LUENTO 6 Kyösti Ryynänen Seutuviikko 2014, Jämsä

Koko: px
Aloita esitys sivulta:

Download "LUENTO 6 Kyösti Ryynänen Seutuviikko 2014, Jämsä"

Transkriptio

1 LUENTO 6 Kyösti Ryynänen Seutuviikko 2014, Jämsä ELÄMÄÄ MIKROKOSMOKSEN JA MAKROKOSMOKSEN VÄLISSÄ ELINKELPOINEN PLANEETTA KOSMISET UHAT, ASTEROIDITÖRMÄYKSET MAAHAN ELÄMÄ MIKROGRAVIAATIOSSA 1 ELÄMÄN PERUSTA ALKEISHIUKKASET PERUSVOIMAT ITSEORGANISOITUMINEN NYT HAVAITTAVISSA OLEVA UNIVERSUMI HAVAINTOJEN JA TEORIOIDEN PERUSTANA AIKA-AVARUUS MATERIA-ENERGIA 2 1

2 MIKROKOSMOS ATOMIEN JA MOLEKYYLIEN TASOLLA VAIKUTTAA KVANTTIMEKANIIKKA ATOMIT PIENIÄ 10^-10m ATOMIYDIN 10^-15m ILMIÖT ERITTÄIN NOPEITA 10^-15s ELEKTRONIT MÄÄRÄÄVÄT OMINAISUUDET ORGANISMIT DIGITAALISIA JA EPÄJATKUVIA 3 MAKROKOSMOS ISOJEN KAPPALEIDEN (IHMINEN, PLANEETAT, MAAILMANKAIKKEUS) VÄLILLÄ PERUSVOIMAT MÄÄRITTELEVÄT YKSISELITTEISESTI KEHITYKSEN TERMODYNAMIIKKA; ENERGIAN SÄILYMINEN, ENTROPIA KOKOLUOKAT SUURIA UNIVERSUMIN IKÄ 10^18s MAAN ETÄISYYS AURINGOSTA 10^11m 4 2

3 ELÄMÄN PROSESSIT KESKIKOKOISIA ELÄMÄN KOKOLUOKAT (korkeintaan metrejä) NOIN PUOLIVÄLISSÄ UNIVERSUMIN RAKENTEIDEN MAHDOLLISISTA KOKOLUOKISTA FOTOSYNTEESIN REAKTIOIDEN NOPEUS 10^-15s HERMOIMPULSSIN NOPEUS 10^-6s EVOLUUTION NOPEUS LUOKKAA10^8s EVOLUUTIO ANALOGISTA JA JATKUVAA 5 MAA-PLANEETAN SUOTUISUUS MAA-PLANEETAN OLOSUHTEET OVAT ELÄMÄLLE OTOLLISIA, MUTTA OLISI ÄÄRIMMÄISEN EPÄTODENNÄKÖISTÄ ETTEI JOSSAIN MUUALLA MAAILMANKAIKKEUDESSA OLISI YHTÄ HYVIÄ TAI VIELÄKIN PAREMPIA MAHDOLLISUUKSIA JA OLOSUHTEITA ELÄMÄN ALKAA KEHITTYMÄÄN 6 3

4 MULTIVERSUMIT UNIVERSUMIEN MAHDOLLISET HIERARKIAT UNIVERSUMIEN OMINAISUUKSIEN EVOLUUTIO JA PERIYTYMINEN TYTÄRUNIVERSUMEILLE YKSITTÄISILLÄ UNIVERSUMEILLA ALKU JA LOPPU 7 MIKÄ KAIKKI ON UNIVERSUMISSA MAHDOLLISTA? UNIVERSUMIN RAKENNE (DIMENSIOT) JA AIDOT (PERUSTAVANLAATUISET) LUONNONLAIT MÄÄRÄÄVÄT MITEN UNIVERSUMI VOI KEHITTYÄ JA MINKÄLAISET TAPAHTUMAT OVAT UNIVERSUMISSA YLIPÄÄNSÄ MAHDOLLISIA 8 4

5 SATTUMAA VAI VÄLTTÄMÄTTÖMYYTTÄ? VAIN MAHDOLLISIA ASIOITA VOI TAPAHTUA UNIVERSUMISSA SATTUMA RATKAISEE KUN USEAMMAT VAIHTOEHDOT OVAT MAHDOLLISIA RIIPPUU TILANTEESTA KUMPI ON RATKAISEVA, SATTUMA VAI LUONNONLAIT 9 SATUNNAISIA TEKIJÖITÄ PLANEETTAKUNNAN MUODOSTUESSA PÖLY- JA KAASUPILVESTÄ LUHISTUMALLA SATUNNAISTA ON MM. ALKUAINEJAKAUMA LÄMPÖTILAJAKAUMA MOLEKYYLI-TIHEYDET KVANTTIKEMIALLISET ILMIÖT 10 5

6 SOPIVASTI KAIKKEA MAA-PLANEETAN MUODOSTUESSA ELÄMÄLLE SUOTUISIA OLOSUHTEITA OLI SOPIVASTI (EI PALJON, OSIN JOPA NIUKASTI) VETTÄ, HIILTÄ JA TYPPEÄ OLI VÄHÄNLAISESTI, MIKÄ TOISAALTA KUITENKIN OLI HYVÄ ASIA ESIM. ATMOSFÄÄRIN OMINAISUUKSIEN SUHTEEN (EI KEHITTYNYT LIIAN VOIMAKASTA KASVIHUONEILMIÖTÄ) 11 EPÄTASAPAINOINEN MAA MAA-PLANEETTA EI OLE KEMIALLISESTI EIKÄ TERMODYNAAMISESTI TASAPAINOTILASSA, MIKÄ ON MAHDOLLISTANUT ELÄMÄN KEHITTYMISEN (ANTANUT ELÄMÄLLE MAHDOLLISUUKSIA) MARS JA VENUS OVAT LÄHEMPÄNÄ TASAPAINOTILAA ELÄMÄ ITSESSÄÄN ON POIKKEAMA 12 TASAPAINOTILASTA 6

7 ELÄMÄN PROSESSIEN ALKU ALKUELÄMÄN PROSESSIEN KÄYNNISTYMINEN VOI TAPAHTUA MONELLA ERI TAVALLA, JOTEN MITÄÄN YHTÄ JA AINOAA TAPAA AIKAANSAADA JA KÄYNNISTÄÄ ELÄMÄÄ EI OLE 13 PIILOSSA OLEVA ELÄMÄ TOISTEN PLANEETTOJEN ELÄMÄ VOI OLLA VAIKEASTI HAVAITTAVISSA JA TUNNISTETTAVISSA ELÄMÄ PLANEETTOJEN PINNOILLA VOI OLLA PALJON HARVINAISEMPAA KUIN SYVÄLLÄ KUORIKERROKSISSA (TÄYSIN MAANALAINEN ELÄMÄ) 14 7

8 ETSITÄÄN VETTÄ JA ENERGIAA Follow The Water : Nasan astrobiologia-ohjelmissa vettä on pidetty varmimpana merkkinä ja viitteenä elämän mahdollisuudelle Follow The Energy : Yhtälailla elämä tarvitsee paikan ja olosuhteet, joissa energiaa on tarjolla sopivassa muodossa ja määrässä käyttökelpoisella energialla on minimi (riittävästi) ja maksimi (ei tuhoa) intensiteettinsä ja määränsä erilaiset elämänmuodot tarvitsevat erimääriä ja erilaista energiaa energiaa tarvitaan järjestyksen luomiseen (rakenteet) ja kasvattamiseen (biomassan määrä), katalyyttinä reaktiossa, valikoivana tekijänä kulttuuria luovan elämän energiatarpeet 15 MITÄ ETSITÄÄN ETSITÄÄN RAUHALLISIA KESKUSTÄHTIÄ ETSITÄÄN VAKAITA PLANEETTASYSTEEMEJÄ ETSITÄÄN ELOKEHÄLLÄ (HABITABLE ZONE) OLEVIA PLANEETTOJA ELÄMÄLLE SUOTUISIA PLANEETTOJA (KIVIPLANEETTOJA, MERIPLANEETTOJA, JÄÄPLANEETTOJA) TAI SUURTEN PLANEETTOJEN KUITA ETSITÄÄN SUOJAAVIA JUPITEREITA ETSITÄÄN VETTÄ JA ENERGIAA ETSITÄÄN MAGNEETTIKENTTIÄ (KONVEKTIO JA PYÖRIMINEN), VULKAANISTA TOIMINTAA JA LAATTATEKTONIIKKAA 16 8

9 KESKUSTÄHDEN OMINAISUUDET PIENIMASSAISIA TAI AURINGONKALTAISIA (0.2 2 )x M aurinko, tuottaa riittävästi säteilyenergiaa, jotta liuotin nestemäistä, mutta säteilyn maksimi-intensiteetti alle elämälle haitallisen UV-säteilyn >1.5xM aurinko kehittyvät liian nopeasti, jolloin elämän kehitykselle ei jää aikaa <0.5xM aurinko keskustähti lukitsee lähietäisyydellä (energian saannin kannalta oltava lähellä himmeää tähteä) kiertävän planeetan pyörimisen (sama puolisko aina keskustähteen päin) PINNALTAAN VÄHÄAKTIIVISIA (rauhallisia tähtiä) VAADITTU 1,7 MILJARDIN VUODEN IKÄÄ (ensin 700 miljoonaa vuotta meteoripommitusta ja loput 1 miljardia vuotta mahdollistanut elämän kehittymisen) KOHTEITA RIITTÄÄ: UNIVERSUMISSA LUKUMÄÄRÄISESTI 25 KERTAA ENEMMÄN 0.5xM aurinko -tähtiä kuin 2xM aurinko -tähtiä metallipitoisilla tähdillä todennäköisemmin planeettoja suurimassaisilla tähdillä suurimassaisia planeettoja? 17 ELÄMÄN KOKEMAT PERUSSYKLIT, DAWKINS KESKUSTÄHDEN YMPÄRILLÄ RADALLAAN PLANEETALLA MELKO TASAINEN ENERGIANSAANTI (ETÄISYYS KESKUSTÄHDESTÄ) PLANEETAN PYÖRIMINEN, YÖ/PÄIVÄ PLANEETAN AKSELIN KALLISTUMA, ENERGIA NAPA/EKVAATTORI AKSELIN KALLISTUMA JA RATALIIKE, VUODENAJAT VUOROVESIVOIMAT 18 9

10 PLANEETTASYSTEEMIN OMINAISUUDET MASSIIVISET JUPITERIT SUOJANA jos jupiter 2-5 AU etäisyydellä, systeemissä enemmän planeettoja jääkö maankaltaisille planeetoille stabiileja ratoja eksentrisillä radoilla olevat jupiterit tuhoisia pienemmille planeetoille jupiterien migraatio (siirtyminen) elokehän halki (jos tuhoaa tai estää maankaltaisten muodostumisen elokehälle, niin systeemeistä vain muutama prosentti olisi elinkelpoisia) 19 PLANEETTOJEN OMINAISUUDET sopivat planeettojen massat välillä x M Maa atmosfäärin säilymiseksi (10 9 vuotta) planeetan minimimassa 0.1 M Maa 10 M Maa planeetalla on jo vety-atmosfääri, mikä ei ehkä elämän esiintymisen kannalta paras mahdollinen atmosfäärin raskaammat alkuaineet edesauttavat sen säilymistä (ja ovat elämän kemialle tärkeitä) eksentrisillä radoilla atmosfäärin pysyttävä myös kun planeetta on periastrossaan (lähimpänä tähteä), jolloin keskustähden vetovoima erityisesti pyrkii hajoittamaan atmosfäärin 20 10

11 PLANEETTOJEN OMINAISUUDET Planeettojen ja kuiden rakennetta arvioidaan, niiden keskitiheydestä 13xM Jupiter raskasvety (D) alkaa fuusioitumaan 80xM Jupiter vety (H) alkaa fuusioitumaan, on jo tähti teoreettisesti mahdollisia massiiviset maankaltaiset mutta Jupiterin massaiset massiiviset rautaplaneetat (max ~100 x M Jupiter ) kivi- tai jääplaneetat jotka syntyneet kaasujättiläisten menetettyään ulkoosat (tähtituulen tai tähden vetovoiman vuoksi) löydetyt uudet planeettatyypit pienitiheyksiset kaasujättiläiset (250kg/m 3 ja 573kg/m 3 ) planetesimaalivaiheessa voi kertyä koostumukseltaan mitä erilaisempia planeettoja materia peräisin erilaisilta etäisyyksiltä keskustähdestä 21 ELOKEHÄ HZ,habitable zone (etäisyysväli tähdestä, jolla planeetan lämpötila sellainen, että liuotin on nestemäisessä olomuodossa eikä jäädy tai höyrysty), Maalle AU CHZ, continuos habitable zone, Maalle AU, (elinkelpoinen koko Aurinkokunnan kehityksen ajan) GHZ, galactic habitable zone, galaksin reunaosat otollisempia kuin keskusta DHZ, dynamic habitable zone, etäisyydet joilla radat epästabiileja poistettu (kiertoaikojen resonanssi-ilmiöt) osan rataliikkeestään planeetta voi olla elokehän ulkopuolellakin edellyttäen, että planeetalla on meriä tai ilmakehä, jotka estävät nopeat lämpötilanvaihtelut (radan eksentrisyys e=0.2 vastaisi talvi/kesä vaihtelua vastaanotetun energian tiheydessä) atmosfäärin erilaiset kasvihuonekaasut sitovat säteilyenergiaa, jolloin vastaavasti elokehän sijainti muuttuu 22 11

12 ELOKEHÄ LUMIRAJA 2-3AU (ei nestemäistä vettä) ULOMPANA AURINKOKUNNASSAMME, esim. 5 AU:n ETÄISYYDELLÄ, MAANKALTAISEN PLANEETAN MERIÄ PEITTÄISI 7 KM PAKSU JÄÄKERROS, JONKA ALLA OLISI RADIOAKTIIVISEN HAJOAMISENERGIAN NESTEMÄISENÄ PITÄMÄ MERI (EUROPAN TAPAAN) MITÄ NUOREMPI PLANEETTA SITÄ VOIMAKKAAMPAA RADIOAKTIIVINEN HAJOAMINEN (JOPA 5 KERTAA NYKYINEN TEHO), JOLLOIN ELINKELPOINEN PLANEETTA VOISI OLLA YHÄ KAUEMPANA KESKUSTÄHDESTÄ TAI LEIJUA KARKULAISENA YKSIN AVARUUDESSA ELINKELPOISIA PLANEETTOJA ELOKEHÄN ULKOPUOLELLA 23 KOSMISET TÖRMÄYKSET NEO (Near Earth Objects) < 1.3 AU etäisyydellä Auringosta ASTEROIDEJA JA KOMEETTOJA NEA (Near Earth Asteroids) AU etäisyydellä Auringosta LÄHEISET SUPERNOVARÄJÄHDYKSET 24 12

13 METEORIITTIEN LUOKAT RAUTAMETEORIITIT KIVIRAUTAMETEORIITIT KIVIMETEORIITIT KONDRIITIT (JYVÄSIÄ) HIILIKONDRIITIT TAVALLISET KONDRIITIT AKONDRIITIT (EI JYVÄSIÄ) 25 SPACEGUARD PYRITÄÄN HAVAITSEMAAN MAHDOLLISET MAAHAN TÖRMÄÄVÄT JA LIEVENTÄMÄÄN (VARAUTUMAAN) TÖRMÄYKSEN TUHOJA 848 kpl YLI 1 km KOKOISTA TUNNETTUA KAPPALETTA (2012) JOISTA 154 PHA (Potentially Hazardous Asteroids) 26 13

14 TÖRMÄYKSIEN TUHOISUUS RIIPPUU KAPPALEEN NOPEUDESTA, TULOKULMASTA, TIHEYDESTÄ, MILLÄ KORKEUDELLA RÄJÄHTÄÄ (JOS HUOKOINEN) JA OSUUKO MAALLE VAI MEREEN TORINO-ASTEIKKO UHASTA m KAPPALE AIHEUTTAA JO LAAJAA TUHOA 10 km KAPPALE AIHEUTTAA SUUREN MÄÄRÄN SUKUPUUTTOJA 27 TAPAHTUNEITA TÖRMÄYKSIÄ 1908 Tunguska m kokoinen kappale räjähti 8.5 km korkeudessa 2002 Välimeren yllä 10 m kokoinen kappale räjähti ilmakehässä vastaten energialtaan pientä ydinkärkeä 2009 Indonesian yllä 10 m kokoinen asteroidi räjähti yläilmakehässä vastaten kahta 28 Nagasakin atomipommia 14

15 TÖRMÄYSKRAATTERIT VULKANISMI, EROOSIO JA ELÄMÄ OVAT PEITTÄNEET USEIMMAT OMAN MAA-PLANEETTAMME TÖRMÄYSKRAATTERIT KUUSSA, MARSISSA JNE. NÄHDÄÄN EDELLEEN VANHOJAKIN TÖRMÄYSKRAATTEREITA SUOMESSA MM. LAPPAJÄRVI, KEURUSSELKÄ 29 ELÄMÄN KESTOKYKY AVARUUDESSA VIIME VUOSINA TEHTY PALJON KOKEITA KANSAINVÄLISELLÄ AVARUUSASEMALLA (ISS) OSOITTAUTUNUT, ETTÄ MAA- PLANEETANKIN ELÄMÄSTÄ PIENIOSA LAJEISTA SELVIÄÄ TYHJIÖSSÄ JA MIKROGRAVITAATIOSSA 30 15

16 ISS-ASEMAN KOKEITA JÄKÄLÄ AVARUUDESSA 1.5 VUOTTA, TYHJIÖSSÄ, SÄTEILYÄ PALJON, JATKOI KASVUAAN KUN PALAUTETTIIN MAANPINNALLE 12 SUKKULAMATOSUKUPOLVEA, LISÄÄNTYIVÄT NORMAALISTI LÄÄKKEET VANHENIVAT NOPEAMMIN AVARUUDESSA 31 LÄHDEKIRJALLISUUS Fred Adams: Elämää multiversumissa, Like, 2004 (2002) AAS 207th Meeting, 8-12 January 2006, abstracts Barrie W. Jones, P. Nick Sleep, and David R. Underwood, 2006, Habitability of Known Exoplanetary Systems Based on Measured Stellar Properties, The Astrophysical Journal, 649, p George H. A. Cole; Wandering Stars, About Planets and Exo-Planets, An Introductory Notebook, 2006 Richard Dawkins; The Greatest Show on Earth, The Evidence for Evolution, Bantam Press, 2009 C.G. Tinney, R. Paul Butler, Geoffrey W. Marcy, et.al.; The 2:1 resonant exoplanetary system orbiting HD 73526, arxiv:astro-ph/ v1 25 Feb 2006 Kyösti Ryynänen: Eksoplaneettojen havaittavuustekijät; säteisnopeusmittausmenetelmä, Pro Gradu, HY, 2003 Peter Ward; Tuntematon elämä, Ursa, 2006 (2005) Hoehler, Tori M., Amend Jan P. and Shock, Everett L., 2007, A Follow the Energy Approach for Astrobiology, artikkeli Astrobiology-lehdessä 6/2007 Exoplanets: Discovering and characterizing Earth like planets, SummerSchoolAlpbach 2009 lectures,

17 LÄHDEKIRJALLISUUS (JATKOA) Jörgen Sjöström: På spaning efter livets ursprung, Om astrobiologi, människans rötter och evolutionen, Norstedts, arth

LUENTO Kyösti Ryynänen

LUENTO Kyösti Ryynänen LUENTO 13.12.2016 Kyösti Ryynänen ELÄMÄÄ MIKROKOSMOKSEN JA MAKROKOSMOKSEN VÄLISSÄ 1 ELÄMÄN PERUSTA ALKEISHIUKKASET PERUSVOIMAT ITSEORGANISOITUMINEN NYT HAVAITTAVISSA OLEVA UNIVERSUMI HAVAINTOJEN JA TEORIOIDEN

Lisätiedot

EKSOPLANEETAT. Kyösti Ryynänen Kyösti Ryynänen

EKSOPLANEETAT. Kyösti Ryynänen Kyösti Ryynänen EKSOPLANEETAT 1. Planeettasysteemien muodostuminen 2. Elämälle suotuisat planeettasysteemit 3. Elämälle suotuisat planeetat ja kuut 4. Löydetyt eksoplaneetat 5. Elämän tunnistaminen eksoplaneetoilta UNIVERSUMI

Lisätiedot

LUENTO Kyösti Ryynänen

LUENTO Kyösti Ryynänen LUENTO 29.11.2016 Kyösti Ryynänen ELÄMÄLLE RIITTÄÄ PAIKKOJA UNIVERSUMISSA 1 ENSIMMÄISET LÖYDETYT EKSOPLANEETAT 1992 ENSIMMÄINEN NEUTRONITÄHDEN (PSR 1257+12) YMPÄRILTÄ 1995 ENSIMMÄINEN AURINGONKALTAISEN

Lisätiedot

LUENTO Kyösti Ryynänen HAVAITTAVUUSTEKIJÖITÄ HAVAINTOMENETELMÄT HAVAITTAVUUSTEKIJÖITÄ ENSIMMÄISET LÖYDETYT EKSOPLANEETAT

LUENTO Kyösti Ryynänen HAVAITTAVUUSTEKIJÖITÄ HAVAINTOMENETELMÄT HAVAITTAVUUSTEKIJÖITÄ ENSIMMÄISET LÖYDETYT EKSOPLANEETAT LUENTO 29.11.2016 Kyösti Ryynänen ELÄMÄLLE RIITTÄÄ PAIKKOJA UNIVERSUMISSA ENSIMMÄISET LÖYDETYT 1992 ENSIMMÄINEN NEUTRONITÄHDEN (PSR 1257+12) YMPÄRILTÄ 1995 ENSIMMÄINEN AURINGONKALTAISEN TÄHDEN (51 PEGASI)

Lisätiedot

LUENTO A Kyösti Ryynänen

LUENTO A Kyösti Ryynänen LUENTO A 15.6.2017 Kyösti Ryynänen EKSOPLANEETAT MAANULKOPUOLISEN ÄLYKKÄÄN ELÄMÄN MAHDOLLISUUS JA TODENNÄKÖISYYS 1 ENSIMMÄISET LÖYDETYT EKSOPLANEETAT 1992 ENSIMMÄINEN NEUTRONITÄHDEN (PSR 1257+12) YMPÄRILTÄ

Lisätiedot

LUENTO Kyösti Ryynänen

LUENTO Kyösti Ryynänen LUENTO 12.12.2016 Kyösti Ryynänen MAANULKOPUOLISEN ÄLYKKÄÄN ELÄMÄN MAHDOLLISUUS JA TODENNÄKÖISYYS 1 ÄLYKKYYDEN ERITYISEDELLYTYKSIÄ BIOKEMIALLINEN POTENTIAALI YMPÄRISTÖN POTENTIAALI PITKÄLLE EVOLUUTIOLLE

Lisätiedot

ÄLYKKYYDEN ERITYISEDELLYTYKSIÄ. LUENTO Kyösti Ryynänen TIETOISUUS DRAKEN KAAVA

ÄLYKKYYDEN ERITYISEDELLYTYKSIÄ. LUENTO Kyösti Ryynänen TIETOISUUS DRAKEN KAAVA LUENTO 12.12.2016 Kyösti Ryynänen MAANULKOPUOLISEN ÄLYKKÄÄN ELÄMÄN MAHDOLLISUUS JA TODENNÄKÖISYYS ÄLYKKYYDEN ERITYISEDELLYTYKSIÄ BIOKEMIALLINEN POTENTIAALI YMPÄRISTÖN POTENTIAALI PITKÄLLE EVOLUUTIOLLE

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa

Lisätiedot

LUENTO 7 Kyösti Ryynänen Seutuviikko 2014, Jämsä HAVAITTAVUUSTEKIJÖITÄ HAVAITTAVUUSTEKIJÖITÄ HAVAINTOMENETELMÄT

LUENTO 7 Kyösti Ryynänen Seutuviikko 2014, Jämsä HAVAITTAVUUSTEKIJÖITÄ HAVAITTAVUUSTEKIJÖITÄ HAVAINTOMENETELMÄT LUENTO 7 Kyösti Ryynänen Seutuviikko 2014, Jämsä ELÄMÄLLE RIITTÄÄ PAIKKOJA UNIVERSUMISSA MAANULKOPUOLISEN ÄLYKKÄÄN ELÄMÄN MAHDOLLISUUS JA TODENNÄKÖISYYS ENSIMMÄISET LÖYDETYT EKSOPLANEETAT 1992 ENSIMMÄINEN

Lisätiedot

Pienkappaleita läheltä ja kaukaa

Pienkappaleita läheltä ja kaukaa Pienkappaleita läheltä ja kaukaa Karri Muinonen 1,2 1 Fysiikan laitos, Helsingin yliopisto 2 Geodeettinen laitos Planetaarinen geofysiikka, luento 7. 2. 2011 Johdantoa Tänään 7. 2. 2011 tunnetaan 7675

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

LUENTO 11.10.2011 Kyösti Ryynänen

LUENTO 11.10.2011 Kyösti Ryynänen LUENTO 11.10.2011 Kyösti Ryynänen MAANULKOPUOLISEN ÄLYLLISEN ELÄMÄN MAHDOLLISUUS JA TODENNÄKÖISYYS UNIVERSUMISSA MITEN KANNATTAA ETSIÄ? MILLÄ VÄLINEELLÄ KOMMUNIKAATIO VOISI TAPAHTUA? 1 SETI MITEN ÄLYLLINEN

Lisätiedot

Kyösti Ryynänen Luento

Kyösti Ryynänen Luento 1. Aurinkokunta 2. Aurinko Kyösti Ryynänen Luento 15.2.2012 3. Maa-planeetan riippuvuus Auringosta 4. Auringon säteilytehon ja aktiivisuuden muutokset 5. Auringon tuleva kehitys 1 Kaasupalloja Tähdet pyrkivät

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

AURINKOKUNNAN RAKENNE

AURINKOKUNNAN RAKENNE AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa

Lisätiedot

Syntyikö maa luomalla vai räjähtämällä?

Syntyikö maa luomalla vai räjähtämällä? Syntyikö maa luomalla vai räjähtämällä? Tätä kirjoittaessani nousi mieleeni eräs tuntemani insinööri T. Palosaari. Hän oli aikansa lahjakkuus. Hän oli todellinen nörtti. Hän teki heti tietokoneiden tultua

Lisätiedot

Mustien aukkojen astrofysiikka

Mustien aukkojen astrofysiikka Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin

Lisätiedot

ETÄISYYS TÄHDESTÄ PYÖRÄHDYSAIKA JA KIERTOAIKA

ETÄISYYS TÄHDESTÄ PYÖRÄHDYSAIKA JA KIERTOAIKA Planeetan fyysisiä ominaisuuksia sekä kiertoradan ominaisuuksia tutkitaan piirrosten, tiedonhaun ja simulaatioiden avulla. Seuratkaa ohjeita tarkasti, pohtikaa ja vastatkaa kysymyksiin. Yhdistäkää lopuksi

Lisätiedot

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Mikä se on, miten se on muodostunut ja mitä siellä on? Miten sitä tutkitaan? Planeetat

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä. LUMATE-tiedekerhokerta, suunnitelma AIHE: AURINKOKUNTA Huom! Valmistele maitopurkit valmiiksi. Varmista, että sinulla on riittävästi soraa jupiteria varten. 1. Alkupohdintaa Aloitetaan kyselemällä, mitä

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

Seutuviikko 2017, Jämsä Kyösti Ryynänen

Seutuviikko 2017, Jämsä Kyösti Ryynänen Seutuviikko 2017, Jämsä Kyösti Ryynänen LUENTO 2 MAA-PLANEETAN GEOLOGINEN KEHITYSHISTORIA ÄÄRIOLOSUHTEISIIN SOPEUTUNEET EKSTREMOFIILIT PLANEETTA MAA MUODOSTUI 4.5 MILJARDIA VUOTTA SITTEN PÖLY- JA KAASUKIEKON

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Luento 16.1.2013 Kyösti Ryynänen KESKILÄMPÖTILA. Medieval Warm period 17.1.2013 PLANEETTAKUNTIEN MUODOSTUMINEN MITEN ILMASTONVAIHTELUJA TUTKITAAN

Luento 16.1.2013 Kyösti Ryynänen KESKILÄMPÖTILA. Medieval Warm period 17.1.2013 PLANEETTAKUNTIEN MUODOSTUMINEN MITEN ILMASTONVAIHTELUJA TUTKITAAN Luento 16.1.2013 Kyösti Ryynänen 1. Planeetan lämpötilan muodostuminen 2. Planeetan jäähtyminen/lämpeneminen 3. Planeetan asennon ja radan muutokset 4. Maa-planeetan lämpötilahistoria www.helsinki.fi/~ryynane/climate.html

Lisätiedot

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin

Lisätiedot

AKAAN AURINKOKUNTAMALLI

AKAAN AURINKOKUNTAMALLI AKAAN AURINKOKUNTAMALLI Millainen on avaruus ympärillämme? Kuinka kaukana Aurinko on meistä? Minkä kokoisia planeetat ovat? Tämä Aurinkokunnan pienoismalli on rakennettu vastaamaan näihin ja moneen muuhun

Lisätiedot

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2 Luku 3 Ilmakehä suojaa ja suodattaa Sisällys Ilmakehä eli atmosfääri Ilmakehän kerrokset Ilmakehä kaasukoostumuksen mukaan Ilmakehä lämpötilan mukaan Säteilytase ja säteilyn absorboituminen Kasvihuoneilmiö

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Kosmologia ja alkuaineiden synty. Tapio Hansson

Kosmologia ja alkuaineiden synty. Tapio Hansson Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian

Lisätiedot

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 12, Astrometria. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 12, Astrometria Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 12. Astrometria 1. 2. 3. 4. 5. Astrometria Meridiaanikone Suhteellinen astrometria Katalogit

Lisätiedot

Luento Kyösti Ryynänen

Luento Kyösti Ryynänen Luento 13.8.2012 Kyösti Ryynänen 1. Planeetan lämpötilan muodostuminen 2. Planeetan jäähtyminen/lämpeneminen 3. Planeetan asennon ja radan muutokset 4. Maa-planeetan lämpötilahistoria www.helsinki.fi/~ryynane/ilmasto.html

Lisätiedot

Luento Kyösti Ryynänen

Luento Kyösti Ryynänen 1. Aerosolit Luento 21.8.2012 Kyösti Ryynänen 2. Aerosolien lähteet 3. Aerosolit ja kasvihuoneilmiö 4. Pilvien tiivistymisytimet 5. Kosmoklimatologia 1 AEROSOLIT Aerosolit ovat kiinteitä tai nestemäisiä

Lisätiedot

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami 1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Lataa Lähiasteroidit ja komeetat - Donald K. Yeomans. Lataa

Lataa Lähiasteroidit ja komeetat - Donald K. Yeomans. Lataa Lataa Lähiasteroidit ja komeetat - Donald K. Yeomans Lataa Kirjailija: Donald K. Yeomans ISBN: 9789525985092 Sivumäärä: 176 Formaatti: PDF Tiedoston koko: 32.86 Mb Kaikista meitä uhkaavista luonnonkatastrofeista

Lisätiedot

Jupiter-järjestelmä ja Galileo-luotain II

Jupiter-järjestelmä ja Galileo-luotain II Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä

Lisätiedot

Pimeän energian metsästys satelliittihavainnoin

Pimeän energian metsästys satelliittihavainnoin Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14

Lisätiedot

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Planeetat Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja

Lisätiedot

Supernova. Joona ja Camilla

Supernova. Joona ja Camilla Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

Albedot ja magnitudit

Albedot ja magnitudit Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen

Lisätiedot

Seutuviikko 2015, Jämsä Kyösti Ryynänen LUENTO 5

Seutuviikko 2015, Jämsä Kyösti Ryynänen LUENTO 5 Seutuviikko 2015, Jämsä Kyösti Ryynänen LUENTO 5 ELÄMÄ ON SYSTEEMITASON OMINAISUUS, JOKA VOI RAKENTUA JA TOIMIA ERILAISISSA BIOKEMIOISSA AVARUUDEN MOLEKYYLIT PREBIOOTTISTEN MOLEKYYLIEN ESIINTYMINEN 1 ELÄMÄN

Lisätiedot

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Aurinkokunta, yleisiä ominaisuuksia

Aurinkokunta, yleisiä ominaisuuksia Aurinkokunta, yleisiä ominaisuuksia Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

LUENTO B Kyösti Ryynänen

LUENTO B Kyösti Ryynänen LUENTO B 13.6.2017 Kyösti Ryynänen ELÄMÄ ON SYSTEEMITASON OMINAISUUS, JOKA VOI RAKENTUA JA TOIMIA ERILAISISSA BIOKEMIOISSA ABIOGENEESI 1 ELÄMÄN EDELLYTYKSET AIKA-AVARUUS-MATERIA TIETYNLAINEN UNIVERSUMI

Lisätiedot

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä

Lisätiedot

LUENTO B Kyösti Ryynänen ELÄMÄN EDELLYTYKSET AIKA-AVARUUS LISÄULOTTUVUUDET PERUSVOIMAT MUUNLAISET UNIVERSUMIT

LUENTO B Kyösti Ryynänen ELÄMÄN EDELLYTYKSET AIKA-AVARUUS LISÄULOTTUVUUDET PERUSVOIMAT MUUNLAISET UNIVERSUMIT LUENTO B 13.6.2017 Kyösti Ryynänen ELÄMÄ ON SYSTEEMITASON OMINAISUUS, JOKA VOI RAKENTUA JA TOIMIA ERILAISISSA BIOKEMIOISSA ABIOGENEESI 1 ELÄMÄN EDELLYTYKSET AIKA-AVARUUS-MATERIA TIETYNLAINEN UNIVERSUMI

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

Ikiliikkujat. Onko mikään mahdotonta? Näitä on yritetty tai ainakin tutkittu

Ikiliikkujat. Onko mikään mahdotonta? Näitä on yritetty tai ainakin tutkittu Ikiliikkujat Ikiliikkujat Onko mikään mahdotonta? Näitä on yritetty tai ainakin tutkittu Ikiliikkuja Alkemia: kemiallisin keinoin ja viisasten kiveä käyttäen epäjalot metallit kullaksi (transmutaatio)

Lisätiedot

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt ISBN: Veera Kallunki, Jari Lavonen, Kalle Juuti, Veijo Meisalo, Anniina Mikama, Mika Suhonen, Jukka Lepikkö, Jyri Jokinen Verkkoversio: http://www.edu.helsinki.fi/astel-ope

Lisätiedot

Planetologia: Tietoa Aurinkokunnasta

Planetologia: Tietoa Aurinkokunnasta Planetologia: Tietoa Aurinkokunnasta Kuva space.com Tieteen popularisointi Ilari Heikkinen 4.5.2016 Aurinkokunnan synty ja rakenne Aurinkokunta syntyi 4,5 miljardia vuotta sitten valtavan tähtienvälisen

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

AURINKOENERGIAA AVARUUDESTA

AURINKOENERGIAA AVARUUDESTA RISS 16. 9. 2009 AURINKOENERGIAA AVARUUDESTA Pentti O A Haikonen Adjunct Professor University of Illinois at Springfield Aurinkoenergiasatelliitin tekninen perusta Auringon säteilyn tehotiheys maapallon

Lisätiedot

LUENTO Kyösti Ryynänen

LUENTO Kyösti Ryynänen LUENTO 22.11.2016 Kyösti Ryynänen ELÄMÄ ON SYSTEEMITASON OMINAISUUS, JOKA VOI RAKENTUA JA TOIMIA ERILAISISSA BIOKEMIOISSA 1 ELÄMÄN EDELLYTYKSET AIKA-AVARUUS-MATERIA TIETYNLAINEN UNIVERSUMI (AIKA- AVARUUDEN

Lisätiedot

LUENTO Kyösti Ryynänen ELÄMÄN EDELLYTYKSET LISÄULOTTUVUUDET AIKA-AVARUUS MUUNLAISET UNIVERSUMIT PERUSVOIMAT

LUENTO Kyösti Ryynänen ELÄMÄN EDELLYTYKSET LISÄULOTTUVUUDET AIKA-AVARUUS MUUNLAISET UNIVERSUMIT PERUSVOIMAT LUENTO 22.11.2016 Kyösti Ryynänen ELÄMÄ ON SYSTEEMITASON OMINAISUUS, JOKA VOI RAKENTUA JA TOIMIA ERILAISISSA BIOKEMIOISSA 1 ELÄMÄN EDELLYTYKSET AIKA-AVARUUS-MATERIA TIETYNLAINEN UNIVERSUMI (AIKA- AVARUUDEN

Lisätiedot

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

LHC -riskianalyysi. Emmi Ruokokoski

LHC -riskianalyysi. Emmi Ruokokoski LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski

Lisätiedot

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus

Lisätiedot

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden

Lisätiedot

Luento Kyösti Ryynänen

Luento Kyösti Ryynänen 1. Kasvihuoneilmiö Luento 30.1.2013 Kyösti Ryynänen 2. Kasvihuonekaasut 3. Kasvihuonekaasujen lähteet 4. Eri kasvihuonekaasujen merkitys 5. Pitoisuuksien muutokset Menneisyydessä Nykyiset trendit Tulevaisuudessa

Lisätiedot

7.10 Planeettojen magnitudit

7.10 Planeettojen magnitudit 7.10 Planeettojen magnitudit Edellä vuontiheyden kaava (*) F(α) = CA 4π Φ(α) L i 2 Sijoitetaan C = 4/q, A = pq, F = p π Φ(α) 1 2 L R 2 4r 2 L i = L R2 4r 2 Planeetasta heijastunut vuontiheys etäisyydellä

Lisätiedot

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

Ydinfysiikkaa. Tapio Hansson

Ydinfysiikkaa. Tapio Hansson 3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10

Lisätiedot

Jupiterin kuut (1/2)

Jupiterin kuut (1/2) Jupiterin kuut (1/2) Jupiterin kuut (2/2) Jupiterin kuut: rakenne (1/2) Kuu, R=1738km Io, R = 1821 km Europa, R = 1565 km Ganymedes, R = 2634 km Callisto, R = 2403 km Jupiterin kuut: rakenne (2/2) sisäinen

Lisätiedot

Mikkelin lukio. Marsissako metaania? Elisa Himanen, Vilma Laitinen, Aatu Ukkonen, Pietari Miettinen, Vesa Sivula Pariisi

Mikkelin lukio. Marsissako metaania? Elisa Himanen, Vilma Laitinen, Aatu Ukkonen, Pietari Miettinen, Vesa Sivula Pariisi Mikkelin lukio Marsissako metaania? Elisa Himanen, Vilma Laitinen, Aatu Ukkonen, Pietari Miettinen, Vesa Sivula Pariisi 7-11.10.2013 Summary in English Methane in Mars? According to the latest researches

Lisätiedot

Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä. Poikkeuksena kurssit 10-14, joista tarkemmin alla.

Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä. Poikkeuksena kurssit 10-14, joista tarkemmin alla. Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä Poikkeuksena kurssit 10-14, joista tarkemmin alla Jos et ole varma, voitko valita jonkin fysiikan kurssin, ota yhteyttä lehtori Antti

Lisätiedot

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!

Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin! Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Astrobiologia Uudet tiekartat. URSA /Cygnus-leiri Vihti 26.7.2013 Kirsi Lehto

Astrobiologia Uudet tiekartat. URSA /Cygnus-leiri Vihti 26.7.2013 Kirsi Lehto Astrobiologia Uudet tiekartat URSA /Cygnus-leiri Vihti 26.7.2013 Kirsi Lehto Astrobiologia mitä se on? Astrobiologia mitä se on? elämän synty, evoluutio, esiintyminen ja kohtalo Maassa ja Maailmankaikkeudessa

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia. Johdanto Historiaa Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin planeetoiksi

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

ELÄMÄN MÄÄRITTELEMINEN. LUENTO 1 Kyösti Ryynänen Seutuviikko 2014, Jämsä MITÄ ELÄMÄ ON? EI-ELÄVÄ LUONTO ELÄVÄ LUONTO PAUL DAVIES 26.3.

ELÄMÄN MÄÄRITTELEMINEN. LUENTO 1 Kyösti Ryynänen Seutuviikko 2014, Jämsä MITÄ ELÄMÄ ON? EI-ELÄVÄ LUONTO ELÄVÄ LUONTO PAUL DAVIES 26.3. LUENTO 1 Kyösti Ryynänen Seutuviikko 2014, Jämsä MITEN ELÄMÄÄ VOIDAAN MÄÄRITELLÄ? MAA-ELÄMÄN RAKENNUSSARJAN SISÄLTÖ 1 ELÄMÄN MÄÄRITTELEMINEN ASTROBIOLOGIA TARVITSEE JA EDELLYTTÄÄ KOSMOLOGISTA JA UNIVERSAALIA

Lisätiedot

Lataa Elämää multiversumissa - Fred Adams. Lataa

Lataa Elämää multiversumissa - Fred Adams. Lataa Lataa Elämää multiversumissa - Fred Adams Lataa Kirjailija: Fred Adams ISBN: 9789524713924 Sivumäärä: 302 Formaatti: PDF Tiedoston koko: 35.53 Mb Kuvittele tuntemasi maailma yhdeksi tomuhiukkaseksi, joka

Lisätiedot

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Sisältö Miksi juuri planetaariset sumut Planetaarisen sumun syntymä Planetaariset kuvauskohteena Kalusto Suotimet Valotusajat Kartat HASH planetary

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio

KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio KVANTTITELEPORTAATIO Janne Tapiovaara Rauman Lyseon lukio BEAM ME UP SCOTTY! Teleportaatio eli kaukosiirto on scifi-kirjailijoiden luoma. Star Trekin luoja Gene Roddenberry: on huomattavasti halvempaa

Lisätiedot

5.13 Planetaarinen liike, ympyräradat

5.13 Planetaarinen liike, ympyräradat 5.13 Planetaarinen liike, ympyräradat Muistellaan menneitä Jo peruskoulussa lienee opetettu tämä Newtonin gravitaatiolaki kahden kappaleen välisestä gravitaatiovoimasta: Tässä yhtälössä G on gravitaatiovakio

Lisätiedot

Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi

Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi Mitä elämä on? Astrobiologian luento 15.9.2015 Kirsi Määritelmän etsimistä Lukemisto: Origins of Life and Evolution of the Biosphere, 2010, issue 2., selaile kokonaan Perintteisesti: vaikeasti määriteltävä

Lisätiedot

Maailmankaikkeuden kriittinen tiheys

Maailmankaikkeuden kriittinen tiheys Maailmankaikkeuden kriittinen tiheys Tarkastellaan maailmankaikkeuden pientä pallomaista laajenevaa osaa, joka sisältää laajenemisliikkeessä olevia galakseja. Olkoon pallon säde R, massa M ja maailmankaikkeuden

Lisätiedot