The Viking Battle - Part Version: Finnish

Koko: px
Aloita esitys sivulta:

Download "The Viking Battle - Part Version: Finnish"
  • Aki Aro
  • 10 kuukautta sitten
  • Katselukertoja:

Transkriptio

1 The Viking Battle - Part Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman joukon A n alkion summana. (Alkioiden ei välttämättä tarvitse olla erisuuria.) Tehtävä Määritellään funktio f : (0, 1) (0, 1) asettamalla { x + 1, x < 1 f(x) = x, x 1 Olkoot a 0 ja b 0 kaksi reaalilukua, joille 0 < a 0 < b 0 < 1. Määritellään jonot a n ja b n asettamalla a n = f(a n 1 ) ja b n = f(b n 1 ) kaikille n = 1,, 3,.... Osoita, että on olemassa positiivinen kokonaisluku n, jolle (a n a n 1 ) (b n b n 1 ) < 0. Tehtävä 3 Oletetaan, että teräväkärkisessä kolmiossa ABC pätee AB > BC. Olkoon Ω kolmion ABC ympäripiirretty ympyrä, ja olkoon O ympyrän Ω keskipiste. Kulman ABC kulmanpuolittaja leikkaa ympyrän Ω pisteessä M B. Olkoon Γ se ympyrä, jonka eräs halkaisija on BM. Kulman AOB puolittaja leikkaa ympyrää Γ pisteessä P, ja kulman BOC puolittaja leikkaa ympyrää Γ pisteessä Q. Suoralta P Q on valittu piste R siten, että BR = MR. Osoita, että BR AC. (Tässä oletamme aina, että kulmanpuolittaja on puolisuora.) 1

2 Solution to problem 1 Answer: M n = (n ) n + 1. Part 1. First we prove that every integer greater than (n ) n +1 can be represented as such a sum. This is achieved by induction on n. For n =, the set A n = {, 3}. Every positive integer m except 1 can be represented as a sum of elements of A n : as m = if m is even, and as m = if m is odd. Now consider some n > and assume the induction hypothesis holds for n 1. Take an integer m > (n ) n + 1. If m is even, then Hence by the induction hypothesis m > (n )n 1 > ((n 1) ) n m = (n 1 k 1 ) + ( n 1 k ) + + ( n 1 kr ) for some k i, with 0 k i < n 1. It follows that m = ( n k 1+1 ) + ( n k +1 ) + + ( n kr+1 ), giving us the desired representation as a sum of elements of A n. If m is odd, we consider m ( n 1) > (n )n + 1 ( n 1) = (n 3) n By the induction hypothesis there is a representation of the form m ( n 1) = ( n 1 k 1 ) + ( n 1 k ) + + ( n 1 kr ) for some k i, with 0 k i < n 1. It follows that m = ( n k 1+1 ) + ( n k +1 ) + + ( n kr+1 ) + ( n 1), giving us the desired representation of m once again. Part. It remains to prove that there is no representation of M n = (n ) n + 1. Let N be the smallest positive integer that satisfies N 1 (mod n ), and which can be represented as a sum of elements of A n. Consider the representation of N, i.e. N = ( n k 1 ) + ( n k ) + + ( n kr ), where 0 k 1, k,..., k r < n. If k i = k j = n 1, then we can simply remove these two terms from the sum to get a representation for N ( n n 1 ) = N n as a sum

3 of elements of A n, which contradicts our choice of N. If k i = k j = k < n 1, replace the two terms by n k+1, which is also an element of A n, to get a representation for N ( n k )+ n k+1 = N n. This is a contradiction once again. Therefor, all k i have to be distinct, which means that k 1 + k + + kr n 1 = n 1. On the other hand ( ) k 1 + k + + kr ( n k 1 )+( n k )+ +( n kr ) = N 1 (mod n ) Thus we must have k 1 + k + + kr = n 1, which is only possible if each element of {0, 1,,..., n 1} occurs as one of the k i. This gives us N = n n ( n 1 ) = (n 1) n + 1. In particular this means that (n ) n +1 cannot be represented as a sum of elements of A n. 3

4 Solution to problem Note that f(x) x = 1 > 0 if x < 1 f(x) x = x x < 0 if x 1. We consider the interval (0, 1) divided into the two subintervals I 1 I = [ 1, 1). The inequality = (0, 1 ) and 0 > (a n a n 1 ) (b n b n 1 ) = (f(a n 1 ) a n 1 )(f(b n 1 b n 1 ) holds if and only if a n 1 and b n 1 lie in distinct subintervals. Let us now assume, to the contrary, that a k and b k always lie in the same subinterval. Consider the distance d k = a k b k. If both a k and b k lie in I 1, then d k+1 = a k+1 b k+1 = a k + 1 ( b k + 1 ) = dk. If, on the other hand, a k and b k both lie in I, then a k + b k d k = 1 + d k, which implies d k+1 = a k+1 b k+1 = a k b k = (a k b k )(a k + b k ) d k (1 + d k ). This means that the difference d k is non-decreasing, and particular d k d 0 > 0 for all k. If a k and b k lie in I, then d k+ d k+1 d k (1 + d k ) d k (1 + d 0 ). If a k and b k lie in I 1, then a k+1 and b k+1 both lie in I, and so we have d k+ d k+1 (1 + d k+1 ) d k+1 (1 + d 0 ) d k (1 + d 0 ). In either case, d k+ d k (1 + d 0 ), and inductively we get d m d 0 (1 + d 0 ) m. For sufficiently large m, the right-hand side is greater than 1, a contradiction. Thus there must be a positive integer n such that a n 1 and b n 1 do not lie in the same subinterval, which proves the desired statement. 4

5 Solution to problem 3 Let K be the midpoint of BC, i.e. the centre of Γ. Notice that AB BC implies that K O. Clearly the lines OM and OK are perpendicular bisectors of AC and BM, respectively. Therefore, R is the intersection point of P Q and OK. Let N be the second point of intersection of Γ with the line OM. Hence BN AC, and it suffices to prove that BN passes trough R. Our plan for doing this is to interpret the lines BN, OK and P Q as the radical axes of three appropriate circles. Let ω be the circle with diameter BO. Since BNO = BKO = 90, the points N and K lie on ω. Next we show that the points O, K, P, and Q are concyclic. To this end, let D and E be the midpoints of BC and AB, respectively. By our assumption of triangle ABC, the points B, E, O, K, and D lie on ω is this order. It follows that EOR = EBK = KBD = KOD, so the line KO externally bisects the angle P OQ. Since the point K is the centre of Γ, it also lies on the perpendicular bisector of P Q. So K coincides with the midpoint of the arc P OQ of the circumcircle γ of triangle P OQ. Thus the lines OK, BN, and P Q are pairwise radical axis of the circles ω, γ and Γ. Hence they are concurrent at R, as required. R P N B γ E D Q Ω A O K ω C Γ M 5

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

anna minun kertoa let me tell you

anna minun kertoa let me tell you anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

4x4cup Rastikuvien tulkinta

4x4cup Rastikuvien tulkinta 4x4cup Rastikuvien tulkinta 4x4cup Control point picture guidelines Päivitetty kauden 2010 sääntöihin Updated for 2010 rules Säännöt rastikuvista Kilpailijoiden tulee kiinnittää erityistä huomiota siihen,

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva

Lisätiedot

Counting quantities 1-3

Counting quantities 1-3 Counting quantities 1-3 Lukumäärien 1 3 laskeminen 1. Rastita Tick (X) (X) the kummassa box that has laatikossa more on balls enemmän in it. palloja. X. Rastita Tick (X) (X) the kummassa box that has laatikossa

Lisätiedot

Alternative DEA Models

Alternative DEA Models Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex

Lisätiedot

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be

Lisätiedot

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25) MRI-sovellukset Ryhmän 6 LH:t (8.22 & 9.25) Ex. 8.22 Ex. 8.22 a) What kind of image artifact is present in image (b) Answer: The artifact in the image is aliasing artifact (phase aliasing) b) How did Joe

Lisätiedot

Choose Finland-Helsinki Valitse Finland-Helsinki

Choose Finland-Helsinki Valitse Finland-Helsinki Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun

Lisätiedot

Results on the new polydrug use questions in the Finnish TDI data

Results on the new polydrug use questions in the Finnish TDI data Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

make and make and make ThinkMath 2017

make and make and make ThinkMath 2017 Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus

Lisätiedot

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu A DEA Game II Juha Salohemo 12.12.2007 Content Recap of the Example The Shapley Value Margnal Contrbuton, Ordered Coaltons, Soluton to the Example DEA Mn Game Summary Home Assgnment Recap of the Example

Lisätiedot

Exercise 1. (session: )

Exercise 1. (session: ) EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You

Lisätiedot

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Operatioanalyysi 2011, Harjoitus 4, viikko 40 Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2

Lisätiedot

4x4cup Rastikuvien tulkinta. 4x4cup Control point picture guidelines

4x4cup Rastikuvien tulkinta. 4x4cup Control point picture guidelines 4x4cup Rastikuvien tulkinta 4x4cup Control point picture guidelines Säännöt rastikuvista Kilpailijoiden tulee kiinnittää erityistä huomiota siihen, että rastikuvissa näkyy selvästi että kilpailija koskee

Lisätiedot

Akateemiset fraasit Tekstiosa

Akateemiset fraasit Tekstiosa - Väitteen hyväksyminen Broadly speaking, I agree with because Samaa mieltä jostakin näkökulmasta One is very much inclined to agree with because Samaa mieltä jostakin näkökulmasta Yleisesti ottaen olen

Lisätiedot

Counting quantities 1-3

Counting quantities 1-3 Counting quantities 1-3 Lukumäärien 1 3 laskeminen 1. Rastita Tick (X) (X) the kummassa box that has laatikossa more on balls enemmän in it. palloja. X 2. Rastita Tick (X) (X) the kummassa box that has

Lisätiedot

Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä. ..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän

Lisätiedot

Kvanttilaskenta - 1. tehtävät

Kvanttilaskenta - 1. tehtävät Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state

Lisätiedot

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...

Lisätiedot

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its

Lisätiedot

Other approaches to restrict multipliers

Other approaches to restrict multipliers Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of

Lisätiedot

A DEA Game I Chapters

A DEA Game I Chapters A DEA Game I Chapters 5.-5.3 Saara Tuurala 2.2.2007 Agenda Introducton General Formulaton Assumpton on the Game and Far Dvson Coalton and Characterstc Functon Summary Home Assgnment Introducton /5 A DEA

Lisätiedot

Kvanttilaskenta - 2. tehtävät

Kvanttilaskenta - 2. tehtävät Kvanttilaskenta -. tehtävät Johannes Verwijnen January 8, 05 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem The inner product of + and is. Edelleen false, kts. viikon tehtävä 6..

Lisätiedot

Guidebook for Multicultural TUT Users

Guidebook for Multicultural TUT Users 1 Guidebook for Multicultural TUT Users WORKPLACE PIRKANMAA-hankkeen KESKUSTELUTILAISUUS 16.12.2010 Hyvää käytäntöä kehittämässä - vuorovaikutusopas kansainvälisille opiskelijoille TTY Teknis-taloudellinen

Lisätiedot

812336A C++ -kielen perusteet, 21.8.2010

812336A C++ -kielen perusteet, 21.8.2010 812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety

Lisätiedot

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

C++11 seminaari, kevät Johannes Koskinen

C++11 seminaari, kevät Johannes Koskinen C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,

Lisätiedot

VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto

VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto Tämän viestinnän, nykysuomen ja englannin kandidaattiohjelman valintakokeen avulla Arvioidaan viestintävalmiuksia,

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?

Lisätiedot

52. Kansainväliset matematiikkaolympialaiset

52. Kansainväliset matematiikkaolympialaiset 52. Kansainväliset matematiikkaolympialaiset Tehtävien ratkaisuja Tehtävä 1.Olkoon A = {a 1,a 2,a 3,a 4 } joukko, jonka alkioina on neljä eri suurta positiivista kokonaislukua. Joukon alkioiden summaa

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

MUSEOT KULTTUURIPALVELUINA

MUSEOT KULTTUURIPALVELUINA Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina

Lisätiedot

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto If you are searched for a book by Miikka Poikselkä;Harri Holma;Jukka Hongisto Voice over LTE (VoLTE) in pdf form, then you have come

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely

Lisätiedot

Salasanan vaihto uuteen / How to change password

Salasanan vaihto uuteen / How to change password Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change

Lisätiedot

KMTK lentoestetyöpaja - Osa 2

KMTK lentoestetyöpaja - Osa 2 KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...

Lisätiedot

21~--~--~r--1~~--~--~~r--1~

21~--~--~r--1~~--~--~~r--1~ - K.Loberg FYSE420 DIGITAL ELECTRONICS 13.05.2011 1. Toteuta alla esitetyn sekvenssin tuottava asynkroninen pun. Anna heratefunktiot, siirtotaulukko ja kokonaistilataulukko ( exitation functions, transition

Lisätiedot

Statistical design. Tuomas Selander

Statistical design. Tuomas Selander Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis

Lisätiedot

RINNAKKAINEN OHJELMOINTI A,

RINNAKKAINEN OHJELMOINTI A, RINNAKKAINEN OHJELMOINTI 815301A, 18.6.2005 1. Vastaa lyhyesti (2p kustakin): a) Mitkä ovat rinnakkaisen ohjelman oikeellisuuskriteerit? b) Mitä tarkoittaa laiska säikeen luominen? c) Mitä ovat kohtaaminen

Lisätiedot

Rekisteröiminen - FAQ

Rekisteröiminen - FAQ Rekisteröiminen - FAQ Miten Akun/laturin rekisteröiminen tehdään Akun/laturin rekisteröiminen tapahtuu samalla tavalla kuin nykyinen takuurekisteröityminen koneille. Nykyistä tietokantaa on muokattu niin,

Lisätiedot

Alueellinen yhteistoiminta

Alueellinen yhteistoiminta Alueellinen yhteistoiminta Kokemuksia alueellisesta toiminnasta Tavoitteet ja hyödyt Perusterveydenhuollon yksikön näkökulmasta Matti Rekiaro Ylilääkäri Perusterveydenhuollon ja terveyden edistämisen yksikkö

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Esimerkkitehtäviä, A-osa

Esimerkkitehtäviä, A-osa Esimerkkitehtäviä, A-osa MAB1, harjaantuu käyttämään matematiikkaa jokapäiväisen elämän ongelmien ratkaisemisessa Jussi myy torilla marjoja. Erään asiakkaan ostokset maksavat 8,65e. Asiakas antaa Jussille

Lisätiedot

Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat

Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat Esityksen sisältö: 1. EU:n energiapolitiikka on se, joka ei toimi 2. Mihin perustuu väite, etteivät

Lisätiedot

FinFamily Installation and importing data (11.1.2016) FinFamily Asennus / Installation

FinFamily Installation and importing data (11.1.2016) FinFamily Asennus / Installation FinFamily Asennus / Installation 1 Sisällys / Contents FinFamily Asennus / Installation... 1 1. Asennus ja tietojen tuonti / Installation and importing data... 4 1.1. Asenna Java / Install Java... 4 1.2.

Lisätiedot

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät Numeeriset menetelmät 1. välikoe, 14.2.2009 1. Määrää matriisin 1 1 a 1 3 a a 4 a a 2 1 LU-hajotelma kaikille a R. Ratkaise LU-hajotelmaa käyttäen yhtälöryhmä Ax = b, missä b = [ 1 3 2a 2 a + 3] T. 2.

Lisätiedot

ETELÄESPLANADI 2 00130 HELSINKI

ETELÄESPLANADI 2 00130 HELSINKI 00130 HELSINKI MODERNIA TOIMISTOTILAA Noin VUOKRATAAN Ainutlaatuinen tilaisuus vuokrata huipputason Helsingin näköalapaikalta Toimi pian! Lisätietoja KALLE JASKARA Myyntijohtaja +358 50 324 0404 kalle.jaskara@tkoy.fi

Lisätiedot

Strategiset kyvykkyydet kilpailukyvyn mahdollistajana Autokaupassa Paula Kilpinen, KTT, Tutkija, Aalto Biz Head of Solutions and Impact, Aalto EE

Strategiset kyvykkyydet kilpailukyvyn mahdollistajana Autokaupassa Paula Kilpinen, KTT, Tutkija, Aalto Biz Head of Solutions and Impact, Aalto EE Strategiset kyvykkyydet kilpailukyvyn mahdollistajana Autokaupassa Paula Kilpinen, KTT, Tutkija, Aalto Biz Head of Solutions and Impact, Aalto EE November 7, 2014 Paula Kilpinen 1 7.11.2014 Aalto University

Lisätiedot

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille? Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille? 10.10.01 Tuomo Suortti Ohjelman päällikkö Riina Antikainen Ohjelman koordinaattori 10/11/01 Tilaisuuden teema Kansainvälistymiseen

Lisätiedot

Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site

Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site Note! Before starting download and install a fresh version of OfficeProfessionalPlus_x64_en-us. The instructions are in the beginning of the exercise.

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Capacity utilization

Capacity utilization Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure

Lisätiedot

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku 24.8.2017 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve terve!

Lisätiedot

AS Paikannus- ja navigointimenetelmät

AS Paikannus- ja navigointimenetelmät AS-84.7 Paikannus- ja navigointimenetelmät Ratkaisut. ) Kun tiedetään pelkästään etäisyys tunnetusta kohteesta saadaan mahdollinen olinpaikka ajattua ympyälle, jonka keskipiste on kohteen paikka ja säde

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55. SÄHKÖTKNIIKKA JA LKTONIIKKA 2. välikoe.2.22. Saat vastata vain neljään tehtävään! Sallitut: Kako, [r.] laskin, [MAOL], [sanakirjan käytöstä sovittava valvojan kanssa!]. Laske jännite. = V, = 2 Ω,

Lisätiedot

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Operatioanalyysi 2011, Harjoitus 3, viikko 39 Operatioanalyysi 2011, Harjoitus 3, viikko 39 H3t1, Exercise 3.1. H3t2, Exercise 3.2. H3t3, Exercise 3.3. H3t4, Exercise 3.4. H3t5 (Exercise 3.1.) 1 3.1. Find the (a) standard form, (b) slack form of the

Lisätiedot

EUROOPAN PARLAMENTTI

EUROOPAN PARLAMENTTI EUROOPAN PARLAMENTTI 2004 2009 Kansalaisvapauksien sekä oikeus- ja sisäasioiden valiokunta 2008/0101(CNS) 2.9.2008 TARKISTUKSET 9-12 Mietintöluonnos Luca Romagnoli (PE409.790v01-00) ehdotuksesta neuvoston

Lisätiedot

Olet vastuussa osaamisestasi

Olet vastuussa osaamisestasi Olet vastuussa osaamisestasi Ohjelmistoammattilaisuuden uudet haasteet Timo Vehmaro 02-12-2015 1 Nokia 2015 Mitä osaamista tulevaisuudessa tarvitaan? Vahva perusosaaminen on kaiken perusta Implementaatio

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Uusi Ajatus Löytyy

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen

Lisätiedot

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut

Lisätiedot

AYYE 9/ HOUSING POLICY

AYYE 9/ HOUSING POLICY AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we

Lisätiedot

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine Information on Finnish Language Courses Spring Semester 2017 Jenni Laine 4.1.2017 KIELIKESKUS LANGUAGE CENTRE Puhutko suomea? Do you speak Finnish? -Hei! -Moi! -Mitä kuuluu? -Kiitos, hyvää. -Entä sinulle?

Lisätiedot

LYTH-CONS CONSISTENCY TRANSMITTER

LYTH-CONS CONSISTENCY TRANSMITTER LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

4.3 Kehäkulma. Keskuskulma

4.3 Kehäkulma. Keskuskulma 4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet

Lisätiedot

Miten koulut voivat? Peruskoulujen eriytyminen ja tuki Helsingin metropolialueella

Miten koulut voivat? Peruskoulujen eriytyminen ja tuki Helsingin metropolialueella Miten koulut voivat? Peruskoulujen eriytyminen ja tuki Helsingin metropolialueella 26.4.2012 1 "There is often a property bubble around catchment areas. If a school makes a house more saleable or desirable,

Lisätiedot

Returns to Scale Chapters

Returns to Scale Chapters Return to Scale Chapter 5.1-5.4 Saara Tuurala 26.9.2007 Index Introduction Baic Formulation of Retur to Scale Geometric Portrayal in DEA BCC Return to Scale CCR Return to Scale Summary Home Aignment Introduction

Lisätiedot

Laskennallisesti Älykkäät Järjestelmät. Sumean kmeans ja kmeans algoritmien vertailu

Laskennallisesti Älykkäät Järjestelmät. Sumean kmeans ja kmeans algoritmien vertailu Laskennallisesti Älykkäät Järjestelmät Sumean kmeans ja kmeans algoritmien vertailu Annemari Auvinen (annauvi@st.jyu.fi) Anu Niemi (anniemi@st.jyu.fi) 28.5.2002 1 Tehtävän kuvaus Tehtävänämme oli verrata

Lisätiedot

PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45

PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45 PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45 1. Dirac delta-function is an eigenstate of the position operator. I.e. you get such a wavefunction from an infinitely precise measurement

Lisätiedot

Matematiikan olympiavalmennus 2015 helmikuun helpommat

Matematiikan olympiavalmennus 2015 helmikuun helpommat Matematiikan olympiavalmennus 05 helmikuun helpommat tehtävät Ratkaisuja. Määritä kolmiot, joiden kulmille α, β, γ pätee cos α cos β +sinαsin β sin γ =. Ratkaisu. Koska 0 < sin γ, täytyy olla cos(α β)

Lisätiedot

Expression of interest

Expression of interest Expression of interest Avoin hakemus tohtorikoulutettavaksi käytäntö Miksi? Dear Ms. Terhi virkki-hatakka I am writing to introduce myself as a volunteer who have the eagerness to study in your university.

Lisätiedot

A: What s wrong? A aloittaa. Kuuntele ja auta tarvittaessa. Parisi auttaa tarvittaessa. Sinä aloitat. Sano vuorosanasi englanniksi.

A: What s wrong? A aloittaa. Kuuntele ja auta tarvittaessa. Parisi auttaa tarvittaessa. Sinä aloitat. Sano vuorosanasi englanniksi. High five! 4 Chapter 4 Down by the river LIITE 6a Työpistetyöskentely Piste 1 1 Valitse parisi kanssa kappaleiden 1 3 teksteistä yksi ja lukekaa se ääneen englanniksi 2 Tee alla oleva tehtävä parisi kanssa

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0 T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred

Lisätiedot

Kielenkäytön näkökulma oppimisvuorovaikutukseen

Kielenkäytön näkökulma oppimisvuorovaikutukseen Kielenkäytön näkökulma oppimisvuorovaikutukseen Tarja Nikula Soveltavan kielentutkimuksen keskus tarja.nikula@jyu.fi Kiinnostuksen kohteena Luokkahuonevuorovaikutus vieraalla kielellä englannin kielen

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

Fraktaalit. Fractals. Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. 1 / 8 R. Kangaslampi Fraktaalit

Fraktaalit. Fractals. Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. 1 / 8 R. Kangaslampi Fraktaalit Fraktaalit Fractals Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.-7.10.2012 1 / 8 R. Kangaslampi Fraktaalit Bottomless wonders spring from simple rules, which are repeated

Lisätiedot

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat 7.80.4 Asiakasnumero: 3000359 KALLE MANNINEN KOVASTENLUODONTIE 46 51600 HAUKIVUORI Toimitusosoite: KUMMANNIEMENTIE 5 B 51720 RAHULA Viitteenne: Henna-Riikka Haikonen Viitteemme: Pyry Niemi +358400874498

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

MAA3 TEHTÄVIEN RATKAISUJA

MAA3 TEHTÄVIEN RATKAISUJA MAA3 TEHTÄVIEN RATKAISUJA 1. Piirretään kulman kärki keskipisteenä R-säteinen ympyränkaari, joka leikkaa kulman kyljet pisteissä A ja B. Nämä keskipisteenä piirretään samansäteiset ympyräviivat säde niin

Lisätiedot

Introduction to Mathematical Economics, ORMS1030

Introduction to Mathematical Economics, ORMS1030 Uiversity of Vaasa, sprig 04 Itroductio to Mathematical Ecoomics, ORMS030 Exercise 6, week 0 Mar 3 7, 04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0

Lisätiedot

Miehittämätön meriliikenne

Miehittämätön meriliikenne Rolls-Royce & Unmanned Shipping Ecosystem Miehittämätön meriliikenne Digimurros 2020+ 17.11. 2016 September 2016 2016 Rolls-Royce plc The 2016 information Rolls-Royce in this plc document is the property

Lisätiedot