AIKALOGIIKAT TIETOKONEOHJELMIEN VERIFIOINNISSA

Koko: px
Aloita esitys sivulta:

Download "AIKALOGIIKAT TIETOKONEOHJELMIEN VERIFIOINNISSA"

Transkriptio

1 AIKALOGIIKAT TIETOKONEOHJELMIEN VERIFIOINNISSA 1 HISTORIAA Lineaarinen aikalogiikka LTL nueli 1977 Turing-palkinto 1996 Aikalogiikat verifioinnissa 1 Antti Valmari TAMEREEN TEKNILLINEN YLIOISTO Ojelmistotekniikan laitos 1. HISTORIAA 2. SOVELLUSALUE 3. LINEAARINEN AIKALOGIIKKA (LTL) 4. KÄSITTEITÄ 5. LTL MALLINTARKASTUS 6. LASKENTAUULOGIIKAT CTL JA CTL* 7. JOHTOÄÄTÖKSIÄ Laskentapuulogiikka CTL Clarke & Emerson 1981 CTL* Emerson & Halpern 1986 Mallintarkastus Büci-automaateilla Vardi & Wolper 1986 Gödel-palkinto 2000 (tosin ei ian tästä) 2 SOVELLUSALUE Aikalogiikat verifioinnissa 2 Reaktiivinen järjestelmä reactive system Jatkuvassa vuorovaikutuksessa ympäristönsä kanssa ainakin kateen suuntaan kännykkä issin ojausojelmisto tietoliikenneprotokollan läetinprosessi vaikeus: keskustelujen vuorovaikutukset Rinnakkaisjärjestelmä concurrent system Koostuu > 1 itsenäisestä, mutta keskenään vuorovaikuttavasta osasta osia kutsutaan prosesseiksi, taskeiksi tai säikeiksi tietoliikenneprotokolla kännykkä + puelinkeskus puelinkeskus issin ojausojelmisto + moottori + issikori vaikeus: suoritusjärjestysten moninaisuus, epädeterminismi 3 LINEAARINEN AIKALOGIIKKA (LTL) Aikalogiikat verifioinnissa 3 Atomiset propositiot yleensä tilainformaatiota x = 0 issi on kerroksessa 3 nappi on alaalla tietoliikennekanavassa on viesti joissakin logiikoissa tapatumainformaatiota nappi painettiin alas viesti saapui jatkossa Π = tilapropositioiden joukko Kaavan malli (tilapojainen) päättymätön jono järjestelmän tilojen Π-abstraktioita (2 Π ) ω järjestelmä toteuttaa kaavan jokainen sen suorituksesta syntyvä tilajono toteuttaa kaavan tapa: lukkiutuvat suoritukset jatketaan päättymättömiksi toistamalla viimeistä tilaa kolme madollisuutta: järjestelmä toteuttaa ϕ järjestelmä toteuttaa ϕ järjestelmä ei toteuta kumpaakaan

2 Kielen osat Aikalogiikat verifioinnissa 4 normaalit propositionaaliset operaattorit:,,, (, tai, ) aina, encefort tai always ϕ pätee tarkasteluetkestä alkaen loputtomiin i i+1 i+2 = ϕ aina kun i N ϕ pätee ainakin kerran tarkasteluetkestä alkavassa tulevaisuudessa lopulta, eventually ϕ ϕ U ψ lopulta ψ, ja (melkein) siien asti ϕ kunnes, until ϕ U ϕ ϕ pätee seuraavassa tilassa = ϕ jos ja vain jos = ϕ ϕ ϕ ϕ ϕ U ψ ψ ϕ (ϕ U ψ) usein vältetään taallaan spesifikaatioissa muita tiukat operaattorit, esim. ϕ ϕ menneisyyteen viittavat operaattorit 4 KÄSITTEITÄ Aikalogiikat verifioinnissa 5 Turvallisuus (safety) kiellettyä ei tapadu ( issi liikkeellä ovi auki ) viesti läetetty ( viesti vastaanotettu ) U viesti läetetty ( viesti läetetty ( viesti vastaanotettu ) U viesti läetetty ) vastaesimerkit äärellisiä tarkemmin: jos on vastaesimerkki, niin i siten, että B i+1, B i+2, : i B i+1 B i+2 on vastaesimerkki Elävyys (liveness) toivottua lopulta tapatuu issi kerroksessa 3 ( tilausnappi 3 alaalla issi kerroksessa 3 ) vastaesimerkit aina äärettömiä jokainen äärellin. jono jatkettavissa lailliseksi termin käyttö orjuvaa joillekin sisältää myös turvallisuuden vaitoetoinen käsite: etenevyys (progress) Havaintoja Aikalogiikat verifioinnissa 6 on sekä turvallisuus- että eläv.ominaisuus mikään muu ominaisuus ei ole ytäaikaa molempia false on turvallisuus- mutta ei eläv.ominaisuus jos { σ (2 Π ) ω ϕ } Ø, niin kaava muotoa ϕ ilmaisee elävyysominaisuuden jos A (2 Π ) ω, niin on olemassa A T ja A E s.e. A T on turvallisuusominaisuus A E on elävyysominaisuus A T A E = A A T A E = Ø Reiluus (fairness) on tavallista, että järjestelmä toteuttaa elävyysominaisuuden vain tietyin suoritusta koskevin oletuksin protokolla välittää viestin vain jos kanava päästää lopulta viestin läpi asiakas saa lopulta palvelua vain jos vuorojen jakaja ei syrji äntä loputtomasti prosessi esittää palvelupyynnön vain jos saa suoritusaikaa yteiseltä prosessorilta on tavallista tedä järjestelmän suoritusta koskevia reiluusoletuksia Aikalogiikat verifioinnissa 7 kaava ϕ toteutuu reiluusoletuksilla γ jos ja vain jos kaava γ ϕ toteutuu yleisimmät lajit: eikko reiluus γ 1 γ 2 valmis etenemään edennyt vava reiluus γ 1 γ 2 läetetty vastaanotettu tulkintaoje ϕ ϕ toteutuu äärettömän usein ϕ ϕ on lopulta jatkuvasti voimassa ymmärtämistä elpottaa jos miettii mitä reiluusoletus kieltää reiluusoletukset ovat usein vaikeita muodostaa! Änkytys (stuttering) saman tilan toistoa: änkytyksen poisto jonosta = poistetaan ne i, joille i = i+1 j: i i+j kaava on tunnoton änkytykselle, joss sen totuusarvo millekään jonolle ei muutu, kun änkytys poistetaan jos ei käytetä operaattoria, niin kaava on tunnoton änkytykselle änkytyserkkyys vastaa kykyä laskea näkymättömiä sisäisiä suoritusaskelia yleensä spesifikaatioiden alutaan olevan tunnottomia änkytykselle

3 5 LTL MALLINTARKASTUS Kripken rakenne Aikalogiikat verifioinnissa 8 verkkomainen rakenne S (äärellinen) joukko tiloja Π (äärellinen) joukko atomisia propositioita S S tilasiirtymät siten, että s S: s S: (s,s ) I S alkutilat val: S 2 Π tutkittavan järjestelmän tila-avaruus voidaan muodostaa mekaanisesti järjestelmän formaalista kuvauksesta pyrkii kasvamaan eksponentiaalisesti prosessien määrän suteen esim. n ruokailevaa filosofia: 3 n 1 tilaa saattaa kasvaa vielä nopeammin muuttujien määrän suteen usein valtavan suuri Mallintarkastustetävä annettu lineaarisen aikalogiikan kaava ϕ Kripken rakenne (S, Π,, I, val) selvitettävä päteekö (S, Π,, I, val) = ϕ ts. päteekö val(s 0 )val(s 1 )val(s 2 ) = ϕ aina kun s 0 I ja i: (s i, s i+1 ) Aikalogiikat verifioinnissa 9 kompleksisuus SACE-täydellinen ϕ :n suteen polynomiaikainen (S, Π,, I, val) :n suteen onneksi näin päin! ϕ yleensä lyyt iso kompleksisuus ei aittaa (S, Π,, I, val) yleensä valtava pieni kompleksisuus tärkeää Büci-automaatti kuten äärellinen automaatti, mutta yväksyminen käsitetään toisella tavalla yväksyy äärettömiä jonoja jono yväksytään jos ja vain jos se voidaan lukea niin, että käydään lopputilassa lin.aikalogiikkasovelluksissa aakkostona 2 Π lyennemerkintä: kaaren varrelle kirjoitettu propositionaalinen kaava edustaa kaikkia joukkoja Π, joille ko. kaava pätee mikään deterministinen B.a. ei esitä Aikalogiikat verifioinnissa 10 lisäesimerkki: ( Q ) eli Q Q Q Q Q Q propositiokaavat voi vaitoetoisesti panna tiloiin Mallintarkastus Büci-automaatilla on todella elppo tarkastaa, onko L(Büci) Ø todiste: alkutilasta saavutettava silmukka, jossa yväksymistila samalla saadaan kieleen kuuluva sana muotoa αβ ω on elppo muodostaa Kripken rakenteen ja Büci-automaatin tulo tulokin on (melkein) Büci-automaatti L(tulo) = L(Kripke) L(Büci) ajan kulutus lineaarinen algoritmikon laskutuksella konstruktio oletetaan: molemmilla sama Π tilat pareja (s K, s B ) S K S B alkutiloiksi I {^s B } ( (s K, s B ), (s K, s B ) ) joss (s K, s K ) K ja (s B, val(s K ), s B ) B (s K, s B ) yväksyy joss s B yväksyy Aikalogiikat verifioinnissa 11 (voidaan myös sallia Büci-tiloja Kripken rakenteessa esim. reiluusoletusten esittämiseksi tulon yv.tilat monikerroskonstruktiolla ) lineaarisen aikalogiikan kaavasta voidaan mekaanisesti tedä Büci-automaatti voi olla eksponentiaalisesti kaavaa isompi algoritmeja iottu pitkälle Kripke = ϕ voidaan testata ajassa Kripke 2 O( ϕ ) (algoritmikon laskutus) seuraavasti: tedään ( ϕ):stä Büci-automaatti lasketaan tulo testataan, onko kieli Ø vertaa L(NFA 1 ) L(NFA 2 ) alpa NFA 1 :n suteen SACE-täydellinen NFA 2 :n suteen alpa, jos NFA 2 on deterministinen samankaltainen algoritmi: L( NFA 1 compl( det(nfa 2 ) ) )?= Ø omakeua: Hansen, enczek, Valmari: Stuttering- Insensitive Automata for On-te-fly Detection of Livelock roperties. FMICS 2002, eled, Valmari, Kokkarinen: Relaxed Visibility Enances artial Order Reduction. Formal Metods in System Design, 19, , 2001

4 Lennosta verifiointi Aikalogiikat verifioinnissa 12 tuloautomaatin muodostaminen voidaan ydistää Kripken rakenteen muodostamiseen osaprosesseista vireen ilmaiseva silmukka voidaan tunnistaa muodostamisen aikana CVWY-algoritmi 1991 pelaa yteen jopa Holzmannin likimääräisen tila-avaruuden muodostuksen kanssa kolme merkittävää teokkuusetua: vire saattaa löytyä jo kun vasta pieni osa Kripken rakenteesta on muodostettu epäkiinnostavat osat Kripken rakenteesta jäävät muodostamatta, esim. edistynyt algoritmi voi tutkia ensin ne osat, joissa vire todennäköisimmin on Lineaarisen aikalogiikan rajoituksia joka toinen päivä sataa ei sataa ole ilmaistavissa LTL:llä vaikka on Büci-automaateilla on fifo ei ole ilmaistavissa edes Büci-automaateilla täytyisi muistaa rajattomasti sisältöä joskus sallitaan muuttujien lisääminen lineaarisen aikalogiikan formalismiin Aikalogiikat verifioinnissa 13 6 LASKENTAUULOGIIKAT CTL JA CTL* CTL* kaavan malli on päättymättömien polkujen muodostama puu voidaan puua vaitoetoisista tulevaisuuksista (jopa kesken kaavan tulkinnan) aarautuva aika LTL + lisäoperaattoreita A: jokaisella polulla E: on olemassa polku LTL-operaattorit tapana merkitä toisin G: F: U: U X: esimerkki: EF(kaviossa EFkavia EFteetä ) juoman valinta tapatuu vasta kaviossa k t k ei ilmaistavissa LTL-kaavana t Aikalogiikat verifioinnissa 14 esimerkki: AGEF perustila kävi miten kävi, perustilaan voi aina palata sietää polkuja, joissa ei ole perustilaa ei ole ilmaistavissa LTL:lla p LTL-kaava ϕ vastaa CTL*-kaavaa Aϕ yllätys: mallintarkastus ei ole vaativampaa kuin LTL:llä! CTL CTL* + rajoitus: operaattorit esiintyvät vain pareina AG, AF, AU, AX, EG, EF, EU tai EX istoriallisesti CTL oli ennen CTL*:ä teokas mallintarkastusalgoritmi keksittiin varain edetään kaavassa sisältä ulos merkataan jokaisesta Kripken rakenteen tilasta, täyttääkö vuorossa olevan osakaavan EX ϕ jokin välitön seuraajatila merkattu ϕ:llä A(ϕ U ψ) tila merkattu ψ:llä, tai merkattu ϕ:llä ja jokainen välitön seuraaja jo merkattu A(ϕ U ψ):llä Aikalogiikat verifioinnissa 15 vertailun vuoksi CTL-tyydytettävyys on EXTIME-täydellinen LTL-tyydytettävyys on SACE-täydellinen CTL ei pysty ilmaisemaan tyypillisiä reiluusoletuksia, mutta ne voi ottaa alvalla uomioon mallintarkastusalgoritmissa reiluusoletuksia ei tarvita, jos elävyysominaisuuksien tilalla käytetään läes saman asian ajavia kaavoja muotoa AG ( läetetty EF vastaanotettu ) ϕ Haarautuvan ja lineaarisen ajan vertailua jos ominaisuus ei päde, lineaarinen aika antaa elpommin tulkittavat vastaesimerkit muotoa alkuosa silmukka ω CTL:n mallintarkastus on teokasta kaavan pituuden suteen, mutta kaavat ovat yleensä yvin lyyitä, ja lineaarinen aika näyttää sallivan teokkaampia keinoja pienentää tila-avaruutta sen muodostamisen aikana valitettavasti pienentämiskeinojen käsittely olisi kokonaisen kurssin aie änkytysriippumattomuus on niille tärkeää (tällä alueella omakeussa löytyy) toisaalta AG(pyyntö EFpalvelu) on elpompi kuin (py pa) + reiluusoletukset

5 7 JOHTOÄÄTÖKSIÄ Aikalogiikat verifioinnissa 16 Aikalogiikkoja on käytetty menestyksellisesti verifioinnissa arvostettuja palkintoja edistyneitä tekniikoita: BDD, i.p. joukot, työkaluja ACM Software System Award 2001: Holzmannin SIN teollisuussovelluksia, varsinkin mikropiirialalla Alalla on upeasti yödynnetty perustutkimuksen tuloksia Myös soveltavampi tutkimus käyttää teoreettista otetta ja kalustoa esimerkki: edistyneet LTL-kaavan Büciautomaatiksi kääntävät algoritmit esimerkki: Kripken mallin pienentäminen muodostamisen aikana tarvitaan sekä teoria- että algoritmiosaamista ja vielä näppituntumaa mikä toimii käytännössä vaikeaa liiankin? Aikalogiikat verifioinnissa 17 Läisukuinen ala: prosessialgebrallinen verifiointi verifiointi perustuu vertaamiseen malliprosessiin jonkin toteuttaa -esijärjestyksen mukaan tai jopa automaattisesti tuotettujen visuaalisten käyttäytymisen tiivistelmien katseluun elpompaa perusinsinöörille kuin kaavojen kirjoittelu paljon samankaltaisia tuloksia kuin aikalogiikassa CTL(*) X ~ muunnettu aarautuva bisimilaarisuus (De Nicola, Vaandrager 1995) LTL X ~ NDFD (Kaivola, Valmari 1992) laaja oma teoriarakennelma Mutta kaikki verifiointi näyttää olevan perusinsinöörille liian vaikeaa teollisuus aluton panostamaan luotettavuuteen ei tällä suureen suosioon tai suuriin raoiin pääse kiinni, Suomessa ainakaan

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Aikalogiikka

T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Aikalogiikka T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Aikalogiikka 24. helmikuuta 2003 T-79.179: Aikalogiikka 5-1 Aikalogiikka Yksinkertaisiltakin näyttävien järjestelmien saavutettavuusgraafeissa

Lisätiedot

2. M : T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M :

2. M : T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M : T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 2. M : a 1. M : a c b, e b f,r c e a) M,a = A(U), sillä (esim.) (a,b,,,,...) on tilasta a alkava täysi polku, joka ei

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Mallintarkastus. Mallin generointi. Esimerkki mallin SMV-kuvauksesta. Tila-avaruuden symbolinen esitys (I)

Mallintarkastus. Mallin generointi. Esimerkki mallin SMV-kuvauksesta. Tila-avaruuden symbolinen esitys (I) / Kevät 2005 ML-10 1 Mallintarkastus / Kevät 2005 ML-10 3 Esimerkki mallin SMV-kuvauksesta Onko annettu lause P tosi annetussa mallissa M? Malli M: järjestelmän malli Saadaan järjestelmän kuvauksesta,

Lisätiedot

Kertausta 1. kurssikokeeseen

Kertausta 1. kurssikokeeseen Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015 TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut

T Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut T-79.146 Kevät 2003 Logiikka tietotekniikassa: erityiskysymyksiä I Laskuharjoitus 11 Ratkaisut 1. M : a P P f Q, R Q e P a) M, a = A(P UQ), sillä (esim.) (a,,,,,...) on tilasta a alkava täysi polku, joka

Lisätiedot

T Kevät 2002 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Laskuharjoituksen 5 vastaukset

T Kevät 2002 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Laskuharjoituksen 5 vastaukset T-79.179 Kevät 2002 Rnakkaiset ja hajautetut digitaaliset järjestelmät Laskuharjoituksen 5 vastaukset 1.3.2002 1. TicketME-algoritm Maria-kuvaus alla: typedef unsigned(1..2 n_of_processes; typedef enum

Lisätiedot

Temporaalilogiikat ja automaatit

Temporaalilogiikat ja automaatit Temporaalilogiikat ja automaatit Sari Leppänen Helsinki 20.11.2001 Digitaalisten järjestelmien lisensiaattikurssi Teknillinen korkeakoulu Tietojenkäsittelyteorian laboratorio Sisältö ii 1 Haarautuvan ajan

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

Säännöllisten kielten sulkeumaominaisuudet

Säännöllisten kielten sulkeumaominaisuudet Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,

Lisätiedot

Turingin koneen laajennuksia

Turingin koneen laajennuksia Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en

Lisätiedot

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,

Lisätiedot

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko 9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut

T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun juureen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka

Lisätiedot

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos. TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen

Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset

Lisätiedot

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen

Lisätiedot

1. Johdanto. Spesioinnin ja verioinnin perusteet. Päivi Kuuppelomäki

1. Johdanto. Spesioinnin ja verioinnin perusteet. Päivi Kuuppelomäki 1. Johdanto Spesioinnin ja verioinnin perusteet. Päivi Kuuppelomäki 2008 1 1.1. Lähtökohta Keskeisiä käsitteitä: siirtymäsysteemit spesiointikielet Estelle (vanhempi spesiointikieli, paljon Pascalin piirteitä)

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

FORMAALI SYSTEEMI (in Nutshell): aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus

FORMAALI SYSTEEMI (in Nutshell): aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus FORMAALI SYSTEEMI (in Nutshell): Formaali kieli: aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus esim. SSM:n tai EBNF:n avulla Semantiikka:

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e

Lisätiedot

Yhteydettömän kieliopin jäsennysongelma

Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa

Lisätiedot

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3 T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan

Lisätiedot

Pinoautomaatit. Pois kontekstittomuudesta

Pinoautomaatit. Pois kontekstittomuudesta TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita

Lisätiedot

Formalisoimme nyt edellä kuvatun laskennan.

Formalisoimme nyt edellä kuvatun laskennan. Formalisoimme nyt edellä kuvatun laskennan. Jos M = (Q, Σ, δ, q, F ) on äärellinen automaatti ja w = w... w n on n merkkiä pitkä aakkoston Σ merkkijono, niin automaatti M hyväksyy merkkijonon w, jos on

Lisätiedot

Rekursiiviset palautukset [HMU 9.3.1]

Rekursiiviset palautukset [HMU 9.3.1] Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle

Lisätiedot

Taulun avoimista haaroista saadaan kelvolliset lausejoukot

Taulun avoimista haaroista saadaan kelvolliset lausejoukot T-79.5101 kevät 2006 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M : a, Q b c d Lauseen X( UQ) sulkeuma: CL ( X( UQ) ) = { X( UQ), X( UQ), UQ, X ( UQ), ( UQ),, Q, X ( UQ),, } Muodostetaan

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko

Lisätiedot

Mallintarkistus ja sen

Mallintarkistus ja sen VERSIO 0.1 LUONNOS Mallintarkistus ja sen soveltaminen PLCohjelmien verifioinnissa AS-0.3200 Automaatio- ja systeemitekniikan projektityöt -projektisuunnitelma Markus Hartikainen 2/1/2009 Sisältö 1. Projektityön

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS .. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters

Lisätiedot

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters

Lisätiedot

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}. 42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen

Lisätiedot

Chomskyn hierarkia ja yhteysherkät kieliopit

Chomskyn hierarkia ja yhteysherkät kieliopit Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien

Lisätiedot

T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut

T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut T-79.1001 Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut Lemma (Säännöllisten kielten pumppauslemma). Olkoon A säännöllinen kieli. Tällöin on olemassa n 1

Lisätiedot

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista 6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

5.3 Ratkeavia ongelmia

5.3 Ratkeavia ongelmia 153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,

Lisätiedot

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M := ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013 TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen

Lisätiedot

j n j a b a c a d b c c d m j b a c a d a c b d c c j

j n j a b a c a d b c c d m j b a c a d a c b d c c j TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä

Konsensusongelma hajautetuissa järjestelmissä Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki Helsinki 29.10.2007 Seminaarityö HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö i 1 Johdanto 1 2 Konsensusongelma 2 2.1 Ratkeamattomuustodistus........................

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)

Lisätiedot

2. Laskettavuusteoriaa

2. Laskettavuusteoriaa 2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016 ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

Äärellisten automaattien ja säännöllisten lausekkeiden minimointi

Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Timi Suominen, Riia Ohtamaa ja Pessi Moilanen Helsinki..01 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Äärellisten automaattien

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

8. Kieliopit ja kielet

8. Kieliopit ja kielet 8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti

Lisätiedot

Ratkeavuus ja efektiivinen numeroituvuus

Ratkeavuus ja efektiivinen numeroituvuus Luku 6 Ratkeavuus ja efektiivinen numeroituvuus Proseduurit Olkoon A aakkosto. Proseduuri aakkoston A sanoille on mikä hyvänsä prosessi (algoritmi) P, jolle annetaan syötteeksi sana w A, ja joka etenee

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

LAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,

Lisätiedot

Ohjelmien automaattisen verifioinnin reunamailla

Ohjelmien automaattisen verifioinnin reunamailla Ohjelmien automaattisen verifioinnin reunamailla Antti Siirtola Tietotekniikan laitos, Perustieteiden korkeakoulu, Aalto-yliopisto, antti.siirtola@aalto.fi Suomalainen Tiedeakatemia, Nuorten akatemiaklubi,

Lisätiedot

Algoritmin määritelmä [Sipser luku 3.3]

Algoritmin määritelmä [Sipser luku 3.3] Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot