θ 1 θ 2 θ n y i1 y i2 y in Luento 6 Hierarkkinen malli Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model

Koko: px
Aloita esitys sivulta:

Download "θ 1 θ 2 θ n y i1 y i2 y in Luento 6 Hierarkkinen malli Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model"

Transkriptio

1 Luento 6 Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model Vaihtokelpoisuus (exchangeability) Slide 1 Hierarkkinen malli Esimerkki: sydäntautien hoidon tehokkuus - sairaalassa j henkiinjäämistodennäköisyys θ j - havaintoina y i j, eli potilaan i selviäminen sairaalassa j θ 1 θ 2 θ n Slide 2 y i1 y i2 y in - voisi olla järkevää olettaa, että θ j :den välillä on yhteys τ θ 1 θ 2 θ n y i1 y i2 y in - luonnollista ajatella, että θ j :t tulevat yhteisestä populaatiojakaumasta - θ j :stä ei suoraan havaintoja ja populaatiojakauma tuntematon

2 Hierarkkinen malli: kasvainriski rotilla Esimerkki: kasvainriski rotilla - ennen ihmistestejä lääkkeitä yleisesti testataan jyrsijöillä - estimoidaan kasvaimen todennäköisyys θ tyyppiä F344 olevilla naarasrotilla jotka saavat nolla-annoksen lääkettä (vertailuryhmä) - data: 4/14 rotalle tuli kohtuun kasvain (endometrial stromal polyps) Slide 3 - oletetaan binominen malli ja konjugaattipriori - priorin parametrit? Hierarkkinen malli: kasvainriski rotilla Aiemmat kokeet y 1,..., y 70 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/19 0/19 0/19 0/19 0/18 0/18 0/17 1/20 1/20 1/20 1/20 1/19 1/19 1/18 1/18 2/25 2/24 2/23 2/20 2/20 2/20 2/20 2/20 2/20 1/10 5/49 2/19 5/46 3/27 2/17 7/49 7/47 3/20 3/20 2/13 9/48 10/50 4/20 4/20 4/20 4/20 4/20 4/20 Slide 4 4/20 10/48 4/19 4/19 4/19 5/22 11/46 12/49 5/20 5/20 6/23 5/19 6/22 6/20 6/20 6/20 16/52 15/46 15/47 9/24 Uusi koe y 71 : 4/14 Aiemmalla luennolla käsitelty malli p(y j θ), missä θ yhteinen kaikille kokeille Nyt malli onkin p(y j θ j ), eli joka kokeessa eri θ j - kasvaimien todennäköisyys θ j vaihtelee rotissa ja koejärjestelyissä olevien erojen vuoksi

3 Hierarkkinen malli: kasvainriski rotilla Kuinka huomioida, että θ 1,..., θ 71 todennäköisesti samankaltaisia yhteinen populaatiopriori, mutta mistä populaatipriorin parametrit? Ratkaisu on käyttää hierarkkista mallia α β Slide 5 θ j α, β Beta(θ j α, β) θ j n j y j n j, θ j Bin(y j n j, θ j ) y j j Yhteisposteriori p(θ 1,...,θ J, α, β y) - moniparametrinen malli - faktorointi J j=1 p(θ j α, β, y)p(α, β y) Hierarkkinen malli: termejä Hierarkkinen malli: Taso 1: havainnot ehdolla parametrit p(y i j θ j, M) Taso 2: parametrit ehdolla hyperparametrit p(θ j τ, M) p(τ M) τ hyperparametri Slide 6 p(θ j τ, M) θ 1 θ 2 θ n parametrit p(y i j θ j, M) y i1 y i2 y in havainnot Yhteisposteriorijakauma p(θ, τ y) p(y θ, τ, M)p(θ, τ M) p(y θ, M)p(θ τ, M)p(τ M)

4 Hierarkkinen malli: kasvainriski rotilla Populaatiopriori Beta(θ j α, β) Hyperpriori p(α, β)? Slide 7 - Beta-jakauman parametrisoinissa α, β molemmat vaikuttavat jakauman paikkaan ja leveyteen - Gelman et al ehdottavat prioria p(α, β) (α + β) 5/2 diffuusi priorijakauman lokaatiolle ja leveydelle (ks. s. 128) Esim6_1.m - hierarkkinen malli olettaa, että θ j ovat samankaltaisia, mutta eivät sama Hierarkkinen malli - Ennustava jakauma Ennustava jakauma tulevalle havainnolle ỹ joka liittyy johonkin nykyiseen θ j :hin - esim. rottakokeessa lisärottia nykyisessä kokeessa - poimitaan ỹ annettuna näytteitä θ j :n posteriorijakaumasta Ennustava jakauma tulevalle havainnolle ỹ joka liittyy johonkin tulevaan θ j :hin jota voidaan merkit θ Slide 8 - esim. rottakokeessa tuloksia uudesta kokeesta - poimitaan ensin θ populaatiojakaumasta ja sitten ỹ annettuna θ

5 Hierarkkinen malli - laskenta Faktoroidusta posteriorijakaumasta voidaan vetää näytteitä seuraavasti 1. poimitaan näytteitä φ jakaumasta p(φ y) 2. poimitaan näytteitä θ jakaumasta p(θ φ, y) 3. tarvittaessa poimitaan näytteitä ỹ prediktiivisestä jakaumasta p(y θ) - toista L kertaa Slide 9 Hierarkkinen normaalijakaumamalli - ÄO-esimerkki Aiemmin - populaatio θ j N(100, 15 2 ) ja mittaus y i j θ j N(θ j, 10 2 ) Hierarkkisella mallilla - populaatiojakauma voi olla myös tuntematon µ P σp 2 Slide 10 θ j µ P, σ 2 P N(µ P, σ 2 P ) θ j 10 2 y i j θ j N(θ j, 10 2 ) y i j i j Hierarkkisella mallilla tekemällä koe usealle henkilölle saadaan samalla selville populaatiojakauma joka taas vaikuttaa saman tien jokaiselle henkilölle laskettuun jakaumaan θ j :lle Mittausvarianssi voidaan käsitellä vastaavasti

6 Hierarkkinen normaalijakaumamalli - tehdas-esimerkki Tehtaassa 6 konetta joiden laatua halutaan arvioida Oletetaan hierarkkinen malli - jokaisella koneella oma laatuarvo θ j ja yhteinen varianssi σ 2 µ P σ 2 P Slide 11 θ j µ P, σ 2 P N(µ P, σ 2 P ) θ j σ 2 y i j θ j N(θ j, σ 2 j ) y i j i j Voidaan ennustaa jokaisen koneen tuleva laatu ja uuden vastaavan koneen tuleva laatu Gibbs-poiminta-tehtävä luennon 7 jälkeen Hierarkkinen normaalijakaumamalli - tehdas-esimerkki Tehtaassa 6 konetta joiden laatua halutaan arvioida Oletetaan hierarkkinen malli - jokaisella koneella oma laatuarvo θ j ja oma varianssi σ 2 j µ P σ 2 P σ 2 0 ν 0 Slide 12 θ j θ j µ P, σ 2 P N(µ P, σ 2 P ) σ 2 j σ 2 0, ν 0 Inv-χ 2 (σ 2 0, ν 0) σ 2 j y i j θ j N(θ j, σ 2 j ) y i j i j Voidaan ennustaa jokaisen koneen tuleva laatu ja uuden vastaavan koneen tuleva laatu Gibbs-poiminta-tehtävän lisäpisteet

7 Hierarkkinen normaalijakaumamalli - SAT-esimerkki Esimerkki: valmennuskurssien tehon arviointi (tehtävä 5.1*) - USA:ssa käytössä SAT (Scholastic Aptitude Test) jonka suunnittelussa on pyritty siihen, että lyhyen ajan harjoittelulla ei pysty parantamaan tulosta - kouluilla silti pikavalmennuskursseja - tutkittiin onko valmennuksesta apua Slide 13 SAT - standardisoitu monivalintatesti - pistekeskiarvo n. 500 ja hajonta n pisteet pääasiassa 200:n ja 800:n välillä - eri aihealueita kuten V=Verbal, M=Mathematics - esitesti PSAT Hierarkkinen normaalijakaumamalli - SAT-esimerkki Valmennuskurssien tehon arviointi - opiskelijat olivat jo suorittaneet esitestit PSAT-M ja PSAT-V - osa opiskelijoista sai valmennusta, osa ei - lineaarinen regressio, josta arvioitiin valmennusefektit y j (voidaan merkitä myös ȳ. j ) ja varianssit σ 2 j Slide 14 - y j suunnilleen normaalijakautuneita, suunnilleen tunnetuilla variansseilla perustuen noin 30 oppilaan tulokseen per koulu - datana ryhmien keskiarvot ja varianssit (ei yksilötulokset) Data: Koulu A B C D E F G H y j σ j pistettä testissä lisää on noin yksi vastaus lisää oikein

8 Hierarkkinen normaalijakaumamalli ryhmien keskiarvoille J koetta, tuntemattomat θ j ja tunnettu σ 2 y i j θ j N(θ j, σ 2 ), i = 1,...,n j ; j = 1,..., J Ryhmän j otoskeskiarvo ja otosvarianssi Slide 15 ȳ. j = 1 n j n j σ 2 j = σ 2 n j i=1 y i j Vaihdetaan malliksi ȳ. j θ j N(θ j, σ 2 j ) tämä malli voidaan yleistää myös niin, että σj 2 :t voivat poiketa toisistaan myös muusta syystä kuin n j :n takia Hierarkkinen normaalijakaumamalli ryhmien keskiarvoille µ τ θ j µ, τ N(µ, τ) θ j σ 2 j ȳ. j θ j N(θ j, σ 2 j ) ȳ. j j Slide 16

9 Hierarkkinen normaalijakaumamalli ryhmien keskiarvoille Mallia ȳ. j θ j N(θ j, σ 2 j ) - voidaan käyttää myös silloin jos oletetaan, että keskiarvot ȳ. j ovat lähes normaalijakautuneita, vaikka itse data y i j ei ole Slide 17 Hierarkkinen normaalijakaumamalli - priori Semikonjugaattinen priori J p(θ 1,..., θ J µ, τ) = N(θ j µ, τ 2 ) j=1 Slide 18 - jos τ, sama kuin jos erillismalli (separate model), eli jokainen θ j estimoidaan erikseen ei-informatiivisella priorilla - jos τ 0, sama kuin jos yhteismalli (pooled model), eli θ j = µ ja ȳ. j µ N(µ, σ 2 j )

10 Hierarkkinen normaalijakaumamalli - hyperpriori Malli ȳ. j θ j N(θ j, σ 2 j ) Semi-konjugaattinen priori Slide 19 Hyperpiori J p(θ 1,..., θ J µ, τ) = N(θ j µ, τ 2 ) j=1 p(µ, τ) = p(µ τ)p(τ) p(τ) - uniformi priori µ:lle ok - τ :n priori valittava huolella, jotta saadaan aito posteriori - p(τ) 1/τ tuottaisi ei-aidon posteriorin - jos J > 4, p(τ) 1 hyvä ei-informatiivinen priori - jos J 4 half-cauchy hyvä priori (Gelman, 2005) * Hierarkkinen normaalijakaumamalli - laskenta faktoroimallla Faktoroidaan yhteisposteriorijakauma p(θ, µ, τ y) p(θ µ, τ, y)p(µ, τ y) Parametrien θ j ehdollinen posteriorijakauma θ j µ, τ, y N(ˆθ j, V j ) Slide 20 missä ˆθ j ja V j aivan kuten J :lle toisistaan riippumattomalle normaalijakaumalle annettuna informatiivinen konjugaattipriori - eli tarkkuuksilla painotettu keskiarvo datasta ja priorista

11 Hierarkkinen normaalijakaumamalli - laskenta faktoroimallla Hyperparametrien marginaaliposteriorijakauma J p(µ, τ y) p(µ, τ) N(ȳ. j µ, σj 2 + τ 2 ) j=1 Edellistä voitaisiin käyttää suoraan, mutta normaalimallille faktoroituu edelleen Slide 21 missä p(µ, τ y) = p(µ τ, y)p(τ y) p(µ τ, y) = N( ˆµ, V µ ) missä ˆµ on tarkkuuksilla painotettu keskiarvo ȳ. j :sta ja V µ on kokonaistarkkuus Jäljelle jää vielä p(τ y) = p(µ, τ y) p(µ τ, y) jota ei saada suljettuun muotoon, mutta koska yksiulotteinen on siitä helppo poimia näytteitä (esim. inverse-cdf) Hierarkkinen normaalijakaumamalli - laskenta faktoroimallla Helppo poimia näytteitä kun posteriorijakauma faktoroitu edellä mainittuihin osiin p(θ, µ, τ y) p(τ y)p(µ τ, y)p(θ µ, τ, y) Tehtävä 5.1* - ks. "Computation" s. 137 Slide 22

12 Valmennuskurssien tehon arviointi Esim6_2.m Erillismalli - todennäköisyydellä 0.5 A:n todellinen valmennusefekti on pienempi kuin 28 Yhteismalli - (µ, σ) = (7.9, 4.2) Slide 23 - todennäköisyydellä 0.5, A:n todellinen valmennusefekti on pienempi kuin ei todennäköisyyttä sille, että A>B Hierarkkinen malli (ks. kirja) - todennäköisyydellä 0.93, A:n todellinen valmennusefekti on pienempi kuin 28 Meta-analyysi Meta-analyyissa yhdistetään ja analysoidaan useiden samaa aihetta tutkivien analyysien tuloksia - erityisesti lääketieteessä usein pieniä kokeita järjestetään eri puolilla maapalloa (yksittäisen instanssin resurssit riittävät vain pieneen kokeeseen) - usein pienen testin tuloksissa liikaa epävarmuutta - meta-anlyysilla yhdistetään julkaistut tulokset epävarmuuden vähentämiseksi Slide 24 - meta-analyysi hoituu luontevasti hierarkkisella mallilla Kiinnostuneet voivat lukea esimerkin kirjasta (s. 145)

13 Vaihtokelpoisuus Perustelu miksi voidaan käyttää - datalle yhteistä mallia - parametreille yhteistä prioria Lievempi ehto kuin riippumattomuus "Ignorance implies exchangeability" Slide 25 Vaihtokelpoisuus Joukko kokeita j = 1,..., J Kokeeseen j liittyy havainnot y j, parametri θ j ja likelihood p(y j θ j ) Osa parametreista voi olla yhteisiä kaikille kokeille - esimerkiksi hierarkkisessa normaalijakaumamallissa voi olla θ j = (µ j, σ 2 ), jolloin oletetaan, että eri kokeissa on sama varianssi Slide 26

14 Vaihtokelpoisuus Vaihtokelpoisuus voidaan määritellä kahdella tavalla 1. Jos mitään muuta informaatiota kuin data y ei ole saatavilla erottamaan θ j :ta toisistaan ja parametreja ei voida järjestää tai ryhmitellä, voidaan olettaa parametrien välinen symmetria niiden priorijakaumassa - tämä symmetria voidaan esittää vaihtokelpoisuudella Slide Parametrit θ 1,..., θ J ovat vaihtokelpoisia yhteisjakaumassaan jos p(θ 1,..., θ J ) on invariantti indeksien (1,..., J) permutaatioille Esimerkiksi rottakokeessa 1. ei muuta informatioita kuin n j joiden ei oleteta liittyvän θ j :n; joten voidaan olettaa vaihtokelpoisuus 2. jos kokeet numeroidaan uudelleen ja koe 17 vaihtuu kokeeksi 44, tämä ei vaikuta oletukseen priori-informaatiosta, joten voidaan olettaa vaihtokelpoisuus Vaihtokelpoisuus Vaihtokelpoisuus ei tarkoita etteivätkö kokeiden tulokset voisi olla erilaisia - esim. jos tiedämme, että kokeet on tehty kahdessa eri laboratoriossa, joista toisessa tiedetään olevan rotilla paremmat olot, mutta emme tiedä mitkä kokeet on tehty missä laboratoriossa - a priori kokeet edelleen vaihtokelpoisia Slide 28 - mallissa voisi olla tuntemattomana parametrina mistä laboratoriosta rotta tulee, ja ehdollisesti samasta paikasta tuleville yhteinen priori (klusterointimalli)

15 Vaihtokelpoisuus Vaihtokelpoisuuden yksinkertaisin muoto (ei ainoa) parametreille θ on riippumattomat näytteet priori- tai populaatiojakaumasta J p(θ φ) = p(θ j φ) j=1 Slide 29 Yleensä φ tuntematon ja halutaan θ:n marginaalijakauma J p(θ) = p(θ j φ) p(φ)dφ j=1 Tämä muoto on riippumattomien identtisten jakaumien sekamalli (mixture of iid distributions) de Finettin lauseen mukaan, kun J, kaikki hyvin käyttäytyvät (θ 1,..., θ J ):n vaihtokelpoiset jakaumat voidaan kirjoittaa tässä muodossa - formaalisti ei päde kun J äärellinen, mutta usein riittävästi Vaihtokelpoisuus Esimerkki: Noppa jonka sivujen todennäköisyydet θ 1,...,θ 6 - ilman muuta tietoa θ 1,...,θ 6 vaihtokelpoisia - lisärajoitteen 6 j=1 θ j vuoksi eivät riippumattomia ja siten ei voida mallittaa riippumattomien identtisten jakaumien sekamallina Slide 30

16 Vaihtokelpoisuus 1) tiedetään, että laatikossa on 1 musta ja 1 valkoinen pallo, nostetaan ensin yksi pallo y 1, laitetaan se takaisin, sekoitetaan ja nostetaan toinen pallo y 2 - ovatko havainnot y 1 ja y 2 vaihtokelpoisia? - ovatko havainnot y 1 ja y 2 riippumattomia? 2) tiedetään, että laatikossa on 1 musta ja 1 valkoinen pallo, nostetaan ensin yksi Slide 31 pallo y 1, ei laiteta sitä takaisin, ja nostetaan toinen pallo y 2 - ovatko havainnot y 1 ja y 2 vaihtokelpoisia? - ovatko havainnot y 1 ja y 2 riippumattomia? 3) tiedetään, että laatikossa on mustaa ja valkoista palloa, nostetaan ensin yksi pallo y 1, ei laiteta sitä takaisin, ja nostetaan toinen pallo y 2 - ovatko havainnot y 1 ja y 2 vaihtokelpoisia? - ovatko havainnot y 1 ja y 2 riippumattomia? - voidaanko toimia aivan kuin jos havainnot olisivat riippumattomia? Vaihtokelpoisuus 4) tiedetään, että laatikossa on muutamia (n tunnettu) mustia ja valkoisia palloja (suhdetta ei tunneta), nostetaan ensin yksi pallo y 1, laitetaan se takaisin, sekoitetaan ja nostetaan toinen pallo y 2 Slide 32 - ovatko havainnot y 1 ja y 2 vaihtokelpoisia? - ovatko havainnot y 1 ja y 2 riippumattomia? - voidaanko toimia aivan kuin jos havainnot olisivat riippumattomia? 5) tiedetään, että laatikossa on muutamia (n tunnettu) mustia ja valkoisia palloja (suhdetta ei tunneta), nostetaan ensin yksi pallo y 1, ei laiteta sitä takaisin, ja nostetaan toinen pallo y 2 - ovatko havainnot y 1 ja y 2 vaihtokelpoisia? - ovatko havainnot y 1 ja y 2 riippumattomia? - voidaanko toimia aivan kuin jos havainnot olisivat riippumattomia?

17 Vaihtokelpoisuus 6) tiedetään, että laatikossa on paljon (n voi olla tunnettu) mustia ja valkoisia palloja (suhdetta ei tunneta), nostetaan ensin yksi pallo y 1, ei laiteta sitä takaisin, ja nostetaan toinen pallo y 2 - ovatko havainnot y 1 ja y 2 vaihtokelpoisia? - ovatko havainnot y 1 ja y 2 riippumattomia? Slide 33 - voidaanko toimia aivan kuin jos havainnot olisivat riippumattomia? Vaihtokelpoisuus Esimerkki: 8 USA:n osavaltion erojen määrä per 1000 asukasta vuonna ilman muuta tietoa y 1,..., y 8 vaihtokelpoisia Seitsemän ensimmäisen erojen määrät ovat 5.6, 6.6, 7.8, 5.6, 7.0, 7.2, y 1,..., y 8 vaihtokelpoisia Slide 34 Vaihtoehtoisesti tiedossa, että 8 osavaltiota ovat Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming, mutta järjestystä ei tiedetä - ennen datan näkemistä edelleen y 1,..., y 8 vaihtokelpoisia, mutta priorijakauma voisi ottaa huomioon, että Utahissa asuu paljon mormoneja ja Nevadassa on helppo saada ero; priori voisi olla multimodaalinenkin Vaihtoehtoisesti tiedossa, että y 8 on Nevada - jopa ennen datan näkemistä, y 1,..., y 8 eivät enää vaihtokelpoisia, koska on informaatiota joka erottaa y 8 :n muista - voisi olettaa, että p(y 8 > max(y 1,..., y 7 )) suuri - Nevadassa eroja 13.9 per 1000 asukasta

18 Vaihtokelpoisuus ja lisäinformaatio yksiköistä Slide 35 Esimerkki: jos olisi tiedossa eroluku x j osavaltiossa j edellisenä vuotena - y j :t eivät vaihtokelpoisia - (x j, y j ):t vaihtokelpoisia - yleisesti voidaan tehdä vaihtokelpoinen malli ehdolla lisäinformaatio J p(θ 1,..., θ J x 1,..., x J ) = p(θ j φ, x j ) p(φ x 1,..., x J )dφ j=1 - x j :stä käyteään termiä covariate, joka viittaa siihen, että sen arvo vaihtelee yhdessä y j :n kanssa Tällä tavalla vaihtokelpoisuusmalleista tulee hyvin yleiskäyttöisiä, koska lisäinformaatio joka erottelisi yksiköt voidaan sisällyttää muuttujiin x ja y Kommentit6.pdf sisältää lisäesimerkkejä Vaihtokelpoisuus ja lisäinformaatio yksiköistä Esimerkki: myrkyllisyyskoe - x i pitoisuus - y i kuolleiden eläimien määrä - (x i, y i ) vaihtokelpoisia ja käytettiin logistista regressiomallia Slide 36 n p(α, β y, n, x) p(y i α, β, n i, x i )p(α, β) i=1

19 Vaihtokelpoisuus ja ehdollinen mallintaminen* (s. 354) Yhteismalli vaihtokelpoisille (x i, y i ) p(x, y ϕ, θ) = p(x ϕ)p(y x, θ) Oletetaan ϕ ja θ a priori riippumattomiksi, eli p(ϕ, θ) = p(ϕ)p(θ), jolloin yhteisposteriorijakauma Slide 37 p(ϕ, θ x, y) = p(ϕ x)p(θ x, y) Voimme tutkia termiä p(θ x, y) yksinään p(θ x, y) p(y x, θ)p(θ) Jos x valittu esim. koejärjestelyssä, p(x) tunnettu ja ei ole parametreja ϕ Hierarkkinen vaihtokelpoisuus Esimerkki: sydäntautien hoidon tehokkuus - kaikki potilaat eivät keskenään vaihtokelpoisia - yksittäisissä sairaaloissa potilaat keskenään vaihtokelpoisia - sairaalat keskenään vaihtokelpoisia - hierarkkinen malli Slide 38

20 Osittainen tai ehdollinen vaihtokelpoisuus Usein havinnot eivät ole täysin vaihtokelpoisia Osittainen (partial) vaihtokelpoisuus Slide 39 - jos datapisteet ovat ryhmiteltävissä ryhmiksi voidaan tehdä hierarkkinen malli, jossa jokainen ryhmä mallitetaan erikseen mutta ryhmien ominaisuudet ovat tuntemattomia ja jos oletetaan että ryhmien ominaisuudet ovat vaihtokelpoisia voidaan ryhmien ominaisuuksille käyttää yhteistä prioria. Ehdollinen vaihtokelpoisuus - jos y i :hin liitty joku muu tieto x i, jonka vuoksi y i :t eivät vaihtokelpoisia, mutta (y i, x i ) vaihtokelpoisia voidaan tehdä yhteismalli tai ehdollinen malli (y i x i ). Vaihtokelpoisuus - kertaus Havainnot y 1,..., y n ovat vaihtokelpoisia yhteisjakaumassaan jos p(y 1,..., y n ) on invariantti indeksien (1,...,n) permutaatioille Parametrit θ 1,...,θ J ovat vaihtokelpoisia yhteisjakaumassaan jos p(θ 1,...,θ J ) on invariantti indeksien (1,..., J) permutaatioille Vaihtokelpoisuuden yksinkertaisin muoto (ei ainoa) on riippumattomat näytteet Slide 40 n J p(y θ) = p(y i θ j ) tai p(θ φ) = p(θ j φ) i=1 j=1

Viime kerralla. Luento 6. Normaalijakauma-approksimaatio - moodi. - havaittu informaatio

Viime kerralla. Luento 6. Normaalijakauma-approksimaatio - moodi. - havaittu informaatio Viime kerralla Normaalijakauma-approksimaatio - moodi - havaittu informaatio Suurten otosten teoria - asymptoottinen normaalius ja konsistenttisuus Slide 1 - vastaesimerkkejä Bayesilaisen päättelyn frekvenssiarviointi

Lisätiedot

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten Viime kerralla Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide 1 Cauchy-jakauma Ei-informatiivisista priorijakaumista Bayesilaisen

Lisätiedot

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori. Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali

Lisätiedot

exp p(y θ) = 1 2πσ θ)2 2σ 2(y y N(θ, σ 2 ) Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla

exp p(y θ) = 1 2πσ θ)2 2σ 2(y y N(θ, σ 2 ) Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla Luento 3 Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-malli Exponentiaalinen malli Slide 1 Cauchy-jakauma Lisää konjugaattiprioreista Ei-informatiivisista priorijakaumista

Lisätiedot

exp Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli

exp Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Luento 3 Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide Cauchy-jakauma Ei-informatiivisista priorijakaumista *-merkatut kalvot

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma

p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma Viime kerralla Marginalisointi Marginaalijakauma Posteriorijakauman faktorointi Ehdollinen posteriorijakauma Slide 1 Posteriorijakaumasta simulointi Normaalijakauma - tuntematon keskiarvo ja varianssi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Posteriorijakauman normaalijakauma-approksimaatio. Usein posteriorijakauma lähestyy normaalijakaumaa kun n

Posteriorijakauman normaalijakauma-approksimaatio. Usein posteriorijakauma lähestyy normaalijakaumaa kun n Luento 5 Päättely suurten otosten tapauksessa, n - normaalijakauma-approksimaatio - suurten otosten teoria - asymptoottinen normaalius ja konsistenttisuus - vastaesimerkkejä Slide 1 Bayesilaisen päättelyn

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali de Moivre ( ), Laplace ( ), Gauss ( )

Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali de Moivre ( ), Laplace ( ), Gauss ( ) Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali

Lisätiedot

3.6 Su-estimaattorien asymptotiikka

3.6 Su-estimaattorien asymptotiikka 3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

S Bayesilaisen mallintamisen perusteet

S Bayesilaisen mallintamisen perusteet S-114.2601 Bayesilaisen mallintamisen perusteet Laajuus: 5 op, L Opettajat: TkT Aki Vehtari, DI Simo Särkkä Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: 4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä

Lisätiedot

2. Uskottavuus ja informaatio

2. Uskottavuus ja informaatio 2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Luento 11. Muutama hyödyllinen Monte Carlo-menetelmä. Muutama hyödyllinen Monte Carlo-menetelmä. Mitä muuta hyödyllistä Gelman et al kirjasta löytyy

Luento 11. Muutama hyödyllinen Monte Carlo-menetelmä. Muutama hyödyllinen Monte Carlo-menetelmä. Mitä muuta hyödyllistä Gelman et al kirjasta löytyy Luento 11 Muutama hyödyllinen Monte Carlo-menetelmä Mitä muuta hyödyllistä Gelman et al kirjasta löytyy Kertaus koko kurssiin - tenttiinlukuohjeet Slide 1 Muutama hyödyllinen Monte Carlo-menetelmä Hylkäyspoiminta

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tilastollinen päättely II, kevät 2017 Harjoitus 1A Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - odotettu hyöty tai kustannus (expected utility or cost)

Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - odotettu hyöty tai kustannus (expected utility or cost) Viime kerralla Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - kuinka monta riippuvaa simulaationäytettä tarvitaan - joitakin perus-mcmc-menetelmien parannuksia Slide 1

Lisätiedot

Uskottavuuden ominaisuuksia

Uskottavuuden ominaisuuksia Luku 9 Uskottavuuden ominaisuuksia 9.1 Tyhjentävyys T yhjentävyys (Fisher 1922) luonnehtii täsmällisesti havaintoihin sisältyvän informaation kvantitatiivisesti. Parametrin θ estimaatti T(x) on tyhjentävä

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Patrik Hoyer Epävarmuuden mallintaminen 16 17.4.2008 LDA II, osa 3: epävarmuuden mallintaminen Luennot (16.4 ja 17.4) - ongelma, menetelmät, esimerkkejä (kalvot verkossa

Lisätiedot

Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia keskenään

Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia keskenään Viime kerralla Johdatus hierarkisiin malleihin Vaihtokelpoisuus Slide 1 Hierarkinen malli Esimerkki: sydäntautien hoidon tehokkuus Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia

Lisätiedot

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut).

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). KÄSITTEITÄ POPULAATIO Joukko, jota tutkitaan (äärellinen, ääretön). Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). Näiden välillä ei aina tehdä eroa, kun puhutaan

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

Log-tiheydet - yli- ja alivuotojen välttämiseksi laskenta usein suoritettava log-tiheyksillä

Log-tiheydet - yli- ja alivuotojen välttämiseksi laskenta usein suoritettava log-tiheyksillä Luento 7 Yleistä laskennasta mm. (luvut 10 ja 12) - karkea estimointi - posteriorimoodit - kuinka monta simulaationäytettä tarvitaan Monte Carlo (luku 11) Slide 1 - suora simulointi - hiladiskretointi

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

MTTTP5, luento Luottamusväli, määritelmä

MTTTP5, luento Luottamusväli, määritelmä 23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A

Lisätiedot

5.7 Uskottavuusfunktioon perustuvia testejä II

5.7 Uskottavuusfunktioon perustuvia testejä II 5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa

Lisätiedot

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin

Lisätiedot

Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1)

Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1) 5. ESTIMOINTITEORIAN PERUSTEITA 5.1. Perusjakaumat 1-ulotteisina Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) Siksi tarvitaan todennäköisyyslaskentaa

Lisätiedot

Bayesiläinen tilastollinen vaihtelu

Bayesiläinen tilastollinen vaihtelu Bayesiläinen tilastollinen vaihtelu Janne Pitkäniemi FT, dos. (biometria), joht. til. tiet Suomen Syöpärekisteri Hjelt-instituutti /Helsingin yliopisto Periaatteet Tilastollinen vaihtelu koskee perusjoukon

Lisätiedot

Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely)

Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely) Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely) Ohjaaja: TkT Aki Vehtari Valvoja: Prof. Harri Ehtamo Kandidaattiseminaari 21 1.11.21 Esityksen rakenne Tausta Derivaattahavaintojen

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

&idx=2&uilang=fi&lang=fi&lvv=2015

&idx=2&uilang=fi&lang=fi&lvv=2015 20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia Tehtäväsarja I 1. Jatkoa Harjoitus 8A tehtävään 3. Muodosta odotusarvolle µ approksimatiivinen

Lisätiedot