUN OIKEIN. LÄHDE: Y-STUDION HALLITSE TALOUTTASI -TESTI Hinnoittelun perusteet
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1
Malliratkaisut Demot
Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x
1 Rajoitettu optimointi I
Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause
Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta
Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden
b 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
Luento 4: Lineaarisen tehtävän duaali
Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea
Kertausta Talousmatematiikan perusteista Toinen välikoe
Kertausta Talousmatematiikan perusteista Toinen välikoe 1 Parametrit D Kysyntä (kpl/vuosi) h Yksikköylläpito-kustannus (euro/kpl/vuosi) K Tilauskustannus (euro) Tarkista aina yksiköiden yhteensopiminen
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.
KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään
Harjoitus 5 ( )
Harjoitus 5 (24.4.2014) Tehtävä 1 Kuva 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no
Demo 1: Simplex-menetelmä
MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x
Lineaarinen optimointi
L u e n t o Tuotevalikoimapäätökset Lineaarinen optimointi Luennon sisältö LP:n perusteet Mallien ratkaiseminen Kuinka paljon kahta tuotetta (A ja B) tulisi valmistaa seuraavan kuukauden tuoton maksimoimiseksi,
Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!
Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x
Mat Lineaarinen ohjelmointi
Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden
Malliratkaisut Demot
Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan
Luento 9. June 2, Luento 9
June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,
Harjoitus 4: Matlab - Optimization Toolbox
Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen
Prof. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.
TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:
Lineaarinen optimointitehtävä
Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä
Operatioanalyysi 2011, Harjoitus 4, viikko 40
Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2
Demo 1: Lineaarisen tehtävän ratkaiseminen graafisesti ja Solverilla
MS-C2105 Optimoinnin perusteet Malliratkaisut 2 Ehtamo Demo 1: Lineaarisen tehtävän ratkaiseminen graafisesti ja Solverilla Ratkaise lineaarinen optimointitehtävä graafisesti ja Excelin Solverin avulla.
1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.
Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt
6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran
Haitallinen valikoituminen: Kahden tyypin malli
Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
Luento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
TIEA382 Lineaarinen ja diskreetti optimointi
TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/
Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18
Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa
2.3. Lausekkeen arvo tasoalueessa
Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät
Matematiikkaa kauppatieteilijöille
Matematiikkaa kauppatieteilijöille Harjoitus 7, syksy 2016 1. Funktio f(x) = x 2x 2 + 4 on jatkuva ja derivoituva kaikilla x R. Nyt funktio f(x) on aidosti alaspäin kupera kun f (x) > 0 ja aidosti ylöspäin
Kaulaketju. Syöte. Tuloste. Esimerkki 1. Esimerkki 2
A Kaulaketju Kaulaketjussa on sinisiä ja punaisia helmiä tietyssä järjestyksessä. Helmien järjestys voidaan esittää merkkijonona, jossa S vastaa sinistä helmeä ja P punaista helmeä. Esimerkiksi ketjussa
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.
5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan
HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010)
EN 1993 -KÄSIKIRJA (v.2010) Täsmennykset ja painovirhekorjaukset 6.6.2012: Sivu 27: Sivun alaosassa, ennen kursivoitua tekstiä: standardin EN 10149-2 mukaiset..., ks. taulukot 1.6 ja 1.7 standardin EN
Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä
JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä
1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
ENNAKKOTEHTÄVÄ 2016: Maisterivaiheen haku, tuotantotalous
Tampereen teknillinen yliopisto 1 (5) ENNAKKOTEHTÄVÄ 2016: Maisterivaiheen haku, tuotantotalous Yleiset valintaperusteet Tuotantotalouden hakukohteessa kaikkien hakijoiden tulee palauttaa ennakkotehtävä.
Laskuharjoitus 7 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan
Referenssipiste- ja referenssisuuntamenetelmät
Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari
Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin
Johdatus verkkoteoriaan luento Netspace
Johdatus verkkoteoriaan luento 3.4.18 Netspace Matriisioperaatio suunnatuissa verkoissa Taustoitusta verkkoteorian ulkopuolelta ennen kuljetusalgoritmia LP-ongelma yleisesti LP = linear programming =
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
TENTTIKYSYMYKSET
MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi
Harjoitusten 2 ratkaisut
Harjoitusten 2 ratkaisut Taloustieteen perusteet 31A00110 Tea Lönnroth tea.lonnroth(at)aalto.fi Teach a parrot the terms 'supply and demand' and you've got an economist. Thomas Carlyle 2 Tehtävä 1 Tarkastellaan
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
Luento 6: Monitavoitteinen optimointi
Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f
Luento 5: Peliteoriaa
Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena
Laskentatoimi. Kirjanpito = ulkoinen laskentatoimi Kustannuslaskenta = sisäinen laskentatoimi
Laskentatoimi Kirjanpito = ulkoinen laskentatoimi Kustannuslaskenta = sisäinen laskentatoimi Kannattavuus, maksuvalmius, vakavaraisuus Yrityksen on huolehdittava: -kannattavuudesta -maksuvalmiudesta -vakavaraisuudesta
Harjoitus 7. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 4: mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
3.1 Väliarvolause. Funktion kasvaminen ja väheneminen
Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille
1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia. Piirrä suorat kuviin.
Peruskoulun matematiikkakilpailu 2015 2016 alkukilpailu 29.10.2015. Ratkaisut 1. Jaa blini kolmella suoralla a) neljään, b) viiteen, c) kuuteen ja d) seitsemään osaan. Osien ei tarvitse olla samanlaisia.
Talousmatematiikan perusteet, ORMS1030
Tampereen kesäyliopisto, syksy 2016 Talousmatematiikan perusteet, ORMS1030 1. harjoitus, (la 29.10.2016) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin kynää ja paperia käyttäen. Anna vastaukset