Planeetat. Jyri Näränen Geodeettinen laitos

Koko: px
Aloita esitys sivulta:

Download "Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/"

Transkriptio

1 Planeetat Jyri Näränen Geodeettinen laitos

2 Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja koostumus

3 Aurinkokuntamme planeetat Aurinkoa kiertää kahdeksan planeettaa Neljä terrestristä eli maankaltaista kiviplaneettaa lähinnä Aurinkoa Merkurius Venus Maa Mars Neljä joviaanista eli jupiterinkaltaista nestekaasujättiläistä ulompana Jupiter Saturnus Uranus Neptunus

4 Tyypillistä planeetoille - Kiertoaika Auringon ympäri riippuu etäisyydestä (yksinkertaistetusti keskipakoisvoima vs. Auringon vetovoima) Merkuriuksen ratanopeus 47.9 km/s, Neptunuksen 5.5 km/s - Pyöriminen akselin ympäri riippuu kappaleen koostumuksesta (muodostuminen) ja törmäyshistoriasta - Aurinko- vs. tähtivuorokausi

5 Tyypillistä planeetoille - Kaasukehä on sitä yleensä sitä paksumpi, mitä suurempi planeetta on. Läpinäkyvyys riippuu kaasusta. Maa näkyvässä valossa Venus UV-valossa - Magneettikenttä aiheutuu metallisen ytimen virtauksista * Maankaltaisilla planeetoilla dipoli, jupiterinkaltaisilla multipoli (Venuksella ei ole kenttää lainkaan). * Kenttä suojaa aurinkotuulen hiukkaspommitukselta. * Kuulla ja Marsilla nk. remanentti jäännekenttä. Merkurius? - Nykyisin tutkimus painottuu luotaintutkimuksiin

6

7 Merkurius Aurinkokunnan pienin planeetta Läpimitta: 4880 km (38% Maan halkaisijasta) Massa: 5.5 % Maan massaa Kaikista planeetoista suurin puristamaton tiheys Etäisyys Auringosta: 0.47 AU (Maa = 1 AU) Kiertoaika 88 Maan vuorokautta Pyörähdysaika: 59 Maan vrk 2 (3:2 (resonanssi) Aurinkovuorokausi noin 176 Maan vrk

8 Merkurius Rata planeetoista soikein (etäisyys milj. km) Radan kallistus 3 o Pyörähdysakseli kohtisuorassa ratatasoon (kylmät navat) Perihelissä Auringon liike taivaalla on normaalista poikkeava: rataliikkeen nopeus voittaa pyörimisnopeuden ja Aurinko vaihtaa hetkeksi suuntaa

9 Merkurius Pintalämpötila: -180 C +430 C (Aurinkoon päin kuumin, napojen kraatterien pohjalla kylmä) Kirkas, mutta lähellä Aurinkoa -> hankala havaita aamu ja iltahämärässä (max el=28 astetta)

10 Merkurius - pintaympäristöt l Pinta kraatterien peittämä l Ei (suurta) aktiivisuutta miljardeihin vuosiin l Ei suojaavaa ilmakehää l Caloris Basin kraatteri syntynyt voimakkaassa törmäyksessä. Kraatterin vastapuolella vuoria, jotka mahdollisesti syntyneet törmäyksessä l Pinnalla juonteita. Vuorovesivoimat ja jäähtymisen aiheuttama kutistuminen l Auringon aiheuttamat vuorovesivoimat 17% voimakkaammat kuin Maassa. l Napojen kraatterien pohjalla mahdollisesti jäätä

11

12 Merkurius - kaasukehä ja magnee:ken;ä Ei merkittävää kaasukehää (liian pieni), l Magneettikentän voimakkuus 1% Maan magneettikentästä (rautaydin) Dipolaarinen kenttä, navat lähes yhtyvät pyörähdysakselin napoihin Magnetosfääri (m-kenttä kokoaa aurinkotuulen hiukkasia) Kuita Merkuriuksella ei ole

13 Merkurius - tutkimus Mariner 10 Messenger BebiColombo (2022) Esim. magneettikenttätutkimuksia Vain kaksi luotainta on tutkinut: Mariner 10 suoritti kolme ohilentoa ja kartoitti 45 % pinnasta sekä havaitsi magneettikentän 1974 Messenger kartoitti tammikuussa %. Toinen ohitus , kolmas Luotain aloitti havaintotyön kiertoradalla maaliskuussa 2011 (kuvaa ja kartoittaa planeetan, kemiallinen koostumus) Luotainlennot hankalia suuren polttoaineenkulutuksen vuoksi (Jupiteriin yleensä helpompi lentää!) Tutka- ja teleskooppihavainnot

14 Venus Läpimitta: km (95 % Maan halkaisijasta) Massa: 90 % Maan massasta Etäisyys Auringosta 0.72 AU Rata lähes ympyrä, kallistus 3 o Kiertoaika: 225 Maan vrk Pyorähdysaika: 243 Maan vrk (lähes 1:1 (resonanssi, mutta pyörii myötäpäivään) Pyörähdysakselin kallistus 3 o Pintalämpötila: 462 o C Kirkkain kohde taivaalla Kuun jälkeen. Näkyy aamulla tai illalla (max el=48 o )

15 Venus -pintaympäristöt - Pinnalla runsaasti tuliperäisen toiminnan aikaansaamia muodostummia (laavatasankoja, tulivuoria, repeämiä) - Luultavasti yhä tuliperäistä toimintaa (korkea lämpötila, vulkaanisia kaasuja ilmakehässä) - Pinta-aines suhteellisen vanhaa (ei laattatektoniikkaa) - Teoria: kuumuuden kasvaessa kuoren alla kylliksi alkaa n. 100 milj vuoden pituinen aktiivinen kausi. Edellinen oli 500 milj vuotta sitten. Tietokoneella tehty kuva Venuksen pinnasta

16 Venus -kaasukehä Voimakas kasvihuoneilmiö (97% CO 2 ) -> tasainen korkea lämpötila Paine pinnalla 92 x paine Maassa (vrt 1 km syvyydessä veden alla) Voimakkaita tuulia yläilmakehässä (350 km/h) Alempana heikkoja tuulia, mutta kovan paineen vuoksi lennättää kiviä ja pölyä Rikkidioksidi- / rikkihappopilviä à valoa ei juuri pääse pinnalle Magneettikenttää tai kuita Venuksella ei ole

17 Venus - tutkimus Lukuisia luotaimia ohittanut / kiertänyt planeettaa, esim: - Mariner 2; 1962 ensimmäinen ohilento, kuvia ilmakehästä - Venera 13 ja 14; 1982 laskeutuivat, kuvia pinnalta - Venera 15 ja 16; 1983 ilmakehän tutkimusta kiertoradalta Mariner 2 Venera 14 Venera 13

18 Venus - tutkimus Parhaillaan Venus express, tutkii ilmakehää

19 Maa Läpimi'a km Massa 6x10 24 kg Etäisyys Auringosta: 150 milj km (1 AU) Kiertoaika 365 vrk Pyörähdysaika 23 h 56 min Vuorokauden pituus 24 h Rataliike ei juuri vaikuta vuorokauden pituuteen Pyörähdysakselin kallistus 23 o vuodenajat

20 Maa Rata lähes ympyrä, kallistus 7 o Pintalämpötila C 57.7 C

21 Maa -pintaympäristöt Ilmakehän (kasvihuoneilmiön) vuoksi vesi on pinnalla paljolti nestemäisessä muodossa Laattatektoniikka aktiivista à jatkuvaa tuliperäistä toimintaa à merenpohjan pinta-aines nuorta (vanhin kivi 200 milj vuotta, keskimäärin 100 milj vuotta). à mantereiden reunoilla nuorta ja keskellä vanha kiveä. Kraatterit peittyneet (kasvillisuus, vuorijononpoimutus, sedimentaatio, meret Eläviä organismeja (kasveja, eläimiä)

22 Maa - ilman ve;ä

23 Maa -kaasukehä ja magneettikenttä Ilmakehä koostuu lähinnä typestä ja hapesta - Läpäisee valoa - Hiilidioksidin aiheuttama kasvihuoneilmiö rajoittaa lämpötilavaihtelua yön ja päivän välillä (10-20 C) - Suojaa pienten meteoroidien törmäyksiltä Magneettikenttä (lähinnä kaksinapainen) suojaa aurinkotuulen hiukkasilta

24 Maa -kuu Suuri kuu, halkaisija 25 % Maan halkaisijasta. Syntynyt luultavasti Maan ja Marsin kokoisen kappaleen törmäyksessä Maan ollessa vielä osittain sula. Lukkiutunut pyöriminen (kiertoaika = pyörähdysaika)

25 Mars Etäisyys Auringosta 1.5 AU Rata Merkuriuksen jälkeen soikein ( AU) Radan kallistus 6 o Läpimi'a 6750 km (0.5 Maan halkaisijaa) Massa 0.1 Maan massaa Kiertoaika 687 Maan vuorokau'a Pyörähdysaika 24.6 h Akselin kallistus 25 o PintalämpöPla o C Näkyy hyvin. Useimmiten kuitenkin himmeämpi kuin Jupiter

26 Mars -pintaympäristöt Pintamateriaali enimmäkseen basalua (kevy'ä laavakiveä), kuten Maassa Ei havai'u akpivista tuliperäistä toimintaa Maankaltaiset planeetat

27 Mars -pintaympäristöt Vanhoja tulivuoria (Olympos Mons) Navoilla vesi- jäätä, tarpeeksi pei'ämään planee'a 11m vesipatjalla Pinnalla veden kulu'amia jokiuomia Punainen väri johtuu raudasta (ruoste) Paine pinnalla alle 2% Maan ilmanpaineesta

28 Mars -kaasukehä ja magneettikenttä - Marsilla on ohut ilmakehä (CO 2, N 2 ), ei juurikaan kasvihuoneilmiötä - Pölymyrskyt ovat Marsissa tyypillisiä, kuten Maassa kuivilla alueilla (Auringon aiheuttama maan lämpeneminen lämmittää ilmakehää paikallisesti) - Magneettikentän uupuminen altistaa aurinkotuulen pommitukselle joka vie osan kaasukehästä mukanaan

29 Mars -kuut - Kaksi pientä kuuta (Phobos 22 km ja Deimos 13 km) - Erilaisia ominaisuuksiltaan: Phobos tumma, Deimos kivinen/metallinen - Luultavasti siepattuja asteroideja

30 Mars -tutkimus 22 onnistunutta ja 22 epäonnistunutta missiota: Mariner 4, 1964 ohilento Mariner 9, 1972 kiertolainen Mariner 4 laukaisu Mars exploration rovers Viking 1, 1982 laskeutuja Mars exploration rovers, 2004 Laskeutuja, mönkijät Phoenix, 2008, vettä?, lumisadetta Curiosity rover, 2012

31 Mistä on pienet planeetat tehty Maankaltaiset planeetat koostuvat pääosin Auringon läheisyydessä, korkeassa lämpöplassa Pivistyneistä alkuaineista Maapallon yleisimmät alkuaineet (m- %) (Physics & Chemistry of the Solar System) 35 % rauta (Fe) 30 % happi (O) 15 % pii (Si) 15 % magnesium (Mg) 2 % Nnkkeli (Ni) 2 % rikki (S) 1 % kalsium (Ca) 1 % muut alkuaineet Maan kuoren yleisimmät alkuaineet (CRC Handbook of Chemistry and Physics) 46 % Happi 28 % Pii 8 % Alumiini 6% Rauta Terrestriset planeetat ovat kehärakenteisia, eri kerrosten koostumukset ja ominaisuudet poikkeavat huoma'avasp toisistaan Toisin sanoen terrestriset planeetat ovat kehityksensä varhaisvaiheessa

32 Maapallon kehärakenne N, O, H, C Atmo-, hydro-, biosfääri km Al, Si, O Fe, Mg, Si, O Fe, Ni Fe, Ni Litosfääri Vaippa Sula ulkoydin km (5%) km (45%) km (30%) Kiinteä sisäydin km (25%) Raskaat alkuaineet ovat rikastuneet Maan syviin osiin, kevyet pintaosiin

33 Tietoa Maan sisäosista seismologia

34 Tietoa Maan sisäosista syvän Maan näy/eet Tulivuorenpurkausten basalttilaavan mukana pintaan kulkeutuu ksenoliitteja, kivinäytteitä satojen kilometrien syvyydeltä Maan vaipasta. Korkean paineen laboratoriokokeet osoittavat, että ksenololiitit todella tulevat syvältä O Si Ca Mg Fe ksenoliitti basaltti Luonnon ksenoliitteja Synteettisiä ksenoliitteja 20 GPa The GSC/Dalhousie High Pressure Laboratory, Kanada American Museum of Natural History, Experimental Petrology Lab. Kilauea, Havaiji (1980).

35 Maapallon kehärakenteen synty 4,57 Ga sitten > 4.4 Ga sitten Nykyhetki Metallit vajoavat Rautanikkeliydin muodostuu Litosfääri Vaippa Ulkoydin Sisäydin Silikaatit kohoavat Varhainen maapallo kuumenee Maapallo sulaa kokoonpuristuminen magmameriä syntyy meteorimyrsky planeetta sulaa radioaktiivinen hajoaminen raskaat alkuaineet vajoavat kevyet alkuaineet kohoavat Maapallo on saanut nykyisen rakenteensa rautanikkeliydin silikaattivaippa ja kuori kaasukehä

36 Terrestristen planee;ojen arkkitehtuuri Mars Tietomme muiden maankaltaisten planee'ojen rakenteesta ja koostumuksesta Merkurius Venus Maa

37 Merkuriuksen rakenne Mariner 10: Heikko magneettikenttä à oltava sula ydin, mutta planeetta liian pieni (alhainen T) Nyt havaittu planeetan pyörähdysajassa pieniä vaihteluita à Sisustan oltava sula à Sisustan todennäköisesti sisällettävä keveämpiä aineita (esim. rikkiä) jotka alentavat sisuksen sulamispistettä Kuori km paksu (5-10%), ydin suuri (70%) ja raskas (voimakas törmäys?) 70% metallisia ja 30% silikaattista materiaalia. Tiheys aurinkokunnan toiseksi suurin 5.43 g/cm³ (veden 1.00 g/cm 3 ), hieman Maan tiheyttä pienempi

38 Venuksen rakenne Ei juuri tietoa ytimen koosta tai siitä onko se kiinteä vai nestemäinen (ei laattatektoniikkaa à Ei konvektiovirtauksia?) Tiheys 5.2 g/cm³ lähellä Maan tiheyttä Kuoren paksuus lienee muutama kymmenen kilometriä

39 Marsin rakenne Ytimen koko km (n. 45%, koko riippuu ytimen koostumuksesta) Kuoren paksuus n. 50 km (1.5%) Vuorovesivoimien aiheuttama litistyminen à Sisäosat ainakin osaksi sulaa materiaalia Maankaltaisista planeetoista alhaisin Tiheys 3.9 g/cm³. Painovoima pienempi kuin Merkuriuksella!

40 Marsin rakenne Viking laskeutuja (kemiallinen XRF analyysi) Mars Pathfinder laskeutuja Global Surveyor - luotain MARS Happi Pii Rauta Magnesium Kalsium Alumiini natrium kalium MAA Happi Pii Alumiini Rauta Kalsium Natrium Kalium magnesium Yleisimmät alkuaineet Maan kuoressa ja Marsin kuoressa à Marsin ytimen oltava Maan ydintä kevyempi. Saharan autiomaata Egyptissä Autiomaata Marsissa (Viking, 1976)

41 Joviaaniset planeetat

42 Rakenne

43 Jupiter Aurinkokunnan suurin planee'a (massa 2.5 kertaa muiden planee'ojen massa, läpimi'a 11 Maan läpimi'aa) Koostuu pääosin vedystä ja heliumista 63 tunne'ua kuuta Pyörähdysaika 9 h 55 min, vuosi noin 12 Maan vuo'a Tunnusmerkkejä tummat ja vaaleat raidat sekä Suuri punainen pilkku MagneeUken'ä 14 kertaa Maan magneeuken'ää suurempi

44 Saturnus Tiheydeltään pienin planee'a (0.69 g/cm 3 ) Vedyn ja heliumin lisäksi myös metaania 60 tunne'ua kuuta Pyörähdysaika 10 h 13 min, vuosi Maan vuo'a Tunnusmerkki renkaat Koostuvat 99.9% vesijäästä Syntymekanismi vielä kiistanalainen

45 Uranus Aurinkokunnan kooltaan kolmanneksi ja massaltaan neljänneksi suurin planee'a (14,5 Maan massaa) Koostuu lähinnä kivestä ja erilaisista jäästä (vesi, ammoniakki, metaani,...), vetyä ja heliumia vain vähän 27 tunne'ua kuuta Pyörähdysaika 17 h 14 min, vuosi noin 84 Maan vuo'a Pyörähdysakseli voimakkaasp kallistunut Himmeä rengas

46 Neptunus Tihein jäuläisplanee'a, kooltaan neljänneksi ja massaltaan kolmanneksi suurin planee'a Kylmin planee'a, pintalämpöpla aste'a Koostumus Uranuksen kaltainen Ei näy koskaan paljain silmin 13 tunne'ua kuuta Pyörähdysaika 16 h 6 min, kiertoaika noin 165 vuo'a

47 Massa Tiheys Painovoima Päivän pituus Ratanopeus Lämpötila

48 Massa Tiheys Painovoima Päivän pituus Ratanopeus Lämpötila

49 Massa Tiheys Painovoima Päivän pituus Ratanopeus Lämpötila

50 Massa Tiheys Painovoima Päivän pituus Ratanopeus Lämpötila

51 Massa Tiheys Painovoima Päivän pituus Ratanopeus Lämpötila

52 Massa Tiheys Painovoima Päivän pituus Ratanopeus Lämpötila

53 Kiitos mielenkiinnosta!

AURINKOKUNNAN RAKENNE

AURINKOKUNNAN RAKENNE AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa

Lisätiedot

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Mikä se on, miten se on muodostunut ja mitä siellä on? Miten sitä tutkitaan? Planeetat

Lisätiedot

Jupiterin kuut (1/2)

Jupiterin kuut (1/2) Jupiterin kuut (1/2) Jupiterin kuut (2/2) Jupiterin kuut: rakenne (1/2) Kuu, R=1738km Io, R = 1821 km Europa, R = 1565 km Ganymedes, R = 2634 km Callisto, R = 2403 km Jupiterin kuut: rakenne (2/2) sisäinen

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia. Johdanto Historiaa Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin planeetoiksi

Lisätiedot

Ensimmäinen matkani aurinkokuntaan

Ensimmäinen matkani aurinkokuntaan EDITORIAL WEEBLE Ensimmäinen matkani aurinkokuntaan FERNANDO G. RODRIGUEZ http://editorialweeble.com/suomi/ Ensimmäinen matkani aurinkokuntaan 2014 Editorial Weeble Kirjoittaja: Fernando G. Rodríguez info@editorialweeble.com

Lisätiedot

TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014

TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014 TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014 1. Laattatektoniikka (10 p.) Mitä tarkoittavat kolmiot ja pisteet alla olevassa kuvassa? Millä tavalla Islanti, Chile, Japani ja Itä-Afrikka eroavat laattatektonisesti

Lisätiedot

Aurinkokunta, yleisiä ominaisuuksia

Aurinkokunta, yleisiä ominaisuuksia Aurinkokunta, yleisiä ominaisuuksia Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin

Lisätiedot

Niko Knuutinen, Tuomas Väätäinen, Joel Sihvonen, Eemeli Manninen

Niko Knuutinen, Tuomas Väätäinen, Joel Sihvonen, Eemeli Manninen [MIKKELIN LUKIO] Mars, Curiosity, SAM Latmos- tiedekoulu Pariisissa Niko Knuutinen, Tuomas Väätäinen, Joel Sihvonen, Eemeli Manninen 9-13.10.2012 MARS Mars on neljäs planeetta Auringosta laskien Keskietäisyys

Lisätiedot

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami 1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien

Lisätiedot

Aurinkokunta, kohteet

Aurinkokunta, kohteet Aurinkokunta, kohteet Merkurius Maasta katsoen Merkurius näkyy aina lähellä Aurinkoa; se voi etääntyä Auringosta vain noin 28 päähän. Siksi Merkurius näkyy vain vaalealla ilta- tai aamutaivaalla. Kirkkaimmillaan

Lisätiedot

Ulottuva Aurinko Auringon hallitsema avaruus

Ulottuva Aurinko Auringon hallitsema avaruus Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä

Lisätiedot

Summary in English. Curiosity s goals

Summary in English. Curiosity s goals SAM 6. 11.10.2014 Summary in English Curiosity is the latest rover sent to Mars. It was launched on November 26, 2011 and it reached Mars on August 6, 2012. Curiosity s main goal is to explore and assess

Lisätiedot

7.6 Planeettojen sisärakenne

7.6 Planeettojen sisärakenne 7.6 Planeettojen sisärakenne Luotaimien ratoihin kohdistuvat häiriöt planeetan gravitaatiokenttä Gravitaatiokenttä riippuu kappaleen muodosto ja sisäisestä massakajaumasta 1000 km ja suuremmat kappaleet:

Lisätiedot

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html

http://www.space.com/23595-ancient-mars-oceans-nasa-video.html http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa

Lisätiedot

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ

TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

Jättiläisplaneetat. Nimensä mukaisesti suuria. Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa

Jättiläisplaneetat. Nimensä mukaisesti suuria. Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa Jättiläisplaneetat Nimensä mukaisesti suuria Mahdollisesti pieni, kiinteä ydin, mutta näkyvissä vain pilvipeitteen yläosa Pyörivät nopeasti. Vuorovesivoimat eivät ole ehtineet jarruttaa massiivisia planeettoja

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring the Solar System and Beyond in Finnish Kehittämä Nam Nguyen Hubble Ultra Deep Field ampui 2014 Exploring aurinkokunnan ja sen jälkeen tavoitteena

Lisätiedot

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti.

Tähän EI tarvita Maan pyörimistä. Vuorovesivoima vaikuttaa, vaikka kappaleet putoaisivat suoraan toisiaan kohti. Vuorovesivoima Toisen taivaankappaleen painovoima vaikuttaa kappaleen eri kohtiin eri tavoin. Ero havaitaan vuorovesivoimana, joka aiheuttaa esimerkiksi Maan merien vuorovesipullistumat. Tähän EI tarvita

Lisätiedot

Aurinkokunnan tutkimuksen historiaa

Aurinkokunnan tutkimuksen historiaa Aurinkokunnan tutkimuksen historiaa Maan koko ja muoto Vetovoimalaki ja aurinkokunnan koko Planeettojen löytyminen Planeettojen rakenne ja koostumus Tutkimuslaitteiden ja menetelmien kehittyminen Aurinkokunnan

Lisätiedot

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt

Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt Fysiikan menetelmät ja kvalitatiiviset mallit Rakenneyksiköt ISBN: Veera Kallunki, Jari Lavonen, Kalle Juuti, Veijo Meisalo, Anniina Mikama, Mika Suhonen, Jukka Lepikkö, Jyri Jokinen Verkkoversio: http://www.edu.helsinki.fi/astel-ope

Lisätiedot

TÄHDET JA AVARUUS 8/2009

TÄHDET JA AVARUUS 8/2009 Tällä pla Taiteilijan näkemys korundisateesta. Näkymä on CoRoT-7b-planeetan yöpuolen reuna-alueelta, jossa pinta saattaa olla osin sulaa laavaa, osin hieman kiinteämpää kiveä. 14 neetalla sataa kiviä Syyskuussa

Lisätiedot

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50"

Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50 7.16 Jupiter Aurinkokunnan ylivoimaisesti suurin planeetta (2.5 kertaa massiivisempi kuin muut yhteensä) näennäinen läpimitta 50" Pilvimuodostelmat: vaaleat vyöhykkeet (zone) kaasun virtaus ulospäin tummat

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Albedot ja magnitudit

Albedot ja magnitudit Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

Tutkitaan Marsia! Mars Science Laboratory

Tutkitaan Marsia! Mars Science Laboratory Tutkitaan Marsia! Mars Science Laboratory Laskeutuminen lähestyy 6.8. Tutkija Harri Haukka Ilmatieteen laitos Tutka- ja avaruusteknologia Avaruustutkimuksen historiaa IL:ssä 1838: Suomen Geomagneettinen

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon

Lisätiedot

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Asko Palviainen Matemaattis-luonnontieteellinen tiedekunta Ajanlasku Kuukalenteri vuodessa 12 kuu-kuukautta ei noudata vuodenaikoja nykyisistä kalentereista

Lisätiedot

Sisällys. Vesi... 9. Avaruus... 65. Voima... 87. Ilma... 45. Oppilaalle... 4 1. Fysiikkaa ja kemiaa oppimaan... 5

Sisällys. Vesi... 9. Avaruus... 65. Voima... 87. Ilma... 45. Oppilaalle... 4 1. Fysiikkaa ja kemiaa oppimaan... 5 Sisällys Oppilaalle............................... 4 1. Fysiikkaa ja kemiaa oppimaan........ 5 Vesi................................... 9 2. Vesi on ikuinen kiertolainen........... 10 3. Miten saamme puhdasta

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Raamatullinen geologia

Raamatullinen geologia Raamatullinen geologia Miten maa sai muodon? Onko maa litteä? Raamatun mukaan maa oli alussa ilman muotoa (Englanninkielisessä käännöksessä), kunnes Jumala erotti maan vesistä. Kuivaa aluetta hän kutsui

Lisätiedot

TAIVAANMERKIT KESÄLLÄ 2014

TAIVAANMERKIT KESÄLLÄ 2014 TAIVAANMERKIT KESÄLLÄ 2014 Kesä alkoi uudella kuulla 28.5. Kaksosissa 7 21 Neptunus-neliön värittämänä ja päättyy 25.8. uuteen kuuhun Neitsyessä 2 18 oppositiossa perääntyvään Neptunukseen. Herkkiä emootioita

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Tekijä lehtori Zofia Bazia-Hietikko

Tekijä lehtori Zofia Bazia-Hietikko Tekijä lehtori Zofia Bazia-Hietikko Tarkoituksena on tuoda esiin, että kemia on osa arkipäiväämme, siksi opiskeltavat asiat kytketään tuttuihin käytännön tilanteisiin. Ympärillämme on erilaisia kemiallisia

Lisätiedot

Kenttätutkimus hiiliteräksen korroosiosta kaukolämpöverkossa

Kenttätutkimus hiiliteräksen korroosiosta kaukolämpöverkossa 1 (17) Tilaajat Suomen KL Lämpö Oy Sari Kurvinen Keisarinviitta 22 33960 Pirkkala Lahti Energia Olli Lindstam PL93 15141 Lahti Tilaus Yhteyshenkilö VTT:ssä Sähköposti 30.5.2007, Sari Kurvinen, sähköposti

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Planeetat. Planeetat Astrologisella kartalla 2 Aurinko 3 Kuu 4 Merkurius 5 Venus 6 Mars 7 Jupiter 8 Saturnus 9 Uranus 10 Neptunus 11 Pluto 12

Planeetat. Planeetat Astrologisella kartalla 2 Aurinko 3 Kuu 4 Merkurius 5 Venus 6 Mars 7 Jupiter 8 Saturnus 9 Uranus 10 Neptunus 11 Pluto 12 Planeetat Planeetat Astrologisella kartalla 2 Aurinko 3 Kuu 4 Merkurius 5 Venus 6 Mars 7 Jupiter 8 Saturnus 9 Uranus 10 Neptunus 11 Pluto 12 Planeetat Astrologisella kartalla Aurinko, Kuu ja planeetat

Lisätiedot

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero Messier 51 Whirpool- eli pyörregalaksiksi kutsuttu spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero 51. Pyörregalaksi

Lisätiedot

AKKU- JA PARISTOTEKNIIKAT

AKKU- JA PARISTOTEKNIIKAT AKKU- JA PARISTOTEKNIIKAT H.Honkanen Kemiallisessa sähköparissa ( = paristossa ) ylempänä oleva, eli negatiivisempi, metalli syöpyy liuokseen. Akussa ei elektrodi syövy pois, vaan esimerkiksi lyijyakkua

Lisätiedot

SÁME JÁHKI - saamelainen vuosi

SÁME JÁHKI - saamelainen vuosi 6789067890678901267890678906789012678906 6789067890678901267890678906789012678906 6789067890678901267890678906789012678906 67890 67890 678906 678906 678906 67890 67890 67890 67890 67890 678906 678906 678906

Lisätiedot

Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin. Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos

Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin. Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos Hiilenkierto järvessä Valuma alueelta peräisin oleva orgaaninen aine (humus)

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET

MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET Heikki Nevanlinna, Geofysiikan dos. (Ilmatieteen laitos, eläk.) URSA 9.4.2013 ESITELMÄKALVOT: Tämän esitelmän PowerPoint-kalvot on saatavilla ja

Lisätiedot

Normaalisti valmistamme vastuksia oheisen taulukon mukaisista laadukkaista raaka-aineista. Erikoistilauksesta on saatavana myös muita raaka-aineita.

Normaalisti valmistamme vastuksia oheisen taulukon mukaisista laadukkaista raaka-aineista. Erikoistilauksesta on saatavana myös muita raaka-aineita. Putkivastuksien vaippaputken raaka-aineet Vastuksen käyttölämpötila ja ympäristön olosuhteet määräävät minkälaisesta materiaalista vastuksen vaippaputki on valmistettu. Tavallisesti käytettäviä aineita

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013

Lisätiedot

RAUTARALLI RASTIT PELIOHJEET KIVIVISA. Tervetuloa pelaamaan Heurekan Maan alle -näyttelyyn!

RAUTARALLI RASTIT PELIOHJEET KIVIVISA. Tervetuloa pelaamaan Heurekan Maan alle -näyttelyyn! RAUTARALLI Tervetuloa pelaamaan Heurekan Maan alle -näyttelyyn! Rautarallissa sinun tehtävänäsi on etsiä näyttelystä geologiaa, kaivostoimintaa ja maanalaisia tiloja koskevia tiedon rautaisannoksia. Niitä

Lisätiedot

On maamme köyhä ja siksi jää (kirjoitti Runeberg), miksi siis edes etsiä malmeja täältä? Kullan esiintymisestä meillä ja maailmalla

On maamme köyhä ja siksi jää (kirjoitti Runeberg), miksi siis edes etsiä malmeja täältä? Kullan esiintymisestä meillä ja maailmalla On maamme köyhä ja siksi jää (kirjoitti Runeberg), miksi siis edes etsiä malmeja täältä? Kullan esiintymisestä meillä ja maailmalla Tutkimusmenetelmistä GTK:n roolista ja tutkimuksista Lapissa Mikä on

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

Luento 16.1.2013 Kyösti Ryynänen KESKILÄMPÖTILA. Medieval Warm period 17.1.2013 PLANEETTAKUNTIEN MUODOSTUMINEN MITEN ILMASTONVAIHTELUJA TUTKITAAN

Luento 16.1.2013 Kyösti Ryynänen KESKILÄMPÖTILA. Medieval Warm period 17.1.2013 PLANEETTAKUNTIEN MUODOSTUMINEN MITEN ILMASTONVAIHTELUJA TUTKITAAN Luento 16.1.2013 Kyösti Ryynänen 1. Planeetan lämpötilan muodostuminen 2. Planeetan jäähtyminen/lämpeneminen 3. Planeetan asennon ja radan muutokset 4. Maa-planeetan lämpötilahistoria www.helsinki.fi/~ryynane/climate.html

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Jaksollinen järjestelmä ja sidokset

Jaksollinen järjestelmä ja sidokset Booriryhmä Hiiliryhmä Typpiryhmä Happiryhmä Halogeenit Jalokaasut Jaksollinen järjestelmä ja sidokset 13 Jaksollinen järjestelmä on tärkeä kemian työkalu. Sen avulla saadaan tietoa alkuaineiden rakenteista

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

TUTKIMUSTODISTUS. Jyväskylän Ympäristölaboratorio. Sivu: 1(1) Päivä: 09.10.14. Tilaaja:

TUTKIMUSTODISTUS. Jyväskylän Ympäristölaboratorio. Sivu: 1(1) Päivä: 09.10.14. Tilaaja: Jyväskylän Ympäristölaboratorio TUTKIMUSTODISTUS Päivä: 09.10.14 Sivu: 1(1) Tilaaja: PIHTIPUTAAN LÄMPÖ JA VESI OY C/O SYDÄN-SUOMEN TALOUSHAL. OY ARI KAHILAINEN PL 20 44801 PIHTIPUDAS Näyte: Verkostovesi

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2)

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat ILMANPAINE (1/2) SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmanpaine Ilmavirtojen liikkeisiin vaikuttavat voimat 1 ILMANPAINE (1/2) Ilma kohdistaa voiman kaikkiin kappaleisiin, joiden kanssa

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

energiatehottomista komponenteista tai turhasta käyntiajasta

energiatehottomista komponenteista tai turhasta käyntiajasta LUT laboratorio- ato o ja mittauspalvelut ut Esimerkkinä energiatehokkuus -> keskeinen keino ilmastomuutoksen hallinnassa Euroopan sähkönkulutuksesta n. 15 % kuluu pumppusovelluksissa On arvioitu, että

Lisätiedot

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin. KERTAUSKOE, KE1, SYKSY 2013, VIE Tehtävä 1. Kirjoita kemiallisia kaavoja ja olomuodon symboleja käyttäen seuraavat olomuodon muutokset a) etanolin CH 3 CH 2 OH höyrystyminen b) salmiakin NH 4 Cl sublimoituminen

Lisätiedot

LUMA-kerhon suunnitelma Emmi Vähä 31.3.2016. Monitieteinen LUMA-kerho

LUMA-kerhon suunnitelma Emmi Vähä 31.3.2016. Monitieteinen LUMA-kerho LUMA-kerhon suunnitelma Emmi Vähä 31.3.2016 Monitieteinen LUMA-kerho Tässä viiden kerhokerran kokonaisuudessa käsitellään kemiallisia ja fysikaalisia ilmiöitä, tutustutaan avaruuteen sekä maapallon eliöiden

Lisätiedot

Nimimerkki: Emajõgi. Mahtoiko kohtu hukkua kun se täyttyi vedestä?

Nimimerkki: Emajõgi. Mahtoiko kohtu hukkua kun se täyttyi vedestä? Nimimerkki: Emajõgi I Mahtoiko kohtu hukkua kun se täyttyi vedestä? Jos olisin jäänyt veteen, olisin muuttunut kaihiksi, suomut olisivat nousseet silmiin, äitini olisi pimennossa evät pomppineet lonkista

Lisätiedot

Pampre. Aerosolitutkimus

Pampre. Aerosolitutkimus Pampre Aerosolitutkimus Vilma Aaltonen Laura Siitari Robert Juhakoski Santtu Leppälä Jaakko Puntanen Latmos, Pariisi 6.-11.10.2014 Briefly in english We had a chance to participate in Latmos-science school

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen:

TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen: A sivu 1(3) TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit

Lisätiedot

Helmikuussa 2005 oli normaali talvikeli.

Helmikuussa 2005 oli normaali talvikeli. Boris Winterhalter: MIKÄ ILMASTONMUUTOS? Helmikuussa 2005 oli normaali talvikeli. Poikkeukselliset sääolot Talvi 2006-2007 oli Etelä-Suomessa leuto - ennen kuulumatontako? Lontoossa Thames jäätyi monasti

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

JAKSOLLINEN JÄRJESTELMÄ

JAKSOLLINEN JÄRJESTELMÄ JASOLLINEN JÄRJESTELMÄ Oppitunnin tavoite: Oppitunnin tavoitteena on opettaa jaksollinen järjestelmä sekä sen historiaa alkuainepelin avulla. Tunnin tavoitteena on, että oppilaat oppivat tieteellisen tutkimuksen

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Taivaanmekaniikkaa. Liikeyhtälöt

Taivaanmekaniikkaa. Liikeyhtälöt Taivaanmekaniikkaa Liikeyhtälöt Olkoot kahden kappaleen (esim. Auringon ja planeetan) massat m 1 ja m 2 ja paikkavektorit jossakin kiinteässä inertiaalikoordinaatistossa r 1 ja r 2. Merkitään r:llä planeetan

Lisätiedot

Avaruuslentojen fysiikkaa (AstroKosmoTaikonautiikka)

Avaruuslentojen fysiikkaa (AstroKosmoTaikonautiikka) Avaruuslentojen fysiikkaa (AstroKosmoTaikonautiikka) Astronautti Kosmonautti Taikonautti = länsimainen avaruuslentäjä = venäläinen avaruuslentäjä = kiinalainen avaruuslentäjä Juhani Kaukoranta Raahen lukio

Lisätiedot

Pirkanmaan kirjoituskilpailu 2010, runot. Ajan kuvaan. Nimimerkki: sini22, Sinikka Laitinen

Pirkanmaan kirjoituskilpailu 2010, runot. Ajan kuvaan. Nimimerkki: sini22, Sinikka Laitinen Pirkanmaan kirjoituskilpailu 2010, runot Ajan kuvaan Nimimerkki: sini22, Sinikka Laitinen Kaupunki näyttää tuntevan minut, jään tänne joksikin aikaa. Kasvot uppoavat katujen ja talojen valoihin. Yhtä hyvin

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi Firan vesilaitos Lahelan vesilaitos Lämpötila C 12 9,5 14,4 12 7,9 8,5 ph-luku 12 6,6 6,7 12 8,0 8,1 Alkaliteetti mmol/l 12 0,5 0,5 12 1,1 1,1 Happi mg/l 12 4,2 5,3 12 11,5 13,2 Hiilidioksidi mg/l 12 21

Lisätiedot

Komeetan pyrstö Kirkkonummen Komeetta ry:n jäsenlehti No 1/2011

Komeetan pyrstö Kirkkonummen Komeetta ry:n jäsenlehti No 1/2011 Komeetan pyrstö Kirkkonummen Komeetta ry:n jäsenlehti No 1/2011 Maisemakuva on Joutsenen pyrstösulkien alueelta. Kuva liittyy Seppo Ritamäen sivulta 8 alkavaan artikkeliin. KUVIA TAIVAALTA Kuvaaja on Antti

Lisätiedot

Tehtävä 1. MONIVALINATEHTÄVÄ: Yksi neljästä väittämästä on virheellinen. Ympyröi ko. väärä väittämä. 0,5p/tehtävä. (10p)

Tehtävä 1. MONIVALINATEHTÄVÄ: Yksi neljästä väittämästä on virheellinen. Ympyröi ko. väärä väittämä. 0,5p/tehtävä. (10p) Tehtävä 1. MONIVALINATEHTÄVÄ: Yksi neljästä väittämästä on virheellinen. Ympyröi ko. väärä väittämä. 0,5p/tehtävä. (10p) 1. 2. 3. 4. 5. 6. 7. 8. a. Pohjaveden liikakäyttö saattaa aiheuttaa maan vajoamista.

Lisätiedot

En voi olla kirjoittamatta - Kirjoittamisen astrologia

En voi olla kirjoittamatta - Kirjoittamisen astrologia En voi olla kirjoittamatta - Kirjoittamisen astrologia Ammatikseen kirjoittaville ja luovaa työtä tekeville kirjailijoille kauhistuttavin tilanne on tyhjän paperin pelko. Mitä tehdä silloin kun kirjoitustyö

Lisätiedot

AURINKOENERGIAA AVARUUDESTA

AURINKOENERGIAA AVARUUDESTA RISS 16. 9. 2009 AURINKOENERGIAA AVARUUDESTA Pentti O A Haikonen Adjunct Professor University of Illinois at Springfield Aurinkoenergiasatelliitin tekninen perusta Auringon säteilyn tehotiheys maapallon

Lisätiedot

FERROMAGNEETTISET MATERIAALIT

FERROMAGNEETTISET MATERIAALIT FERROMAGNEETTISET MATERIAALIT MAGNEETTITEKNOLOGIAKESKUS Harri Kankaanpää DIAMAGNETISMI Vesi, elohopea, kulta, vismutti,... Magneettinen suskeptibiliteetti negatiivinen: 10-9...10-4 (µ r 1) Heikentää/hylkii

Lisätiedot

Maapallon mantereet näyttävät sopivan yhteen kuin palapelin palaset. Nuori geofyysikko Alfred Wegener tutki maailmankarttaa

Maapallon mantereet näyttävät sopivan yhteen kuin palapelin palaset. Nuori geofyysikko Alfred Wegener tutki maailmankarttaa FM Akseli Torppa Geologian laitos Helsingin yliopisto Maapallon mantereet näyttävät sopivan yhteen kuin palapelin palaset. Nuori geofyysikko Alfred Wegener tutki maailmankarttaa Marburgin yliopiston kirjastossa

Lisätiedot

Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY

Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY Esityksen sisältö Ekopellettien ja puupellettien vertailua polttotekniikan kannalta Koetuloksia ekopellettien poltosta

Lisätiedot