11. Simulointi. Sisältö. Mitä simulointi on? Tiedote
|
|
- Olavi Pääkkönen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi lueto11.ppt S Liikeeteoria perusteet Kevät Tiedote Mitä simuloiti o? Lueo tavoite Esitellää simuloiti yhteä liikeeteoria työkalua Käydää lyhyesti läpi simuloitii liittyvät eri osa-alueet Liikeeteoria syvetävä moduuli sisältää myös erillise kurssi aiheesta S Tietoverkkoje simuloiti Pakollie Teleliikeeteoria syvetävässä moduulissa Esitiedot: S ja C/C++ -kiele tutemus Lueoidaa vai joka toie vuosi (syytä huomioida opitoje suuittelussa!) Lueoidaa seuraava kerra syksyllä 006 Simuloiti o (liikeeteoria kaalta) eräs tilastollie meetelmä tarkasteltava järjestelmä suorituskyvy arvioimiseksi Se sisältää eljä eri vaihetta: Järjestelmä (olemassa oleva tai kuvitteellise) mallius dyaamisea (ajassa kehittyvää) stokastisea prosessia Prosessi reaalisaatioide tuottamie ( todellisuude havaioiti ) tällaista reaalisaatiota kutsutaa usei simuloitiajoksi (simulatio ru) Tietoje keruu ( mittaus ) Kerättyje tietoje tilastollie aalyysi ja johtopäätöste teko 3 4
2 Vaihtoehto, mutta mille? Liikeeteoreettise järjestelmä suorituskyvy arvioiti Aiemmi olemme jo tutustueet toisee suorituskyvy arvioitimeetelmää, imittäi matemaattisee aalyysii Käsittelimme kaksi vaihetta Järjestelmä mallius ajassa kehittyvää stokastisea prosessia (tässä kurssissa rajoituimme sytymä-kuolema-prosesseihi) Malli aalyyttie ratkaisu Järjestelmä malliusvaihe o kummalleki yhteie Tosi malli tarkkuudella voi olla suuriaki eroja: toisi kui simuloiti, matemaattie aalyysi edellyttää yleesä hyviki rajoittavie oletuste tekoa Todellie järjestelmä mallius Matemaattie malli (stokastisea prosessia) Suorituskyvy arvioiti malli validioiti Matemaattie aalyysi Simuloiti 5 6 Aalyysi vs. simuloiti (1) Aalyysi vs. simuloiti () Matemaattise aalyysi edut: Tuloste tuottamie opeaa (aalyysi eli yhtälöide jälkee) Tulokset tarkkoja Ataa äkemystä Optimoiti usei mahdollista (vaikkaki saattaa olla vaikeaa) Matemaattise aalyysi haitat: Asettaa rajoittavia ehtoja malliuksee malli yleesä liia yksikertaie (esim. vai tasapaiotila huomioitu) moimutkaiste järjestelmie suorituskyvy arvioiti lähes mahdotota Rajoittavie ehtojeki vallitessa aalyysi itsessää yleesä vaikeaa Simuloii edut: Ei rajoittavia ehtoja malliusvaiheessa mahdollistaa moimutkaisteki järjestelmie suorituskyvy arvioii Mallius yleesä hyvi suoraviivaista Simuloii haitat: Tuloste tuottamie yleesä työlästä (simuloitiajot vaativat paljo prosessoriaikaa) Tulokset epätarkkoja (tosi tarketuvia: mitä eemmä ajoja, sitä tarkemmat tulokset) Kokoaisäkemykse saamie vaikeampaa Optimoiti mahdollista vai hyvi rajoitetusti (esim. muutama erilaise parametrikombiaatio tai ohjausperiaattee vertailu) 7 8
3 Stokastise prosessi simuloii vaiheet Simuloii toteutus Järjestelmä mallius ajassa kehittyvää stokastisea prosessia tästä o jo puhuttu kurssi aiemmilla lueoilla jatkossa otamme lähtökohdaksi aetu malli (so. stokastise prosessi) lisäksi rajoitamme tarkastelu tällä lueolla yksikertaisii liikeeteoreettisii malleihi (vrt. aiemmat lueot) Prosessi reaalisaatioide tuottamie satuaislukuje geeroiti tapahtumaohjattu simuloiti usei simuloiilla tarkoitetaa pelkästää tätä vaihetta (liikeeteoria kaalta se o kuiteki simuloitia suppeammassa mielessä) Tietoje keruu trasietti vaihe vs. tasapaiotila Tilastollie aalyysi ja johtopäätökset piste-estimaattorit luottamusvälit 9 Simuloiti toteutetaa yleesä tietokoeohjelmaa Simuloitiohjelma sisältää yleesä kaikki edellä maiitut vaiheet malliusta ja johtopäätöksiä lukuuottamatta, ts. järjestelmä malliksi valitu stokastise prosessi reaalisaatioide tuottamise, tietoje keruu sekä kerättyje tietoje tilastollise aalyysi Simuloitiohjelma voidaa toteuttaa kokoaisuudessaa jollaki yleiskäyttöisellä ohjelmoitikielellä esim. C tai C++ joustavaa mutta työlästä ja riskialtista mahdollisille ohjelmoitivirheille käyttäe hyväksi joitaki simuloitii erikoistueita ohjelmakirjastoja esim. CNCL erityisesti simuloiteja varte kehitetyillä simuloitiohjelmistoilla esim. OPNET, BONeS, NS (osittai perustuu o-kirjastoihi) opeaa ja luotettavaa (ohjelma laadusta riippue) mutta jäykkää 10 Muita simuloititapoja Sisältö Edellä kuvattu diskreetti tapahtumapohjaie simuloiti kyseessä diskreetti, dyaamie ja stokastie simuloiti eli mite simuloidaa tarkasteltavaa järjestelmää kuvaava matemaattise malli (diskreettitilaise stokastise prosessi) kehitystä ajassa tavoittea saada jotai tietoa ko. systeemi käyttäytymisestä jatkossa rajoitumme tällaisee simuloitii Muita simuloititapoja: jatkuvassa simuloiissa tila-avaruus o jatkuva (tilamuuttujie riippuvuudet aetaa yleesä differetiaaliyhtälösysteemiä), esim. letokoee letorada simuloiti staattisessa simuloiissa aja kulumisella ei ole merkitystä (ei ole olemassa prosessia, jota luoehtisi erilaiset tapahtumat), esim. moiulotteiste itegraalie umeerie itegroiti s. Mote-Carlomeetelmällä determiistie simuloiti ei taas sisällä ollekaa satuaisia kompoetteja (esim. esimmäie esimerkki yllä) 11 Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 1
4 Liikeeprosessi reaalisaatioide tuottamie Tapahtumapohjaie simuloiti (1) Oletetaa, että olemme mallitaeet tarkasteltava järjestelmä stokastisea prosessia Seuraavaa tehtävää o prosessi reaalisaatioide tuottamie Se koostuu kahdesta osasta: kaikille prosessi kulkuu vaikuttaville satuaismuuttujille o arvottava arvot (yleesä reaaliluku) satuaisesti ko. sm: jakaumasta (sm:ie väliset riippuvuudet tietysti huomioide) äi saaduilla arvoilla kostruoidaa prosessi reaalisaatio ts. se kehittymie ajassa Nämä kaksi osaa eivät suikaa tapahdu peräkkäi eri vaiheissa, vaa imeomaa limittäi tai vuorotelle Satuaismuuttujie arvoje arvota perustuu s. (pseudo)satuaislukuje geeroitii (radom umber geeratio) Prosessi reaalisaatio kostruoiti tehdää yleesä tapahtumapohjaisesti (discrete evet simulatio) Idea: simuloiti eteee tapahtumasta tapahtumaa jos jollaki aikavälillä ei tapahdu mitää, voimme hypätä ko. aikaväli yli Tapahtuma vastaa (yleesä) systeemi tila muuttumista esim. yksikertaisessa liikeeteoreettisessa mallissa asiakkaide saapumiset ja poistumiset systeemistä tällaisia tapahtumia voidaa kutsua perustapahtumiksi ylimääräisiä tapahtumia aiheutuu esim. tietoje keruusta ja prosessi reaalisaatio geeroii lopetuksesta Tapahtuma karakterisoidaa kahdella parametrilla tapahtumahetki (so. milloi tapahtuma käsitellää) ja tapahtuma tyyppi (so. mite tapahtuma käsitellää) Tapahtumapohjaie simuloiti () Tapahtumapohjaie simuloiti (3) Tapahtumat orgaisoidaa yleesä tapahtumahetke mukaa järjestetyksi tapahtumalistaksi (evet list) Kärjessä o seuraavaksi sattuva tapahtuma (siis aikaisi tapahtumahetki). Listaa käydää läpi tapahtuma tapahtumalta (geeroide samalla uusia tapahtumia lista loppupäähä). Ku tapahtuma o käsitelty, se poistetaa listalta. Simuloitikello (simulatio clock) kertoo, mikä o käsiteltävää oleva tapahtuma hetki se siis eteee hyppäyksittäi Systeemi tila (system state) kertoo systeemi ykyise tila 15 Algoritmi yhde simuloitiajo suorittamiseksi tapahtumapohjaisesti: 1 Iitialisoiti aseta simuloitikello ollaksi aseta systeemi tila valittuu alkuarvoosa geeroi kuki tapahtumatyypi seuraava tapahtuma (mikäli mahdollista) liitä äi saadut tapahtumat tapahtumalistaa Tapahtuma käsittely aseta simuloitiajaksi (tapahtumalista kärjessä oleva) seuraava tapahtuma tapahtumahetki käsittele tapahtuma ja geeroi samalla uusia tapahtumia ja liitä e tapahtumalistaa päivitä systeemi tila poista käsitelty tapahtuma tapahtumalistalta 3 Lopetusehdo testaus jos voimassa, lopeta tapahtumie geeroiti; muutoi palaa kohtaa 16
5 Esimerkki (1) Esimerkki () Tehtävä: Simuloidaa M/M/1-joo joopituude kehitystä ajassa hetkestä 0 hetkee T olettae, että systeemi o tyhjä hetkellä 0 Systeemi tila (hetkellä t) = joopituus X t alkuarvo: X 0 = 0 Perustapahtumat: asiakkaa saapumie systeemii asiakkaa poistumie systeemistä Muut tapahtumat: simuloii lopetus hetkellä T Huom. Tietoje keruuta ei ole sisällytetty tähä esimerkkii 17 Iitialisoiti: asetetaa X 0 = 0 arvotaa esimmäise asiakkaa saapumishetki Exp(λ)-jakaumasta Tapahtuma käsittely uude asiakkaa saapuessa (hetkellä t) systeemi tilaa eli joopituutta kasvatetaa yhdellä: X t = X t + 1 jos systeemi oli tyhjä asiakkaa saapuessa, geeroidaa ko. asiakkaa poistumishetki t + S, missä S o arvottu Exp(µ)-jakaumasta geeroidaa seuraava asiakkaa saapumishetki t + I, missä I o arvottu Exp(λ)-jakaumasta Tapahtuma käsittely asiakkaa poistuessa (hetkellä t) systeemi tilaa eli joopituutta väheetää yhdellä: X t = X t 1 jos systeemii jäi asiakkaita, geeroidaa seuraavaksi palveltava asiakkaa poistumishetki t + S, missä S o arvottu Exp(µ)-jakaumasta Lopetusehto: t > T 18 Esimerkki (3) Sisältö tapahtumie geeroiti asiakkaide saapumis- ja poistumishetket joopituus aika aika 0 T Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 19 0
6 Satuaismuuttuja arvota aetusta jakaumasta Satuaislukuje geeroiti Pohjaa s. (pseudo)satuaislukuje geeroiti Esimmäie askel Tuottaa riippumattomia välillä 0 ja 1 tasajakautueita satuaismuuttujia (siis U(0,1)-jakaumasta) käyttäe satuaislukugeeraattoria Haluttuu jakaumaa päästää U(0,1)-jakaumasta esimerkiksi jollaki seuraavista meetelmistä: uudelleeskaalaaus ( U(a,b)) diskretoiti ( Beroulli(p), Bi(,p), Poisso(a), Geom(p)) kertymäfuktio kääös ( Exp(λ)) muut muuokset ( N(0,1) N(µ,σ )) hyväksymis-hylkäys-meetelmä (ku kyseessä rajoitetulla välillä määritelty jatkuva jakaumaa, jolla rajoitettu tiheysfuktio) tarvitaa kaksi riippumatota U(0,1)-jakaumaa oudattavaa sm:aa 1 Satuaislukugeeraattorilla (radom umber geerator) tarkoitetaa algoritmia, joka tuottaa sarja (äeäisesti) satuaisia kokoaislukuja Z i jollaki välillä 0,1,,m 1 tuotettu sarja o aia jaksollie (tavoitteea mahdollisimma pitkä jakso) geeroidut luvut eivät tiukasti ottae ole ollekaa satuaisia vaa täysi ealta arvattavissa (tästä imitys pseudosatuaie) jos satuaislukugeeraattori o huolellisesti suuiteltu ja toteutettu, ii se tuottamat pseudosatuaiset luvut kuiteki äyttävät ikää kui riippumattomilta ja samoi jakautueilta (IID) oudattae tasaista jakaumaa joukossa {0,1,,m 1} Satuaislukugeeraattori geeroimie satuaislukuje satuaisuus o todeettava tilastollisi testei saadu empiirise jakauma tasaisuus joukossa {0,1,,m 1} geeroituje satuaislukuje välie riippumattomuus (käytäössä korreloimattomuus) Satuaislukugeeraattoreita Liear cogruetial geerator (LCG) Lieaariset kogruetiaaliset geeraattorit (liear cogruetial geerator). yksikertaisi uusi satuaisluku määräytyy algoritmisesti edellisestä, Z i+1 = f(z i ) jakso voi olla korkeitaa m Näistä erikoistapauksea saadaa s. multiplikatiiviset kogruetiaaliset geeraattorit (multiplicative cogruetial geerator). Muita meetelmiä: additive cogruetial geerators, shufflig,... Lieaarie kogruetiaalie satuaislukugeeraattori tuottaa satuaisia kokoaislukuja Z i joukosta {0,1,,m 1} kaavalla: Zi + 1 = ( azi + c) mod m parametrit a, c ja m ovat ei-egatiivisia kokoaislukuja (a < m, c < m) lisäksi tarvitaa s. siemeluku (seed) Z 0 < m Huom. Parametrit o valittava huolella; muutoi tuloksea kaikkea muuta kui satuaisia lukuja. Tietyi edellytyksi jaksoksi saadaa maksimiarvo m esim. ku m muotoa b, c parito ja a muotoa 4k +1 (b usei 48) 3 4
7 Multiplicative cogruetial geerator (MCG) U(0,1)-jakautuee sm: geeroiti Multiplikatiivie kogruetiaalie satuaislukugeeraattori tuottaa satuaisia kokoaislukuja Z i joukosta {0,1,,m 1} kaavalla: Zi +1 = ( azi ) mod m parametrit a ja m ovat ei-egatiivisia kokoaislukuja (a < m) lisäksi tarvitaa siemeluku Z 0 < m Huom. Kyseessä o siis LCG: erikoistapaus valialla c = 0. Parametrit o tässäki tapauksessa valittava huolella Mikää parametrikombiaatio ei tuota (maksimaalista) jaksoa m esim. jos m muotoa b, ii jakso o korkeitaa b Kuiteki, jos m o alkuluku, jakso m 1 o mahdollie PMMLCG = prime modulus multiplicative LCG esim. m = 31 1 ja a = 16,807 (tai a = 630,360,016) 5 Olkoo Z joki satuaislukugeeraattori tuottama (pseudo)satuaie kokoaisluku välillä {0,1,,m 1} Tällöi (approksimatiivisesti) U = Z m U(0,1) 6 Tasajakaumaa oudattava sm: geeroiti Diskreeti sm: geeroiti Olkoo U U(0,1) Tällöi X = a + ( b a) U U( a, b) Tätä saotaa uudelleeskaalausmeetelmäksi (rescalig method) 7 Olkoo U U(0,1) Oletetaa lisäksi, että Y o diskreetti sm arvojoukolla S = {0,1,,} tai S = {0,1,, } Merkitää F(x) = P{Y x}. Tällöi X = mi{ x S F( x) U} Y Tätä saotaa diskretoitimeetelmäksi (discretizatio method) Itse asiassa kyseessä o s. kertymäfuktio kääös -meetelmä eräs muoto Esim. Beroulli(p)-jakauma: 0, X = 1, josu 1 p Beroulli( p) josu > 1 p 8
8 Kertymäfuktio kääös -meetelmä Ekspoettijakaumaa oudattava sm: geeroiti Olkoo U U(0,1) Oletetaa, että Y o sellaie jatkuva sm, jolle kertymäfuktio F(x) = P{Y x} o aidosti kasvava Merkitää F 1 (y):llä kertymäfuktio F(x) kääteisfuktiota. Tällöi 1 X = F ( U ) Y Tätä saotaa kertymäfuktio kääös -meetelmäksi (iverse trasform method) Tod. Koska P{U u} = u kaikilla u (0,1), pätee 1 P { X x} = P{ F ( U ) x} = P{ U F( x)} = F( x) Olkoo U U(0,1) seuraus: 1 U U(0,1) Olkoo Y Exp(λ) kff(x) = P{Y x} = 1 e λx o selvästiki aidosti kasvava kf: kääteisfuktio o F 1 (y) = (1/λ) log(1 y) Näi olle ( kertymäfuktio kääös -meetelmä mukaa) X = F 1 ( 1 U ) = 1 log( U ) Exp( λ) λ 9 30 N(0,1)-jakautuee sm: geeroiti Normaalijakaumaa oudattava sm: geeroiti Olkoot U 1 ja U riippumattomia ja samoi jakautueita oudattae U(0,1)-jakaumaa Tällöi, s. Box-Müller-meetelmä mukaa, alla aetut sm:t X 1 ja X ovat myöski riippumattomia ja samoi jakautueita oudattae N(0,1)-jakaumaa: X1 = log( U1) si(πu ) N(0,1) X = log( U1) cos(πu ) N(0,1) Olkoo X N(0,1) Uudelleeskaalausmeetelmällä saamme Y = µ + σx N( µ, σ ) 31 3
9 Sisältö Tilastotietoje keruu Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 33 Johdaossa otettii lähtökohdaksi, että simuloii tavoitteea o tarkasteltava järjestelmä suorituskyvy arvioiti. Simuloimalla siis pyritää arvioimaa joki suorituskykyy liittyvä parametri arvo α. Tämä parametri voi liittyä joko järjestelmä trasiettii käyttäytymisee tai sitte s. tasapaiotilaa (steady state) Esim. 1 ja (trasietti käyttäytymie) k: esimmäise asiakkaa keskimääräie odotusaika M/M/1-joossa olettae, että systeemi o aluksi tyhjä keskimääräie joopituus M/M/1-joossa aikavälillä [0,T] olettae, että systeemi o aluksi tyhjä Esim. 3 (tasapaiotilae) keskimääräie odotusaika M/M/1-joossa tasapaiotilateessa Yksittäie simuloitiajo tuottaa yhde havaio X, jokajollakilailla kuvaa arvioitavaa parametria Tilastolliste päätelmie tekemiseksi tarvitsemme kuiteki useita havaitoja X 1,,X (mielellää IID) 34 Trasiettie piirteide simuloiti (1) Trasiettie piirteide simuloiti () Esimerkki 1: Tarkastellaa k: esimmäise asiakkaa keskimääräistä odotusaikaa M/M/1-joossa olettae, että systeemi o aluksi tyhjä Simuloitia jatketaa, kues viimeieki äistä k asiakkasta o saapuut ja päässyt palveluu Yksittäisestä simuloitiajosta saatava havaito X o tässä tapauksessa äide k asiakkaa odotusaikoje W i keskiarvo ko. simuloitiajossa: k X = 1 W k i i= 1 Riippumattomia ja samoi jakautueita (IID) havaitoja X 1,,X voidaa tuottaa s. riippumattomie toistoje -meetelmällä (idepedet replicatios) ts. tekemällä useita samalaisia mutta toisistaa riippumattomia simuloitiajoja (toisistaa riippumattomilla satuaisluvuilla) 35 Esimerkki : Tarkastellaa keskimääräistä joopituutta M/M/1-joossa aikavälillä [0,T] olettae, että systeemi o aluksi tyhjä Simuloitia jatketaa ealta määrättyy hetkee T asti Yksittäisestä simuloitiajosta saatava havaito X o tässä tapauksessa joopituude Q(t) aikakeskiarvo yli väli [0,T] ko. simuloitiajossa: T X = 1 T Q( t) dt 0 Huom. Ko. itegraali o helposti laskettavissa, koska joopituus ei muutu tapahtumie välillä Riippumattomia ja samoi jakautueita (IID) havaitoja X 1,,X voidaa jällee tuottaa riippumattomie toistoje -meetelmällä 36
10 Tasapaiotilaa liittyvie piirteide simuloiti (1) Tasapaiotilaa liittyvie piirteide simuloiti () Tilastotietoje keruu yksittäisestä simuloiista tapahtuu periaatteessa samalla tavalla kui trasietteja piirteitä simuloitaessa. Simuloii alussa o kuiteki tyypillisesti s. lämmittelyvaihe (warm-up phase), ee kui systeemi o likimai tasapaiossa, mikä aiheuttaa overheadia = turhaa simuloitia harhaisuutta estimaattii tarpee määritellä, kuika pitkä lämmittelyvaihe tarvitaa Riippumattomie ja samoi jakautueide (IID) havaitoje X 1,,X tuottamiseksi (aiaki likimai) o kaksi eri tapaa: riippumattomat toistot (idepedet replicatios) ja s. batch meas -meetelmä 37 Riippumattomie toistoje meetelmä: tehdää useita samalaisia mutta toisistaa riippumattomia simuloitiajoja (so. sama systeemi simuloitia samasta lähtötilasta mutta toisistaa riippumattomilla satuaisluvuilla) kussaki ajossa tilastotietoje keruu aloitetaa vasta lämmittelyvaihee jälkee (kute saottu, oma ogelmasa o tämä lämmittelyvaihee pituude määräämie) havaiot IID Batch meas -meetelmä: yksi (erittäi) pitkä simuloitiajo, joka lämmittelyvaihee jälkeiseltä osalta (keiotekoisesti) jaetaa :ää yhtä pitkää jaksoo, joita tietoje keruu kaalta käsitellää omia simuloitiajoiaa tarvitaa vai yksi lämmittelyvaihe mutta havaiot eivät ole eää täysi riippumattomia (eivätkä tarkkaa ottae täysi samoi jakautueitakaa) mitä pitempi jakso (eli pieempi ), sitä riippumattomammat havaiot38 Sisältö Parametrie estimoiti Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 39 Kute edellisessä kohdassa todettii, simuloiilla pyritää arvioimaa joki suorituskykyy liittyvä parametri arvo α Yksittäie simuloitiajo tuottaa kyseisestä parametrista havaio X i, joka siis o satuaismuuttuja Havaitoa X i saotaa harhattomaksi (ubiased), jos E[X i ] = α Olet. että havaiot X i ovat IID keskiarvolla α ja variassilla σ Tällöiotoskeskiarvo (sample mea) X : = 1 i= 1 Xi o parametri α harhato ja tarketuva estimaattori, sillä E[ X ] = 1 i= 1E[ Xi ] = α 1 1 D [ X ] = i= 1D [ Xi ] = σ 0 (ku ) 40
11 Esimerkki Estimaattori luottamusväli (1) Pyrimme arvioimaa simuloimalla 5: esimmäise asiakkaa keskimääräistä odotusaikaa M/M/1-joossa kuormalla ρ=0.9, ku systeemi hetkellä 0 o tyhjä. Teoreettie arvo: α =.1 (ei triviaali) Havaiot X i kymmeestä simuloitiajosta ( = 10): 1.05, 6.44,.65, 0.80, 1.51, 0.55,.8,.8, 0.41, 1.31 Näi olle parametri α piste-estimaatti o X = 1 1 i= 1 Xi = ( K+ 1.31) 10 = 1.98 Määr. Väliä (X y, X + y) saotaa parametri α luottamusväliksi (cofidece iterval) luottamustasolla (cofidece level) 1 β, jos P{ X α y} = 1 β Tulkita: parametri α kuuluu ko. välille t:llä 1 β Oletetaa sitte, että havaiot X i, i = 1,,, ovat IID tutemattomalla keskiarvolla α mutta tuetulla variassilla σ Keskeise raja-arvolausee mukaa (kts. Lueto 5, kalvo 48), aiaki suurilla : arvoilla pätee X : = α Z N(0,1) σ / 41 4 Estimaattori luottamusväli () Merk. z p :llä N(0,1)-jakauma p-fraktiilia ts. P{Z z p } = p, missä Z N(0,1) esim. β=5% eli 1 β = 95% z 1 (β/) = z Väite. Parametri α luottamusväli luottamustasolla 1 β o X ± z σ β 1 Tod. Määritelmä mukaa pitää osoittaa, että P{ X α σ z β } = 1 β 1 43 P{ X α y} = 1 β X y P α { } = 1 β σ / σ / y X y P α { } = 1 β σ / σ / σ / y y Φ( ) Φ( ) = 1 β σ / σ / y y Φ( ) (1 Φ( )) = 1 β σ / σ / y β Φ( ) = 1 σ / y = z β σ / 1 y = z σ β 1 [ Φ( x) : = P{ Z x}] [ Φ( x) = 1 Φ( x)] 44
12 Estimaattori luottamusväli (3) Estimaattori luottamusväli (4) Yleesä odotusarvo α lisäksi myös variassi σ o tutemato Tällöi se pitää estimoida otosvariassista (sample variace) S : 1 ( ) 1 1 ( = 1 ) 1 i Xi X = 1 i Xi X = = Voidaa osoittaa, että IID havaioille otosvariassi o todellise variassi σ harhato ja tarketuva estimaattori: E[ S ] = σ D [ S ] 0 (ku ) 45 Oletetaa yt, että havaiot X i, i = 1,,, ovat IID oudattae N(α,σ )-jakaumaa tutemattomalla keskiarvolla α ja tutemattolla variassilla σ. Tällöi voidaa osoittaa, että X T : = α Studet( 1) S / Merk. t 1,p :llä Studet( 1)-jakauma p-fraktiilia ts. P{T t 1,p } = p, missä T Studet( 1) esim. 1: = 10 ja β=5% t 1,1 (β/) = t 9, esim. : = 100 ja β=5% t 1,1 (β/) = t 99, Näi olle otoskeskiarvo luottamusväli luottamustasolla 1 β o S X ± t β 1,1 46 Esimerkki (jatkoa) Havaitoja Pyrimme arvioimaa simuloimalla 5: esimmäise asiakkaa keskimääräistä odotusaikaa M/M/1-joossa kuormalla ρ=0.9, ku systeemi hetkellä 0 o tyhjä. Teoreettie arvo: α =.1 Havaiot X i kymmeestä simuloitiajosta ( = 10): 1.05, 6.44,.65, 0.80, 1.51, 0.55,.8,.8, 0.41, 1.31 Otoskeskiarvo o 1.98 ja otoshajota (eli otosvariassi eliöjuuri) o S 1 = (( ) + K+ ( ) ) = Näi olle parametri α luottamusväli 95%: luottamustasolla o X ± t β 1,1 S = 1.98 ± = 1.98 ± 1.7 = (0.71,3.5) Simuloitikokee tulos tarketuu (so. piste-estimaati luottamusväli kapeee), ku simuloititoistoje eli riippumattomie havaitoje lukumäärää kasvatetaa, tai yksittäise havaio variassia σ pieeetää esim. ajamalla pitempiä yksittäisiä simuloitiajoja muilla s. variassi reduktio -meetelmillä Jos aettua o haluttu simuloitituloste suhteellie tarkkuus (so. otoskeskiarvo hajoa ja odotusarvo välie suhde), voidaa dyaamisesti päättää, kuika mota riippumatota simuloititoistoa o tehtävä ko. tavoitteesee pääsemiseksi 48
13 Kirjallisuutta I. Mitrai (198) Simulatio techiques for discrete evet systems Cambridge Uiversity Press, Cambridge A.M. Law ad W. D. Kelto (198, 1991) Simulatio modelig ad aalysis McGraw-Hill, New York 49
AB TEKNILLINEN KORKEAKOULU
AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio lueto09.ppt S-38.45 - Liikeeteoria perusteet - Kevät 00 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta
ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio
ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio 9. Simuloiti lueto09.ppt S-38.45 - Liikeeteoria perusteet - Kevät 2002 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalsi Lueto.ppt S-38.45 - Liikeeteoria
Teoria. Tilastotietojen keruu
S-38.348 Tietoverkkoje simuloiti / Tuloste keruu ja aalyysi Teoria Johdato simuloitii Simuloii kulku -- prosessi realisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tuloste keruu ja aalyysi
11. Simulointi luento11.ppt S-38.1145 Liikenneteorian perusteet Kevät 2006 1
lueto.ppt S-38.45 Liikeeteoria perusteet Kevät 2006 Sisältö Johdato Liikeeprosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 2 Tiedote Lueo tavoite
S Liikenneteorian perusteet K Simulointi. lect8.ppt Simulointi. Sisältö
S-38.145 Liikeeteoria perusteet K-99 lect8.ppt 1 Sisältö Johdato Prosessi reaalisaatioide tuottamie Satuaismuuttuja arvota aetusta jakaumasta Tietoje keruu Tilastollie aalyysi 2 1 Mitä simuloiti o? Simuloiti
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
Prosessin reaalisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 20/09/2004
4. Todennäköisyyslaskennan kertausta
Sisältö Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat lueto04.ppt S-38.45 - Liikeeteoria
Tilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
Teoria. Prosessin realisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Tapahtumapohjaisen simuloinnin periaatteet Esimerkki: M/M/1 jonon simulointi Simulointiohjelman geneeriset komponentit
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:
Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,
8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua
1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit).
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 2. lokakuuta 2017 7.1 Tilastollie päättely Tähä meessä o opittu eustamaa tapahtumie todeäköisyyksiä aetu stokastise malli pohjalta. Eusteide laskemiseksi
Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
Tilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
6.1 Riippumattomat satunnaismuuttujat
Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1
Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude
Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit
Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,
Tilastolliset luottamusvälit
Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude
Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma
Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet
Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä
Mat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,
Luento 7 Luotettavuus Koherentit järjestelmät
Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava
Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
Luento 6 Luotettavuus Koherentit järjestelmät
Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1
Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause
( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
S Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
Otantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
Tilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
Mat Sovellettu todennäköisyyslasku A
TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu
Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot
TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi
Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia
Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Jatkuvia jakaumia Avaisaat: Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Kertymäfuktio, Keskeie raja-arvolause, Mediaai, Normaaliapproksimaatio,
Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia
Todeäköisyyslasketa I, kesä 207 Helsigi yliopisto/avoi yliopisto Harjoitus 3, ratkaisuehdotuksia. Aikaisemma viiko teemaa. Edessäsi o kaksi laatikkoa A ja B. Laatikossa A o 8 palloa, joista puolet valkoisia.
n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:
1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:
Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien
MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
3 10 ei ole rationaaliluku.
Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista
EX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen
T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide
Tilastollinen päättömyys, kevät 2017 Harjoitus 6A
Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi
Batch means -menetelmä
S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin
Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 2 Aiheet: Satuaismuuttujat ja todeäköisyysjakaumat Kertymäfuktio, pistetodeäköisyysfuktio ja tiheysfuktio Jakaumie tuusluvut Tärkeimmät
811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015
Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,
Tehtäviä neliöiden ei-negatiivisuudesta
Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:
RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan
RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa
Harjoitukset 1 : Tilastokertaus
31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.
2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,
Mat Tilastollisen analyysin perusteet, kevät 2007
Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Sormenjälkimenetelmät
Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta
Matematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
1 Eksponenttifunktion määritelmä
Ekspoettifuktio määritelmä Selvitimme aikaisemmi tällä kurssilla, millaie potessisarja säilyy derivoiissa muuttumattomaa. Se perusteella määritellää: Määritelmä. Ekspoettifuktio exp : R R määritellää lausekkeella
Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,
Luku 7. Parametrien estimointi. 7.1 Parametriset jakaumat. Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017 7.1 Parametriset jakaumat Tarkastellaa tutematota datalähdettä, joka tuottaa toisistaa stokastisesti riippumattomia ja tiheysfuktio
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
Insinöörimatematiikka IA
Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2-suuntainen vaihtoehtoinen hypoteesi
MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato
Mat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä
Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =
Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,
Matematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa
Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa
811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu
83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi
2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =
TAMMI PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ PARITTOMAT RATKAISUT 7 Tiedosto vai hekilökohtaisee käyttöö. Kaikelaie sisällö kopioiti kielletty. a) g( ) = 5 + 6 Koska g o eljäe astee polyomi, ii
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
Digitaalinen signaalinkäsittely Signaalit, jonot
Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,
Yhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000
LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 Laskuharjoitus Detaljibalassi Osoita, että siirtymätodeäköisyydet π m α m ; ρ, m ρ α m ----- ; ρ < ρ, m m π m, m m ja π m ρ α m ------------------ ρ +, m π
Ruletti ja Martingaalistrategia
POHDIN projekti Ruletti ja Martigaalistrategia Ruletti o uhkapeli, jossa pelaaja pyrkii veikkaamaa kuula pysähtymiskohda pyörivältä kehältä. Euroopassa käytettävässä ruletissa o käytössä 37 umeroa (0-36)
10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.
10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Noora Nieminen. Hölderin epäyhtälö
Noora Niemie Hölderi epäyhtälö Matematiika aie Turu yliopisto 4. huhtikuuta 2008 Sisältö 1 Johdato 1 2 Cauchy-Schwarzi epäyhtälö 2 2.1 Cauchy-Schwarzi epäyhtälö todistus............. 2 2.2 Aritmeettis-geometrise
Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
Tunnuslukuja 27 III TUNNUSLUKUJA
Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
Markov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava