11. Simulointi luento11.ppt S Liikenneteorian perusteet Kevät
|
|
- Johanna Virtanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 lueto.ppt S Liikeeteoria perusteet Kevät 2006
2 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 2
3 Tiedote Lueo tavoite Esitellää simuloiti yhteä liikeeteoria työkalua Käydää lyhyesti läpi simuloitii liittyvät eri osa-alueet Liikeeteoria syvetävä moduuli sisältää myös erillise kurssi aiheesta S Tietoverkkoje simuloiti Pakollie Teleliikeeteoria syvetävässä moduulissa Esitiedot: S ja C/C++ -kiele tutemus Lueoidaa vai joka toie vuosi (syytä huomioida opitoje suuittelussa!) Lueoidaa seuraava kerra syksyllä
4 Mitä simuloiti o? Simuloiti o (liikeeteoria kaalta) eräs tilastollie meetelmä tarkasteltava järjestelmä suorituskyvy arvioimiseksi Se sisältää eljä eri vaihetta: Järjestelmä (olemassa oleva tai kuvitteellise) mallius dyaamisea (ajassa kehittyvää) stokastisea prosessia Prosessi reaalisaatioide tuottamie ( todellisuude havaioiti ) tällaista reaalisaatiota kutsutaa usei simuloitiajoksi (simulatio ru) Tietoje keruu ( mittaus ) Kerättyje tietoje tilastollie aalyysi ja johtopäätöste teko 4
5 Vaihtoehto, mutta mille? Aiemmi olemme jo tutustueet toisee suorituskyvy arvioitimeetelmää, imittäi matemaattisee aalyysii Käsittelimme kaksi vaihetta Järjestelmä mallius ajassa kehittyvää stokastisea prosessia (tässä kurssissa rajoituimme sytymä-kuolema-prosesseihi) Malli aalyyttie ratkaisu Järjestelmä malliusvaihe o kummalleki yhteie Tosi malli tarkkuudella voi olla suuriaki eroja: toisi kui simuloiti, matemaattie aalyysi edellyttää yleesä hyviki rajoittavie oletuste tekoa 5
6 Liikeeteoreettise järjestelmä suorituskyvy arvioiti Todellie järjestelmä mallius Matemaattie malli (stokastisea prosessia) Suorituskyvy arvioiti malli validioiti Matemaattie aalyysi Simuloiti 6
7 Aalyysi vs. simuloiti () Matemaattise aalyysi edut: Tuloste tuottamie opeaa (aalyysi eli yhtälöide jälkee) Tulokset tarkkoja Ataa äkemystä Optimoiti usei mahdollista (vaikkaki saattaa olla vaikeaa) Matemaattise aalyysi haitat: Asettaa rajoittavia ehtoja malliuksee malli yleesä liia yksikertaie (esim. vai tasapaiotila huomioitu) moimutkaiste järjestelmie suorituskyvy arvioiti lähes mahdotota Rajoittavie ehtojeki vallitessa aalyysi itsessää yleesä vaikeaa 7
8 Aalyysi vs. simuloiti (2) Simuloii edut: Ei rajoittavia ehtoja malliusvaiheessa mahdollistaa moimutkaisteki järjestelmie suorituskyvy arvioii Mallius yleesä hyvi suoraviivaista Simuloii haitat: Tuloste tuottamie yleesä työlästä (simuloitiajot vaativat paljo prosessoriaikaa) Tulokset epätarkkoja (tosi tarketuvia: mitä eemmä ajoja, sitä tarkemmat tulokset) Kokoaisäkemykse saamie vaikeampaa Optimoiti mahdollista vai hyvi rajoitetusti (esim. muutama erilaise parametrikombiaatio tai ohjausperiaattee vertailu) 8
9 Stokastise prosessi simuloii vaiheet Järjestelmä mallius ajassa kehittyvää stokastisea prosessia tästä o jo puhuttu kurssi aiemmilla lueoilla jatkossa otamme lähtökohdaksi aetu malli (so. stokastise prosessi) lisäksi rajoitamme tarkastelu tällä lueolla yksikertaisii liikeeteoreettisii malleihi (vrt. aiemmat lueot) Prosessi reaalisaatioide tuottamie satuaislukuje geeroiti tapahtumaohjattu simuloiti usei simuloiilla tarkoitetaa pelkästää tätä vaihetta (liikeeteoria kaalta se o kuiteki simuloitia suppeammassa mielessä) Tietoje keruu trasietti vaihe vs. tasapaiotila Tilastollie aalyysi ja johtopäätökset piste-estimaattorit luottamusvälit 9
10 Simuloii toteutus Simuloiti toteutetaa yleesä tietokoeohjelmaa Simuloitiohjelma sisältää yleesä kaikki edellä maiitut vaiheet malliusta ja johtopäätöksiä lukuuottamatta, ts. järjestelmä malliksi valitu stokastise prosessi reaalisaatioide tuottamise, tietoje keruu sekä kerättyje tietoje tilastollise aalyysi Simuloitiohjelma voidaa toteuttaa kokoaisuudessaa jollaki yleiskäyttöisellä ohjelmoitikielellä esim. C tai C++ joustavaa mutta työlästä ja riskialtista mahdollisille ohjelmoitivirheille käyttäe hyväksi joitaki simuloitii erikoistueita ohjelmakirjastoja esim. CNCL erityisesti simuloiteja varte kehitetyillä simuloitiohjelmistoilla esim. OPNET, BONeS, NS (osittai perustuu o-kirjastoihi) opeaa ja luotettavaa (ohjelma laadusta riippue) mutta jäykkää 0
11 Muita simuloititapoja Edellä kuvattu diskreetti tapahtumapohjaie simuloiti kyseessä diskreetti, dyaamie ja stokastie simuloiti eli mite simuloidaa tarkasteltavaa järjestelmää kuvaava matemaattise malli (diskreettitilaise stokastise prosessi) kehitystä ajassa tavoittea saada jotai tietoa ko. systeemi käyttäytymisestä jatkossa rajoitumme tällaisee simuloitii Muita simuloititapoja: jatkuvassa simuloiissa tila-avaruus o jatkuva (tilamuuttujie riippuvuudet aetaa yleesä differetiaaliyhtälösysteemiä), esim. letokoee letorada simuloiti staattisessa simuloiissa aja kulumisella ei ole merkitystä (ei ole olemassa prosessia, jota luoehtisi erilaiset tapahtumat), esim. moiulotteiste itegraalie umeerie itegroiti s. Mote-Carlomeetelmällä determiistie simuloiti ei taas sisällä ollekaa satuaisia kompoetteja (esim. esimmäie esimerkki yllä)
12 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 2
13 Liikeeprosessi reaalisaatioide tuottamie Oletetaa, että olemme mallitaeet tarkasteltava järjestelmä stokastisea prosessia Seuraavaa tehtävää o prosessi reaalisaatioide tuottamie Se koostuu kahdesta osasta: kaikille prosessi kulkuu vaikuttaville satuaismuuttujille o arvottava arvot (yleesä reaaliluku) satuaisesti ko. sm: jakaumasta (sm:ie väliset riippuvuudet tietysti huomioide) äi saaduilla arvoilla kostruoidaa prosessi reaalisaatio ts. se kehittymie ajassa Nämä kaksi osaa eivät suikaa tapahdu peräkkäi eri vaiheissa, vaa imeomaa limittäi tai vuorotelle Satuaismuuttujie arvoje arvota perustuu s. (pseudo)satuaislukuje geeroitii (radom umber geeratio) Prosessi reaalisaatio kostruoiti tehdää yleesä tapahtumapohjaisesti (discrete evet simulatio) 3
14 Tapahtumapohjaie simuloiti () Idea: simuloiti eteee tapahtumasta tapahtumaa jos jollaki aikavälillä ei tapahdu mitää, voimme hypätä ko. aikaväli yli Tapahtuma vastaa (yleesä) systeemi tila muuttumista esim. yksikertaisessa liikeeteoreettisessa mallissa asiakkaide saapumiset ja poistumiset systeemistä tällaisia tapahtumia voidaa kutsua perustapahtumiksi ylimääräisiä tapahtumia aiheutuu esim. tietoje keruusta ja prosessi reaalisaatio geeroii lopetuksesta Tapahtuma karakterisoidaa kahdella parametrilla tapahtumahetki (so. milloi tapahtuma käsitellää) ja tapahtuma tyyppi (so. mite tapahtuma käsitellää) 4
15 Tapahtumapohjaie simuloiti (2) Tapahtumat orgaisoidaa yleesä tapahtumahetke mukaa järjestetyksi tapahtumalistaksi (evet list) Kärjessä o seuraavaksi sattuva tapahtuma (siis aikaisi tapahtumahetki). Listaa käydää läpi tapahtuma tapahtumalta (geeroide samalla uusia tapahtumia lista loppupäähä). Ku tapahtuma o käsitelty, se poistetaa listalta. Simuloitikello (simulatio clock) kertoo, mikä o käsiteltävää oleva tapahtuma hetki se siis eteee hyppäyksittäi Systeemi tila (system state) kertoo systeemi ykyise tila 5
16 Tapahtumapohjaie simuloiti (3) Algoritmi yhde simuloitiajo suorittamiseksi tapahtumapohjaisesti: Iitialisoiti aseta simuloitikello ollaksi aseta systeemi tila valittuu alkuarvoosa geeroi kuki tapahtumatyypi seuraava tapahtuma (mikäli mahdollista) liitä äi saadut tapahtumat tapahtumalistaa 2 Tapahtuma käsittely aseta simuloitiajaksi (tapahtumalista kärjessä oleva) seuraava tapahtuma tapahtumahetki käsittele tapahtuma ja geeroi samalla uusia tapahtumia ja liitä e tapahtumalistaa päivitä systeemi tila poista käsitelty tapahtuma tapahtumalistalta 3 Lopetusehdo testaus jos voimassa, lopeta tapahtumie geeroiti; muutoi palaa kohtaa 2 6
17 Esimerkki () Tehtävä: Simuloidaa M/M/-joo joopituude kehitystä ajassa hetkestä 0 hetkee T olettae, että systeemi o tyhjä hetkellä 0 Systeemi tila (hetkellä t) = joopituus X t alkuarvo: X 0 = 0 Perustapahtumat: asiakkaa saapumie systeemii asiakkaa poistumie systeemistä Muut tapahtumat: simuloii lopetus hetkellä T Huom. Tietoje keruuta ei ole sisällytetty tähä esimerkkii 7
18 Esimerkki (2) Iitialisoiti: asetetaa X 0 = 0 arvotaa esimmäise asiakkaa saapumishetki Exp(λ)-jakaumasta Tapahtuma käsittely uude asiakkaa saapuessa (hetkellä t) systeemi tilaa eli joopituutta kasvatetaa yhdellä: X t = X t + jos systeemi oli tyhjä asiakkaa saapuessa, geeroidaa ko. asiakkaa poistumishetki t + S, missä S o arvottu Exp(µ)-jakaumasta geeroidaa seuraava asiakkaa saapumishetki t + I, missä I o arvottu Exp(λ)-jakaumasta Tapahtuma käsittely asiakkaa poistuessa (hetkellä t) systeemi tilaa eli joopituutta väheetää yhdellä: X t = X t jos systeemii jäi asiakkaita, geeroidaa seuraavaksi palveltava asiakkaa poistumishetki t + S, missä S o arvottu Exp(µ)-jakaumasta Lopetusehto: t > T 8
19 Esimerkki (3) tapahtumie geeroiti asiakkaide saapumis- ja poistumishetket joopituus aika aika 0 T 9
20 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 20
21 Satuaismuuttuja arvota aetusta jakaumasta Pohjaa s. (pseudo)satuaislukuje geeroiti Esimmäie askel Tuottaa riippumattomia välillä 0 ja tasajakautueita satuaismuuttujia (siis U(0,)-jakaumasta) käyttäe satuaislukugeeraattoria Haluttuu jakaumaa päästää U(0,)-jakaumasta esimerkiksi jollaki seuraavista meetelmistä: uudelleeskaalaaus ( U(a,b)) diskretoiti ( Beroulli(p), Bi(,p), Poisso(a), Geom(p)) kertymäfuktio kääös ( Exp(λ)) muut muuokset ( N(0,) N(µ,σ 2 )) hyväksymis-hylkäys-meetelmä (ku kyseessä rajoitetulla välillä määritelty jatkuva jakaumaa, jolla rajoitettu tiheysfuktio) tarvitaa kaksi riippumatota U(0,)-jakaumaa oudattavaa sm:aa 2
22 Satuaislukuje geeroiti Satuaislukugeeraattorilla (radom umber geerator) tarkoitetaa algoritmia, joka tuottaa sarja (äeäisesti) satuaisia kokoaislukuja Z i jollaki välillä 0,,,m tuotettu sarja o aia jaksollie (tavoitteea mahdollisimma pitkä jakso) geeroidut luvut eivät tiukasti ottae ole ollekaa satuaisia vaa täysi ealta arvattavissa (tästä imitys pseudosatuaie) jos satuaislukugeeraattori o huolellisesti suuiteltu ja toteutettu, ii se tuottamat pseudosatuaiset luvut kuiteki äyttävät ikää kui riippumattomilta ja samoi jakautueilta (IID) oudattae tasaista jakaumaa joukossa {0,,,m } Satuaislukugeeraattori geeroimie satuaislukuje satuaisuus o todeettava tilastollisi testei saadu empiirise jakauma tasaisuus joukossa {0,,,m } geeroituje satuaislukuje välie riippumattomuus (käytäössä korreloimattomuus) 22
23 Satuaislukugeeraattoreita Lieaariset kogruetiaaliset geeraattorit (liear cogruetial geerator). yksikertaisi uusi satuaisluku määräytyy algoritmisesti edellisestä, Z i+ = f(z i ) jakso voi olla korkeitaa m Näistä erikoistapauksea saadaa s. multiplikatiiviset kogruetiaaliset geeraattorit (multiplicative cogruetial geerator). Muita meetelmiä: additive cogruetial geerators, shufflig,... 23
24 Liear cogruetial geerator (LCG) Lieaarie kogruetiaalie satuaislukugeeraattori tuottaa satuaisia kokoaislukuja Z i joukosta {0,,,m } kaavalla: Z i + = ( azi + c) mod m parametrit a, c ja m ovat ei-egatiivisia kokoaislukuja (a < m, c < m) lisäksi tarvitaa s. siemeluku (seed) Z 0 < m Huom. Parametrit o valittava huolella; muutoi tuloksea kaikkea muuta kui satuaisia lukuja. Tietyi edellytyksi jaksoksi saadaa maksimiarvo m esim. ku m muotoa 2 b, c parito ja a muotoa 4k + (b usei 48) 24
25 Multiplicative cogruetial geerator (MCG) Multiplikatiivie kogruetiaalie satuaislukugeeraattori tuottaa satuaisia kokoaislukuja Z i joukosta {0,,,m } kaavalla: Zi + = ( az i ) mod m parametrit a ja m ovat ei-egatiivisia kokoaislukuja (a < m) lisäksi tarvitaa siemeluku Z 0 < m Huom. Kyseessä o siis LCG: erikoistapaus valialla c = 0. Parametrit o tässäki tapauksessa valittava huolella Mikää parametrikombiaatio ei tuota (maksimaalista) jaksoa m esim. jos m muotoa 2 b, ii jakso o korkeitaa 2 b 2 Kuiteki, jos m o alkuluku, jakso m o mahdollie PMMLCG = prime modulus multiplicative LCG esim. m = 2 3 ja a = 6,807 (tai a = 630,360,06) 25
26 U(0,)-jakautuee sm: geeroiti Olkoo Z joki satuaislukugeeraattori tuottama (pseudo)satuaie kokoaisluku välillä {0,,,m } Tällöi (approksimatiivisesti) U = m Z U(0,) 26
27 Tasajakaumaa oudattava sm: geeroiti Olkoo U U(0,) Tällöi X = a + ( b a) U U( a, b) Tätä saotaa uudelleeskaalausmeetelmäksi (rescalig method) 27
28 Diskreeti sm: geeroiti Olkoo U U(0,) Oletetaa lisäksi, että Y o diskreetti sm arvojoukolla S = {0,,,} tai S = {0,,2, } Merkitää F(x) = P{Y x}. Tällöi X = mi{ x S Tätä saotaa diskretoitimeetelmäksi (discretizatio method) Itse asiassa kyseessä o s. kertymäfuktio kääös -meetelmä eräs muoto Esim. Beroulli(p)-jakauma: X 0, =, josu josu > F( x) p p U} Y Beroulli( p) 28
29 Kertymäfuktio kääös -meetelmä Olkoo U U(0,) Oletetaa, että Y o sellaie jatkuva sm, jolle kertymäfuktio F(x) = P{Y x} o aidosti kasvava Merkitää F (y):llä kertymäfuktio F(x) kääteisfuktiota. Tällöi X = F ( U ) Y Tätä saotaa kertymäfuktio kääös -meetelmäksi (iverse trasform method) Tod. Koska P{U u} = u kaikilla u (0,), pätee P { X x} = P{ F ( U ) x} = P{ U F( x)} = F( x) 29
30 Ekspoettijakaumaa oudattava sm: geeroiti Olkoo U U(0,) seuraus: U U(0,) Olkoo Y Exp(λ) kff(x) = P{Y x} = e λx o selvästiki aidosti kasvava kf: kääteisfuktio o F (y) = (/λ) log( y) Näi olle ( kertymäfuktio kääös -meetelmä mukaa) X ( λ = F U ) = log( U ) Exp( λ) 30
31 N(0,)-jakautuee sm: geeroiti Olkoot U ja U 2 riippumattomia ja samoi jakautueita oudattae U(0,)-jakaumaa Tällöi, s. Box-Müller-meetelmä mukaa, alla aetut sm:t X ja X 2 ovat myöski riippumattomia ja samoi jakautueita oudattae N(0,)-jakaumaa: X = 2log( U) si(2πu 2) X 2 = 2log( U) cos(2πu 2) N(0,) N(0,) 3
32 Normaalijakaumaa oudattava sm: geeroiti Olkoo X N(0,) Uudelleeskaalausmeetelmällä saamme Y = µ + σx N( µ, σ 2 ) 32
33 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 33
34 Tilastotietoje keruu Johdaossa otettii lähtökohdaksi, että simuloii tavoitteea o tarkasteltava järjestelmä suorituskyvy arvioiti. Simuloimalla siis pyritää arvioimaa joki suorituskykyy liittyvä parametri arvo α. Tämä parametri voi liittyä joko järjestelmä trasiettii käyttäytymisee tai sitte s. tasapaiotilaa (steady state) Esim. ja 2 (trasietti käyttäytymie) k: esimmäise asiakkaa keskimääräie odotusaika M/M/-joossa olettae, että systeemi o aluksi tyhjä keskimääräie joopituus M/M/-joossa aikavälillä [0,T] olettae, että systeemi o aluksi tyhjä Esim. 3 (tasapaiotilae) keskimääräie odotusaika M/M/-joossa tasapaiotilateessa Yksittäie simuloitiajo tuottaa yhde havaio X, jokajollakilailla kuvaa arvioitavaa parametria Tilastolliste päätelmie tekemiseksi tarvitsemme kuiteki useita havaitoja X,,X (mielellää IID) 34
35 Trasiettie piirteide simuloiti () Esimerkki : Tarkastellaa k: esimmäise asiakkaa keskimääräistä odotusaikaa M/M/-joossa olettae, että systeemi o aluksi tyhjä Simuloitia jatketaa, kues viimeieki äistä k asiakkasta o saapuut ja päässyt palveluu Yksittäisestä simuloitiajosta saatava havaito X o tässä tapauksessa äide k asiakkaa odotusaikoje W i keskiarvo ko. simuloitiajossa: k X = W k i i= Riippumattomia ja samoi jakautueita (IID) havaitoja X,,X voidaa tuottaa s. riippumattomie toistoje -meetelmällä (idepedet replicatios) ts. tekemällä useita samalaisia mutta toisistaa riippumattomia simuloitiajoja (toisistaa riippumattomilla satuaisluvuilla) 35
36 Trasiettie piirteide simuloiti (2) Esimerkki 2: Tarkastellaa keskimääräistä joopituutta M/M/-joossa aikavälillä [0,T] olettae, että systeemi o aluksi tyhjä Simuloitia jatketaa ealta määrättyy hetkee T asti Yksittäisestä simuloitiajosta saatava havaito X o tässä tapauksessa joopituude Q(t) aikakeskiarvo yli väli [0,T] ko. simuloitiajossa: X = T T Q( t) 0 Huom. Ko. itegraali o helposti laskettavissa, koska joopituus ei muutu tapahtumie välillä Riippumattomia ja samoi jakautueita (IID) havaitoja X,,X voidaa jällee tuottaa riippumattomie toistoje -meetelmällä dt 36
37 Tasapaiotilaa liittyvie piirteide simuloiti () Tilastotietoje keruu yksittäisestä simuloiista tapahtuu periaatteessa samalla tavalla kui trasietteja piirteitä simuloitaessa. Simuloii alussa o kuiteki tyypillisesti s. lämmittelyvaihe (warm-up phase), ee kui systeemi o likimai tasapaiossa, mikä aiheuttaa overheadia = turhaa simuloitia harhaisuutta estimaattii tarpee määritellä, kuika pitkä lämmittelyvaihe tarvitaa Riippumattomie ja samoi jakautueide (IID) havaitoje X,,X tuottamiseksi (aiaki likimai) o kaksi eri tapaa: riippumattomat toistot (idepedet replicatios) ja s. batch meas -meetelmä 37
38 Tasapaiotilaa liittyvie piirteide simuloiti (2) Riippumattomie toistoje meetelmä: tehdää useita samalaisia mutta toisistaa riippumattomia simuloitiajoja (so. sama systeemi simuloitia samasta lähtötilasta mutta toisistaa riippumattomilla satuaisluvuilla) kussaki ajossa tilastotietoje keruu aloitetaa vasta lämmittelyvaihee jälkee (kute saottu, oma ogelmasa o tämä lämmittelyvaihee pituude määräämie) havaiot IID Batch meas -meetelmä: yksi (erittäi) pitkä simuloitiajo, joka lämmittelyvaihee jälkeiseltä osalta (keiotekoisesti) jaetaa :ää yhtä pitkää jaksoo, joita tietoje keruu kaalta käsitellää omia simuloitiajoiaa tarvitaa vai yksi lämmittelyvaihe mutta havaiot eivät ole eää täysi riippumattomia (eivätkä tarkkaa ottae täysi samoi jakautueitakaa) mitä pitempi jakso (eli pieempi ), sitä riippumattomammat havaiot38
39 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 39
40 Parametrie estimoiti Kute edellisessä kohdassa todettii, simuloiilla pyritää arvioimaa joki suorituskykyy liittyvä parametri arvo α Yksittäie simuloitiajo tuottaa kyseisestä parametrista havaio X i, joka siis o satuaismuuttuja Havaitoa X i saotaa harhattomaksi (ubiased), jos E[X i ] = α Olet. että havaiot X i ovat IID keskiarvolla α ja variassilla σ 2 Tällöi otoskeskiarvo (sample mea) X : = = X o parametri α harhato ja tarketuva estimaattori, sillä E[ X D 2 [ X ] = ] = i= 2 E[ X i= i D [ X ] = α 2 i ] = i σ 2 i 0 (ku ) 40
41 Esimerkki Pyrimme arvioimaa simuloimalla 25: esimmäise asiakkaa keskimääräistä odotusaikaa M/M/-joossa kuormalla ρ=0.9, ku systeemi hetkellä 0 o tyhjä. Teoreettie arvo: α =2.2 (ei triviaali) Havaiot X i kymmeestä simuloitiajosta ( = 0):.05, 6.44, 2.65, 0.80,.5, 0.55, 2.28, 2.82, 0.4,.3 Näi olle parametri α piste-estimaatti o X = = X = ( K+.3) =.98 i i 0 4
42 Estimaattori luottamusväli () Määr. Väliä (X y, X + y) saotaa parametri α luottamusväliksi (cofidece iterval) luottamustasolla (cofidece level) β, jos P{ X α y} = β Tulkita: parametri α kuuluu ko. välille t:llä β Oletetaa sitte, että havaiot X i, i =,,, ovat IID tutemattomalla keskiarvolla α mutta tuetulla variassilla σ 2 Keskeise raja-arvolausee mukaa (kts. Lueto 5, kalvo 48), aiaki suurilla : arvoilla pätee Z : = X α σ / N(0,) 42
43 Estimaattori luottamusväli (2) Merk. z p :llä N(0,)-jakauma p-fraktiilia ts. P{Z z p } = p, missä Z N(0,) esim. β=5% eli β = 95% z (β/2) = z Väite. Parametri α luottamusväli luottamustasolla β o X ± z 2 β σ Tod. Määritelmä mukaa pitää osoittaa, että P{ X α z σ β 2 } = β 43
44 44. Simuloiti α β = } { y X P y y y y y y y X y y X z y z x x x Z P x P P σ σ β σ σ σ σ σ σ σ α σ σ σ α β β β β β β = = = Φ Φ = Φ = Φ Φ = Φ = Φ Φ = = 2 2 / 2 / / / / / / / / / / ) ( )] ( ) ( [ )) ( ( ) ( }] { ) : ( [ ) ( ) ( } { } {
45 45. Simuloiti Estimaattori luottamusväli (3) Yleesä odotusarvo α lisäksi myös variassi σ 2 o tutemato Tällöi se pitää estimoida otosvariassista (sample variace) Voidaa osoittaa, että IID havaioille otosvariassi o todellise variassi σ 2 harhato ja tarketuva estimaattori: ) ( ) ( : i i i i X X X X S = = = = ) (ku 0 ] [ ] [ = S D S E σ
46 Estimaattori luottamusväli (4) Oletetaa yt, että havaiot X i, i =,,, ovat IID oudattae N(α,σ 2 )-jakaumaa tutemattomalla keskiarvolla α ja tutemattolla variassilla σ 2. Tällöi voidaa osoittaa, että T : = X α S / Studet( ) Merk. t,p :llä Studet( )-jakauma p-fraktiilia ts. P{T t,p } = p, missä T Studet( ) esim. : = 0 ja β=5% t, (β/2) = t 9, esim. 2: = 00 ja β=5% t, (β/2) = t 99, Näi olle otoskeskiarvo luottamusväli luottamustasolla β o X ± t β, 2 S 46
47 Esimerkki (jatkoa) Pyrimme arvioimaa simuloimalla 25: esimmäise asiakkaa keskimääräistä odotusaikaa M/M/-joossa kuormalla ρ=0.9, ku systeemi hetkellä 0 o tyhjä. X Teoreettie arvo: α =2.2 Havaiot X i kymmeestä simuloitiajosta ( = 0):.05, 6.44, 2.65, 0.80,.5, 0.55, 2.28, 2.82, 0.4,.3 Otoskeskiarvo o.98 ja otoshajota (eli otosvariassi eliöjuuri) o S 2 = ((.05.98) + K+ (.3.98) ) =.78 9 Näi olle parametri α luottamusväli 95%: luottamustasolla o ± t β, 2 S =.98 ± =.98 ±.27 = (0.7,3.25) 47
48 Havaitoja Simuloitikokee tulos tarketuu (so. piste-estimaati luottamusväli kapeee), ku simuloititoistoje eli riippumattomie havaitoje lukumäärää kasvatetaa, tai yksittäise havaio variassia σ 2 pieeetää esim. ajamalla pitempiä yksittäisiä simuloitiajoja muilla s. variassi reduktio -meetelmillä Jos aettua o haluttu simuloitituloste suhteellie tarkkuus (so. otoskeskiarvo hajoa ja odotusarvo välie suhde), voidaa dyaamisesti päättää, kuika mota riippumatota simuloititoistoa o tehtävä ko. tavoitteesee pääsemiseksi 48
49 Kirjallisuutta I. Mitrai (982) Simulatio techiques for discrete evet systems Cambridge Uiversity Press, Cambridge A.M. Law ad W. D. Kelto (982, 99) Simulatio modelig ad aalysis McGraw-Hill, New York 49
50 THE END 50
AB TEKNILLINEN KORKEAKOULU
AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio lueto09.ppt S-38.45 - Liikeeteoria perusteet - Kevät 00 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta
Lisätiedot11. Simulointi. Sisältö. Mitä simulointi on? Tiedote
Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi lueto11.ppt S-38.1145 Liikeeteoria perusteet Kevät 006 1 Tiedote Mitä
LisätiedotABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio
ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio 9. Simuloiti lueto09.ppt S-38.45 - Liikeeteoria perusteet - Kevät 2002 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta
LisätiedotABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalsi Lueto.ppt S-38.45 - Liikeeteoria
LisätiedotTeoria. Tilastotietojen keruu
S-38.348 Tietoverkkoje simuloiti / Tuloste keruu ja aalyysi Teoria Johdato simuloitii Simuloii kulku -- prosessi realisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tuloste keruu ja aalyysi
LisätiedotS Liikenneteorian perusteet K Simulointi. lect8.ppt Simulointi. Sisältö
S-38.145 Liikeeteoria perusteet K-99 lect8.ppt 1 Sisältö Johdato Prosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 2 1 Mitä simuloiti o? Simuloiti
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
Lisätiedotn = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:
1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:
LisätiedotProsessin reaalisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 20/09/2004
Lisätiedot5. Väliestimoi tehtävän 3 tilanteessa tulppien keskimääräinen kestoa.
MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuiee luetomoistee lukuu 5 liittye 1. Olkoo puoluee A kaatusosuus populaatiossa 30 %. Tarkastellaa tästä populaatiosta tehtyä satuaisotosta, joka koko
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
LisätiedotTeoria. Prosessin realisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Tapahtumapohjaisen simuloinnin periaatteet Esimerkki: M/M/1 jonon simulointi Simulointiohjelman geneeriset komponentit
Lisätiedot4. Todennäköisyyslaskennan kertausta
Sisältö Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat lueto04.ppt S-38.45 - Liikeeteoria
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
LisätiedotMat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:
Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,
Lisätiedot1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit).
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 2. lokakuuta 2017 7.1 Tilastollie päättely Tähä meessä o opittu eustamaa tapahtumie todeäköisyyksiä aetu stokastise malli pohjalta. Eusteide laskemiseksi
LisätiedotMat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit
Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,
Lisätiedot8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua
LisätiedotTilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
LisätiedotJohdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
Lisätiedot= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
Lisätiedot6.1 Riippumattomat satunnaismuuttujat
Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1
Lisätiedot811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu
8111A Tietoraketeet ja algoritmit, 15-16, Harjoitus, Ratkaisu Harjoituksessa käsitellää asymptoottista merkitätapaa ja algoritmie aikakompleksisuutta. Tehtävä.1 a Oko f ( O( tai f (, ku 1 f ( f, 4 ( 5
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
LisätiedotStokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015
Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude
LisätiedotOsa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet
Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä
LisätiedotNormaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
LisätiedotSormenjälkimenetelmät
Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta
LisätiedotJohdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1
Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,
LisätiedotTeoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 24/09/2002
LisätiedotTilastolliset luottamusvälit
Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude
LisätiedotTeoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien
Lisätiedot1.1 Luvut ja lukujoukot
Vahimmat tuetut todisteet lukuje käytöstä ovat vähitää 30 000 vuotta vahoja [Joh D Barrow: Lukuje taivas, Art House 1999]. Lukuja o tarvittu aiaki ilmaisemaa karjalauma koko. Siksi luvut ovat mahdollisesti
LisätiedotHypoteesin testaus Alkeet
Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä
LisätiedotSisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
LisätiedotMat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu
LisätiedotMat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,
LisätiedotJohdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
LisätiedotJohda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
Lisätiedot4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
LisätiedotLIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
LisätiedotMat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat
Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,
LisätiedotEpäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
Lisätiedot= + + 1 ( 1) + + = Paraabelit leikkaavat pisteessä ( 2, 3). ( 8) ( 8) 4 1 1
Pitkä matmatiikka YO-ko 4.9.4. a) b) ( )( 3) 6 3 + 6 6 + y + + ( ) y + + 3 + + ( ) TNS y ( ) + 3 tai Paraablit likkaavat pistssä (, 3). c) Mrkitää lukua : llä ( ). + 4 + 8 + 8 8 + ( 8) ( 8) 4 ± 8 ± 6 8
LisätiedotOtantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
LisätiedotTilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015
Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 1. Onko olemassa yhtenäistä verkkoa, jossa (a) jokaisen kärjen aste on 6, (b) jokaisen kärjen aste on 5, ja paperille piirrettynä sivut eivät
LisätiedotInduktio kaavan pituuden suhteen
Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos
LisätiedotTestit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot
TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi
LisätiedotDynaamisen järjestelmän siirtofunktio
Dynaamisen järjestelmän siirtofunktio Nyt päästään soveltamaan matriisilaskentaa ja Laplace muunnosta. Tutkikaamme, miten lineaarista mallia voidaan käsitellä. Kuten edellä on jo nähty säätötekniikassa
LisätiedotTodennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia
Todeäköisyyslasketa I, kesä 207 Helsigi yliopisto/avoi yliopisto Harjoitus 3, ratkaisuehdotuksia. Aikaisemma viiko teemaa. Edessäsi o kaksi laatikkoa A ja B. Laatikossa A o 8 palloa, joista puolet valkoisia.
LisätiedotMATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
LisätiedotEX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
LisätiedotSolmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
Lisätiedot( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
LisätiedotHarjoitustehtävien ratkaisuja
3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,
LisätiedotTilastolliset menetelmät: Varianssianalyysi
Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)
Lisätiedot031021P Tilastomatematiikka (5 op) kertausta 2. vk:een
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics
Lisätiedot2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,
LisätiedotTestejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
LisätiedotTILASTOLLINEN LAADUNVALVONTA
1 Aki Taanila TILASTOLLINEN LAADUNVALVONTA 31.10.2008 2 TILASTOLLINEN LAADUNVALVONTA Tasalaatuisuus on hyvä tavoite, jota ei yleensä voida täydellisesti saavuttaa: asiakaspalvelun laatu vaihtelee, vaikka
LisätiedotEstimaattori, Estimointi, Mediaani, Moodi, Odotusarvo, Parametri, Posteriorijakauma, Tunnusluku
Tilastollie päättely 6.1. Johdato Bayesi kaava, Bayeslaie lähestymistapa, Eakkotieto, Estimoiti, Frekvetistie lähestymistapa, Frekvessitulkita, Klassie lähestymistapa, Luottamustaso, Luottamusväli, Merkitsevyystaso,
Lisätiedotmonissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.
.. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se
LisätiedotOtantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
LisätiedotMAA10 HARJOITUSTEHTÄVIÄ
MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5
LisätiedotLisää segmenttipuusta
Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko
LisätiedotLuku 7. Parametrien estimointi. 7.1 Parametriset jakaumat. Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017 7.1 Parametriset jakaumat Tarkastellaa tutematota datalähdettä, joka tuottaa toisistaa stokastisesti riippumattomia ja tiheysfuktio
LisätiedotS Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Väliestimointi TKK (c) Ilkka Mellin (2007) 1 Väliestimointi >> Todennäköisyysjakaumien parametrien estimointi Luottamusväli
LisätiedotMat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
LisätiedotLuonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta
Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on
LisätiedotMat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:
Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
Lisätiedot3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Lisätiedot2-suuntainen vaihtoehtoinen hypoteesi
MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato
LisätiedotT Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen
T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen
LisätiedotTodennäköisyyslaskenta: Todennäköisyysjakaumia
Todeäköisyysjakaumia Todeäköisyyslasketa: Todeäköisyysjakaumia 6. Diskreettejä jakaumia 7. Jatkuvia jakaumia 8. Normaalijakaumasta johdettuja jakaumia 9. Moiulotteisia jakaumia TKK @ Ilkka Melli (6) 33
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie
LisätiedotMat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia
Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Jatkuvia jakaumia Avaisaat: Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Kertymäfuktio, Keskeie raja-arvolause, Mediaai, Normaaliapproksimaatio,
LisätiedotTodennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 2 Aiheet: Satuaismuuttujat ja todeäköisyysjakaumat Kertymäfuktio, pistetodeäköisyysfuktio ja tiheysfuktio Jakaumie tuusluvut Tärkeimmät
LisätiedotLuento 7 Luotettavuus Koherentit järjestelmät
Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava
LisätiedotLuento 6 Luotettavuus Koherentit järjestelmät
Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus
LisätiedotARVIOINTIPERIAATTEET
PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)
Lisätiedot3 10 ei ole rationaaliluku.
Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista
LisätiedotTestit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
LisätiedotYhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
LisätiedotLuento 6. June 1, 2015. Luento 6
June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi
LisätiedotBM20A Integraalimuunnokset Harjoitus 8
(b)...(d) eve + eve = eve eve eve = eve BM2A57 - Itegraalimuuokset Harjoitus 8. Vastaa jokaisessa kohdassa seuraavii kysymyksii: Oko fuktio parillie? Oko fuktio parito? Huomaatko polyomie kohdalla hyvi
Lisätiedot