Mitä on bayesilainen päättely?

Koko: px
Aloita esitys sivulta:

Download "Mitä on bayesilainen päättely?"

Transkriptio

1 Metodifestivaali Aki Vehtari AB TEKNILLINEN KORKEAKOULU Lääketieteellisen tekniikan ja laskennallisen tieteen laitos

2 Esityksen sisältö Miksi? Epävarmuuden esittäminen Tietämyksen päivittäminen Bayesilainen päättely Esimerkki terveydenhuollon data-analyysista

3 Miksi itse suosin bayesilaista päättelyä? Autan tutkimaan kompleksisia ilmiöitä - esim. teollisuusprosseja, terveydenhuollon rekisteriaineistoja, aivokuvantamista - paljon tuntemattomia asioita - useita vaikeasti suoraan mitattavia asioita Bayesilaisen tilastotieteen menetelmät joustavia - johdonmukainen tapa käsitellä kaikki tuntemattomat asiat ja epävarmuudet - mallin kompleksisuus voi riippua ilmiön kompleksisuudesta ja havaintojen epävarmuudesta

4 Epävarmuus ja bayesilainen tilastollinen päättely Epävarmuus esitetään todennäköisyyksillä Todennäköisyydet päivitetään uuden tiedon avulla

5 Epävarmuus ja bayesilainen tilastollinen päättely Satunnainen vs. tietämyksellinen epävarmuus Epävarmuus voidaan jakaa Satunnaiseen (aleatoriseen) epävarmuuteen - emme voi saada havaintoja, jotka auttaisivat sen epävarmuuden pienentämisessä Tietämykselliseen (episteemiseen) epävarmuuteen - voimme saada havaintoja, jotka auttavat sen epävarmuuden pienentämisessä Vertaa kolikko - kahdella tarkastelijalla voi olla eri tietämyksellinen epävarmuus - tietämyksellinen todennäköisyys muuttuu, kun informaatio muuttuu

6 Epävarmuus ja bayesilainen tilastollinen päättely Esimerkki: Kahdenvärisiä nappuloita pussissa Jos eriväristen nappuloiden määrän suhde tunnettu - epävarmuutta seuraavaksi ilmestyvän nappulan väristä Jos eriväristen nappuloiden määrän suhde tuntematon - lisäksi tietämyksellistä epävarmuutta - tietämyksellinen epävarmuus muuttuu kun nappuloita nostetaan Jos yksittäin noston sijasta aikoisimme kumota koko pussin ja laskea värien määrän suhteen - ei satunnaista epävarmuutta - vain tietämyksellinen epävarmuus pussin sisällöstä

7 Epävarmuus ja bayesilainen tilastollinen päättely Esimerkki: kuolleisuus Kuolinsyytilastoista voidaan laskea esim. alkoholin aiheuttamat kuolemat Suomessa - voidaan tarkentaa ja laskea erikseen eri ryhmille esim. sukupuolen, iän ja koulutustaustan mukaan - voidaan laskea ryhmille riski kuolla kyseisestä syystä vertaamalla kuolemien määrää ryhmän kokoon Voidaan tarkastella pienempiä alueita kuten kuntia tai ruutuja - vertaamalla alueen taustaväestön rakennetta koko Suomen tilastoon, voidaan laskea taustaväestön mukainen odotusarvoinen kuolemien määrä

8 Epävarmuus ja bayesilainen tilastollinen päättely Esimerkki: alueen kuolleisuusluku Joillakin alueilla näyttää kuitenkin kuolevan enemmän kuin kyseisen alueen väestörakenteen mukaan pitäisi tietämyksellistä epävarmuutta alueen kuolleisuudesta Kuolleisuusluvun arvo 1 tarkoittaa, että alueella on väestörakenne huomioiden (ruudun taustaväestön määrä sekä ikä-, sukupuoli- ja koulutusjakauma) kuolemia yhtä paljon kuin Suomessa keskimäärin Lukua yksi isommat arvot kertovat, että ruudussa on sen väestörakenteeseen nähden keskimääräistä enemmän alkoholiin liittyviä kuolemia Vastaavasti lukua 1 pienemmät arvot kertovat keskimääräistä pienemmästä kuolemien määrästä

9 Epävarmuus ja bayesilainen tilastollinen päättely Esimerkki: alueen kuolleisuusluku Jos alueellinen kuolleisuusluku tunnettu - epävarmuutta seuraavan ajanjakson aikana kuolevien määrästä Jos alueellinen kuolleisuusluku tuntematon - tietämyksellinen epävarmuus muuttuu kun havaitaan kuolleiden määrä

10 Epävarmuus ja bayesilainen tilastollinen päättely Epävarmuuksien yhdistäminen? Merkitään - y havaitut nappulat (tai kuolemantapaukset) - θ nappuloiden suhde (tai kuolleisuusluku) - I taustatieto ongelmasta - p( ) ehdollinen todennäköisyys(tiheys) Havaintoihin liittyvä satunnainen epävarmuus, jos nappuloiden suhde θ tunnettu p(y θ, I) Ilmiöön liittyvä tietämyksellinen epävarmuus ennen havaintoja p(θ I) Kuinka päivittää tietämyksellinen epävarmuus kun nappuloita havaittu? p(θ y, I)?

11 Epävarmuus ja bayesilainen tilastollinen päättely Bayesin kaava Kun valittu p(y θ, I) sekä p(θ I), voidaan laskea Bayesin kaavalla p(θ y, I) = p(y θ, I)p(θ I) p(y θ, I)p(θ I)dθ - missä alakerran termi, jotta vasemman puolen todennäköisyydet summautuisivat 1:een

12 Bayesilainen tilastollinen päättely Bayesilaisen mallin osat Havaintomalli p(y θ, I) - matemaattinen kuvaus havaintomallille (satunnainen osa) - jos ilmiö tunnettu millä todennäköisyydellä havaittaisiin y tietyllä arvolla - esim. mikä on punaisten nappuloiden määrä kun nostetaan n nappulaa? binomi-jakauma - esim. mikä on epävarmuus kuolemien määrästä, jos kuolemien odotusarvo ja kuolleisuusluku on tunnettu esim. Poisson-jakauma, jota usein käytetään lukumäärähavainnoille

13 Bayesilainen tilastollinen päättely Bayesilaisen mallin osat Priori p(θ I) - matemaattinen kuvaus mitä tiedetään θ:sta - tietämyksellinen epävarmuus ennen havaintoja - malli ja priori erottamattomat (kytketty mallin kautta) - esim. vähintään yksi nappula kumpaakin väriä - esim. lähekkäisten alueiden kuolleisuusluvut ovat samankaltaiset - huom: priorit useimmiten tämän esimerkin mukaisesti kertovat riippuvuusrakenteesta eivätkä suoraan esim. kuolleisuusluvusta!

14 Bayesilainen tilastollinen päättely Epävarman tietämyksen jatkokäyttö Jatkopäättelyssä kuten ennusteissa huomioidaan epävarmuus - esim. nostettu pussista yksi punainen nappula Priori Likelihood / Posteriori p p Nappuloiden suhde Nappuloiden suhde Todennäköisin suhde on 1 seuraava on punainen todennäköisyydellä 1 Huomioidaan epävarmuus seuraava on punainen todennäköisyydellä 2/3

15 Bayesilainen tilastollinen päättely Epävarmuuden huomioiminen ja integrointi Eri suhdevaihtoehtoja (tai kuolleisuuslukuja) painotetaan niiden todennäköisyydellä - eli integroidaan yli suhteen posterioriepävarmuuden Integroimalla epävarmuuksien yli otetaan epävarmuudet johdonmukaisesti huomioon - usein haastava osa menetelmien käyttöä

16 Bayesilainen malli Malli - pyrkii ennustamaan ilmiön käyttäytymistä - voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä Usein yksinkertaistaa todellisuutta - ilmiöstä saadut havainnot rajoitettuja - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten

17 Bayesilainen malli Esimerkki Pudotetaan palloa eri korkeuksilta ja mitataan putoamisaika sekunttikellolla käsivaralla - Newtonin mekaniikka - ilmanvastus, ilmanpaine, pallon muoto, pallon pintarakenne - ilmavirtaukset - suhteellisuusteoria Ottaen huomioon mittaukset, kuinka tarkka malli kannattaa tehdä? On olemassa hyvin paljon tilanteita, joissa yksinkertaiset mallit hyödyllisiä ja käytännön kannalta yhtä tarkkoja kuin monimutkaisemmat

18 Esimerkki Alkoholikuolleisuuden alueelliset erot Yhteistyössä THL:n kanssa, aineisto Tilastokeskukselta 5km 5km asuttuja ruutuja Suomessa n n tuntematonta alueellista kuolleisuuslukua (vertaa: nappulapussia) - odotusarvoinen kuolemien määrä monessa ruudussa alle 1 - kuolleisuusluvun arviossa paljon epävarmuutta, jos kuolee 0 tai 1 (vertaa: nappulapussista nostetaan vain yksi nappula) - lisätään spatiaalinen priori, jonka mukaan lähekkäiset ruudut samankaltaisia - samankaltaisuuden aste myös tuntematon!

19 Esimerkki Alkoholikuolleisuuden alueelliset erot Sukupuoli-ikä-koulutus-vakiointi Sekä pitkän että lyhyen matkan korrelaatiomalli Onko kuolleisuusluku koholla asutuskeskuksissa?

20 Esimerkki Syöpätapausten ennustaminen Yhteistyössä ja aineisto Syöpärekisteri 50 vuoden kuntakohtaisten syöpätapausten perusteella ennuste tulevaisuuteen 2.5 Helsinki Espoo Tampere Iisalmi Kajaani

21 Muita esimerkkiprojekteja Potilasrekisteriaineistojen analyysi (+THL) Vanhusten laitostumisriskin ennustaminen (+THL, Vantaa) Lonkkamurtumaleikkauksen kuntoutuksen keston ja onnistumisen ennustaminen (+THL) Sydäntautien esiintyvyyden alueelliset ja ajalliset vaihtelut ja ennusteet (+THL) Geenilaajuinen assosiaatioanalyysi ja geneettisen variaation alueellinen mallintaminen (+THL,FIMM) EKG-pohjainen ennuste sydämen vauriosta ja paranemisesta sydänkohtauksen jälkeen (+BioMag Laboratory) Elämäntapamuutosinterventio työterveydenhuollossa (+HEMA)

22 Bayesilaisen päättelyn etuja Epävarmuuksien johdonmukainen käsittely - eri tiedonlähteiden yhdistäminen helppoa - kun mallia muutetaan, ei päättelyn periaate muutu Epävarmuuksien yli integrointi - mahdollistaa joustavien (mahdollisesti hyvin paljon parametreja) mallien turvallisemman käytön Priorien käyttö - sekä kvantitatiiviset että kvalitatiiviset

23 Kirjallisuutta Henkilökohtaiset suositukseni kirjoista, joista aloittaa tutustuminen bayesilaiseen päättelyyn - Bolstad: Introduction to Bayesian Statistics hyvä johdatus Bayes-perusteisiin ja vertailu frekventistisiin menetelmiin - Gelman & Hill: Data Analysis Using Regression and Multilevel/Hierarchical Models erinomainen teos yleisesti käytännön data-analyysin tekemisestä ja probabilistisesta ajattelusta edeten askeleittain yksinkertaisemmasta monitasoisempaan ja päätyen Bayes-menetelmiin - Gelman et al: Bayesian data analysis myydyin Bayes-kirja on kattava käytäntöön keskittyvä perusteos, joka suuren informatiivisuutensa vuoksi edellisiä vaativampi

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin

Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin ja monimuuttuja-analyysiin Loppuseminaari: Terveydenhuollon uudet analyysimenetelmät (TERANA) Aki Vehtari AB HELSINKI UNIVERSITY OF TECHNOLOGY Department of Biomedical Engineering and Computational Science

Lisätiedot

Bayesilaisen mallintamisen perusteet kurssin sisältö

Bayesilaisen mallintamisen perusteet kurssin sisältö S-114.2601 Bayesilaisen mallintamisen perusteet Laajuus: 5 op, L Opettajat: Dos. TkT Aki Vehtari, DI Jarno Vanhatalo Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten Viime kerralla Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide 1 Cauchy-jakauma Ei-informatiivisista priorijakaumista Bayesilaisen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

S-114.600 Bayesilaisen mallintamisen perusteet

S-114.600 Bayesilaisen mallintamisen perusteet S-114.600 Bayesilaisen mallintamisen perusteet Laajuus: 2 ov Opettajat: TkT Aki Vehtari, DI Toni Tamminen Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä

Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Antti Penttinen Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Metodifestivaalit Jyväskylän yliopisto 21.5.2013 Suunnitelma

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori. Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

Bayesiläinen tilastollinen vaihtelu

Bayesiläinen tilastollinen vaihtelu Bayesiläinen tilastollinen vaihtelu Janne Pitkäniemi FT, dos. (biometria), joht. til. tiet Suomen Syöpärekisteri Hjelt-instituutti /Helsingin yliopisto Periaatteet Tilastollinen vaihtelu koskee perusjoukon

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely)

Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely) Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely) Ohjaaja: TkT Aki Vehtari Valvoja: Prof. Harri Ehtamo Kandidaattiseminaari 21 1.11.21 Esityksen rakenne Tausta Derivaattahavaintojen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence

Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tilastollinen päättely, 10 op, 4 ov

Tilastollinen päättely, 10 op, 4 ov Tilastollinen päättely, 0 op, 4 ov Arto Luoma Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede 3304 TAMPEREEN YLIOPISTO Syksy 2006 Kirjallisuutta Garthwaite, Jolliffe, Jones Statistical Inference,

Lisätiedot

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

TILASTOLLINEN OPPIMINEN

TILASTOLLINEN OPPIMINEN 301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes Ohjaaja: TkT Arto Klami Valvoja: Prof.

Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes Ohjaaja: TkT Arto Klami Valvoja: Prof. Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes 11.06.2012 Ohjaaja: TkT Arto Klami Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Mikrobikriteereiden arviointi esimerkkinä kampylobakteeri

Mikrobikriteereiden arviointi esimerkkinä kampylobakteeri Mikrobikriteereiden arviointi esimerkkinä kampylobakteeri Taustaa: NMDD-projekti 2011-2012 Rahoitus: pohjoismaiden ministerineuvosto Vast.tutkija: Maarten Nauta, DTU Epävarmuusanalyysin Bayes-mallinnus,

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

Seurantojen otoskoon arviointi RKTL:ssä

Seurantojen otoskoon arviointi RKTL:ssä Seurantojen otoskoon arviointi RKTL:ssä Mika Kurkilahti MTT 23.8.2012 Miksi seurantoja tehdään? RKTL:lle esitetään jatkuvasti paljon kysymyksiä Mikä on eläinkantojen koko ajallisesti ja alueellisesti,

Lisätiedot

1. TILASTOLLINEN HAHMONTUNNISTUS

1. TILASTOLLINEN HAHMONTUNNISTUS 1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

Terveydenhuollon tavoitteet

Terveydenhuollon tavoitteet Apuvälineet kliiniseen päätöksentekoon Olli-Pekka Ryynänen Itä-Suomen yliopisto Terveydenhuollon tavoitteet Tuotetaan terveyttä niin paljon kuin mahdollista sillä henkilökuntaresurssilla, joka on käytettävissä.

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-114.2510 Laskennallinen systeemibiologia 3. Harjoitus 1. Koska tilanne on Hardy-Weinbergin tasapainossa luonnonvalintaa lukuunottamatta, saadaan alleeleista muodostuvien eri tsygoottien genotyyppifrekvenssit

Lisätiedot

-10 km² ruutuaineistoon perustuva tutkimus. Marika Hakala. Tutkimuksen taustaa

-10 km² ruutuaineistoon perustuva tutkimus. Marika Hakala. Tutkimuksen taustaa Sepelvaltimotautikuolleisuuden alueelliset erot Suomessa -10 km² ruutuaineistoon perustuva tutkimus Marika Hakala Tutkimuksen taustaa Suomessa kuolleisuudessa on merkittävää alueellinen vaihtelua: Itä-

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

Tautikartoitus CAR- ja partitiomalleilla

Tautikartoitus CAR- ja partitiomalleilla Esimerkkeinä sydän- ja verisuonitaudit sekä keuhkosyöpä 1,2 1 Lääketieteellisen tekniikan ja laskennallisen tieteen laitos, TKK 2 Terveyden ja hyvinvoinnin laitos (THL) Terveydenhuollon uudet analyysimenetelmät

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

Pelaisitko seuraavaa peliä?

Pelaisitko seuraavaa peliä? Lisätehtävä 1 seuraavassa on esitetty eräs peli, joka voidaan mallintaa paramterisena tilastollisena mallina tehtävänä on selvittää, kuinka peli toimii ja näyttää mallin takana oleva apulause (Tehtävä

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Patrik Hoyer Epävarmuuden mallintaminen 16 17.4.2008 LDA II, osa 3: epävarmuuden mallintaminen Luennot (16.4 ja 17.4) - ongelma, menetelmät, esimerkkejä (kalvot verkossa

Lisätiedot

Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali de Moivre ( ), Laplace ( ), Gauss ( )

Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali de Moivre ( ), Laplace ( ), Gauss ( ) Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely

T Luonnollisten kielten tilastollinen käsittely T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:

Lisätiedot

Epävarmuuden hallinta bootstrap-menetelmillä

Epävarmuuden hallinta bootstrap-menetelmillä 1/17 Epävarmuuden hallinta bootstrap-menetelmillä Esimerkkinä taloudellinen arviointi Jaakko Nevalainen Tampereen yliopisto Metodifestivaalit 2015 2/17 Sisältö 1 Johdanto 2 Tavanomainen bootstrap Bootstrap-menettelyn

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tilastollinen päättely II, kevät 2017 Harjoitus 1A Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio

Lisätiedot

2. Uskottavuus ja informaatio

2. Uskottavuus ja informaatio 2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: 4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä

Lisätiedot

Kuolevuusseminaari 9.4.2013

Kuolevuusseminaari 9.4.2013 Kuolevuusseminaari 9.4.2013 Jari Niittuinperä Kuolevuuseminaari 19.3. Vakuutusalan viimeaikaiset kuolevuustutkimukset Prosessi ja siihen liittyvät haasteet (data, mallintaminen, laskenta, tulosten verifiointi)

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

1 Bayesin teoreeman käyttö luokittelijana

1 Bayesin teoreeman käyttö luokittelijana 1 Bayesin teoreeman käyttö luokittelijana Bayesin kaavan mukaan merkityksen kontekstille c ehdollistettu todennäkköisyys voidaan määrittää alla olevan yhtälön perusteella: P ( c) = P (c )P ( ) P (c) (1)

Lisätiedot

JOHDATUS TEKOÄLYYN LUENTO 4.

JOHDATUS TEKOÄLYYN LUENTO 4. 2009 CBS INTERACTIVE JOHDATUS TEKOÄLYYN LUENTO 4. TODENNÄKÖISYYSMALLINNUS II: BAYESIN KAAVA TEEMU ROOS Marvin Minsky Father of Artificial Intelligence, 1927 2016 PINGVIINI(tweety) :- true. Wulffmorgenthaler

Lisätiedot

Pohjois-Savon väestörakenne v. 2013 sekä ennuste v. 2020 ja v. 2030

Pohjois-Savon väestörakenne v. 2013 sekä ennuste v. 2020 ja v. 2030 POHJOIS-SAVON SOTE-PALVELUIDEN TUOTTAMINEN Pohjois-Savon väestörakenne v. 2013 sekä ennuste v. 2020 ja v. 2030 Lähde: Tilastokeskus, ennuste vuodelta 2012 21.1.2015 Väestö yhteensä sekä 75 vuotta täyttäneet

Lisätiedot

Olli-Pekka Ryynänen sidonnaisuudet

Olli-Pekka Ryynänen sidonnaisuudet Olli-Pekka Ryynänen sidonnaisuudet Itä-Suomen yliopisto: yleislääketieteen professori Kuopion yliopistollinen sairaala: hallinnollinen apulaisylilääkäri (15%) Wisane oy hallituksen jäsen, tekee terveydenhuollon

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Mallin tarkistus (luku 6) - onko mallin puutteilla havaittava vaikutus oleelliseen päättelyyn?

Mallin tarkistus (luku 6) - onko mallin puutteilla havaittava vaikutus oleelliseen päättelyyn? Luento 9 Päätösanalyysi (luku 22) - hyöty- ja kustannusfunktiot (utility and cost functions) - odotettu hyöty tai kustannus (expected utility or cost) Mallin tarkistus (luku 6) - onko mallin puutteilla

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta:

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: RMS22 Päätöksenteko epävarmuuden vallitessa Syksy 28 Harjoitus 8 Ratkaisuehdotuksia Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: Pankki harkitsee myöntääkö 5. euron lainan asiakkaalle 12%

Lisätiedot

031021P Tilastomatematiikka (5 op)

031021P Tilastomatematiikka (5 op) 031021P Tilastomatematiikka (5 op) Jukka Kemppainen Mathematics Division Yleinen todennäköisyys Kertausmateriaalissa esiteltiin koulusta tuttuja todennäköisyysmalleja. Tällä kurssilla todennäköisyys on

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1 T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma

p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma Viime kerralla Marginalisointi Marginaalijakauma Posteriorijakauman faktorointi Ehdollinen posteriorijakauma Slide 1 Posteriorijakaumasta simulointi Normaalijakauma - tuntematon keskiarvo ja varianssi

Lisätiedot

Valinnanvapaus ja alueellinen saatavuus Kelan kuntoutuksessa. Visa Pitkänen Tutkija Kelan

Valinnanvapaus ja alueellinen saatavuus Kelan kuntoutuksessa. Visa Pitkänen Tutkija Kelan Valinnanvapaus ja alueellinen saatavuus Kelan kuntoutuksessa Visa Pitkänen Tutkija Kelan tutkimus @visapitkanen Johdanto Terveyspalveluiden tasapuolinen alueellinen saatavuus on usein tärkeä tavoite palveluiden

Lisätiedot

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi Historiaa Bayesin kaavan hyödyntäminen BN-ohjelmistoja ollut ennenkin Tanskalaisten Hugin

Lisätiedot

Johdatus geospatiaaliseen tutkimukseen

Johdatus geospatiaaliseen tutkimukseen LYY-menetelmä työpaja, 15.2.2012, Joensuu Johdatus geospatiaaliseen tutkimukseen Olli Lehtonen Historia- ja maantieteiden laitos Itä-Suomen yliopisto SISÄLLYS: Paikkatieto Spatiaalinen autokorrelaatio

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot