Arvostelu OHJ Johdatus tietojenkäsittelyteoriaan syksy op. Viikkoharjoitukset. Materiaali. Kurssista voi selvitä parhaalla mahdollisella

Koko: px
Aloita esitys sivulta:

Download "Arvostelu OHJ Johdatus tietojenkäsittelyteoriaan syksy op. Viikkoharjoitukset. Materiaali. Kurssista voi selvitä parhaalla mahdollisella"

Transkriptio

1 OHJ-300 Johtus tietojenkäsittelyteorin syksy op Luennot: prof Tpio Elom j DI Jussi Kujl m, to 6 T B työmtkt 6 9 j perioituko Viikkohrjoitukset 59 Teknyo Timo Aho ti 0 sli T C3 Koe to 30 mrrskuut 006 Arvostelu: = 38 Arvostelu Kurssist voi selvitä prhll mhollisell rvosnll pelkällä tentillä, mutt tentti (mx 30 p) ei ole ivn helppo siksi knntt osllistu viikottisiin lskuhrjoituksiin, joist s lisäpisteitä (mx 8 p) j joien tehtäviä itsenäisesti rtkomll oppii kurssin näennäisesti vikeit sioit Arvosn määräytyy oletettvsti seurvsti: pisteet rvosn Viikkohrjoitukset Viikkohrjoituksiin osllistuminen on erittäin suositeltv Vlmiuest esittää tulull vstus kysymykseen s kustkin merkinnän Kusskin hrjoituksiss on n 6 tehtävää kikkin merkintöjä voi kerätä n 6 0 = 60 kpplett Merkintöjä Lisäpisteet 0% (n ) 30% (n 8) 0% (n ) 3 80% (n 8) 7 90% (n 5) 8 Mterili Tällä toteutuskerrll oppikirj on Michel Sipser: Introuction to the Theory of Computtion, Secon E (Interntionl E), Thomson, 006 Melkein mikä thns iheen oppikirj ktt kurssill käsitellyt sit Vlmist monistett ei ole, luentoklvot pnnn verkkoon luentojen thtiin wwwcstutfi/kurssit/ohj-300/ / elom/opetus/ohj-300/ Tentti perustuu luentoihin (ei siis yksinomn klvoihin)

2 Luentoiktulu Johnto () Kertust: utomtit, kieliopit j kielet ( 3) Säännölliset kielet Kontekstittomt kielet 3 Lskettvuusteori ( 7) Lskennn mllej Rtkevuus Plutukset Eistyneitä iheit Lskennn vtivuusteori (8 ) Aikvtivuus Tilvtivuus Käytännöllinen rtkevuus Eistyneitä iheit 5 Lskennlliset ongelmt Lskennllinen ongelm voin mllint tietokoneell rtkistvksi; esim ritmetiikk, kkostminen, plknlskent, kurssikirjnpito, Ongelmn rtkisev ohjelm yleisempi esitys usein ymmärrettävämpi j mhollist esim nlysoinnin Ongelmll on tpuksi (= syötteitä), rtkisu on lgoritmi, jok liittää kuhunkin tpukseen vstuksen (= tulosteen) Tpus j sen vstus ovt äärellisesti (esim ittijonoin) esitettäviä Tpuksi voi oll ääretön määrä Lskennllinen ongelm on kuvus äärellisesti esitettävien tpusten joukost äärellisesti esitettävien vstusten joukkoon 7 Johnto Tällä kurssill nnetn johtus tietojenkäsittelyn mtemttis-teoreettiseen perustn Tietojenkäsittelijöien yleissivistykseen kuuluv tieto Tvoitteen on s perusymmärtämys siitä minkä tyyppisiä ongelmi tietokoneell voi peritteess rtkist Vielä tärkeämpää on hvit mille rtkevist ongelmist voi ohjelmoi tehokkn rtkisun Kurssill trkstellut tulokset ovt funmentlisi, tulevien vuosien tehonlisäykset tietokoneiss eivät tule poistmn näien tulosten merkitystä 6 Esitykset Äärellinen esitys = kkoston merkkijono Akkosto on äärellinen, epätyhjä joukko symoleit Esim inäärikkosto { 0, } j ltinlinen kkosto {A,B,,Z} Merkkijono on äärellinen järjestetty jono kkoston merkkejä Esim 0000 j TWILIGHT Merkkijonon x pituus x on siihen sisältyvien merkkien lukumäärä Esim 0000 = 5 j TWILIGHT =8 Tyhjän merkkijonon ε pituus ε = 0 8

3 Merkkijonojen yhteenliittäminen eli ktentio on niien perusopertio TWILIGHT ZONE = TWILIGHTZONE x = 0, y = 0 xx = 00, xy = 00, yy = 00 j yx = 00 3 Kikill x on xε = εx = x Kikill x, y on xy = x + y Jos w = xy, niin x on w:n lkuos (prefix) j y on sen loppuos (suffix) Akkoston Σ kikkien merkkijonojen joukko on Σ Esim Σ = { 0, } Σ = { ε, 0,, 00, 0, 0,, } Muit merkintöjä: Σ k, Σ k j Kääntäen jokist merkkijonojoukko A vst päätösongelm π A : Σ { 0, },, jos x A; π A (x) = 0, jos x / A Merkkijonojoukko A Σ snotn kkoston Σ (formliksi) kieleksi Vstv päätösongelm π A nimitetään kielen A tunnistusongelmksi Formlit kielet j päätösongelmt voin smist Σ = k N Σ k 9 Päätösongelmt Lskennllinen ongelm π on siis kuvus π : Σ Γ, missä Σ j Γ ovt kkostoj Päätösongelmt ovt tärkeä liluokk; niissä ongelmn tpuksen vstus on kyllä ti ei Ne ovt siis muoto π : Σ { 0, } Jokist päätösongelm π vst niien tpusten joukko, joill vstus on kyllä: A π = { x Σ π(x) = } Lskennllisten ongelmien rtkevuus Snotn, että ohjelm P (x) rtkisee lskennllisen ongelmn π, jos kikill syötteillä x ohjelm P tulost rvon π(x) Voinko kikki mholliset lskennlliset ongelmt rtkist ohjelmin? Ääretön joukko X on numeroituv, jos on olemss ijektio f : N X Myös äärelliset joukot ovt numeroituvi Bijektio = injektio + surjektio Injektio: f(x ) = f(x ) x = x Surjektio: f(a) = B Ääretön joukko, jok ei ole numeroituv on ylinumeroituv 0

4 Luse Minkä thns kkoston Σ merkkijonojen joukko Σ on numeroituv To Olkoon Σ = {,,, n } Kiinnitetään merkeille kkosjärjestys ; olkoon se < < < n Joukon Σ merkkijonot voin nyt luetell knonisess järjestyksessä: Ensin luetelln 0:n mittset merkkijonot, sitten :n mittiset, :n mittiset jne Kunkin pituusryhmän sisällä merkkijonot luetelln vlituss kkosjärjestyksessä Tällöin ijektio f : N Σ on 0 ε Luse Minkä thns kkoston Σ päätösongelmien joukko on ylinumeroituv To Merkitään Π:llä kikkien Σ:n päätösongelmien kokoelm: Π = { π π on kuvus Σ { 0, } } Oletetn, että Π on numeroituv, so on olemss kikki Π:n lkiot kttv numerointi Π = { π 0, π, π, } Olkoon Σ :n merkkijonot Luseen toistuksen knonisess järjestyksessä lueteltuin x 0, x, x, Muoostetn uusi päätösongelm ˆπ : Σ { 0, }: 3 5 n n n + n n n + 3n n n + n n n n + n + n + n +, jos π i (x i ) = 0; ˆπ(x i ) = 0, jos π i (x i ) = Kosk Π on kikki Σ:n päätösongelmt kttv numerointi, niin ˆπ Π Täten ˆπ = π k jollkin k N Tällöin, jos π k (x k ) = ˆπ(x k ) = 0; ˆπ(x k ) = 0, jos π k (x k ) = ˆπ(x k ) = Tämä on ristiriit, joten tehty oletus (Π on numeroituv) ei voi pitää pikkns Näin ollen Π on ylinumeroituv Toistustekniikk on ns Cntorin igonlirgumentti 6

5 Kosk esim Jv-ohjelmt ovt loppujen lopuksi vin ASCII-merkistön merkkijonoj, niin niitä on Luseen mukn vin numeroituv joukko Lskennllisten ongelmien joukko on kuitenkin Luseen perusteell ylinumeroituv Näin ollen kikist lskennllisist ongelmist voin Jv-ohjelmin rtkist vin häviävän pieni os Sm ongelm on millä thns ohjelmointikielellä Rtkemttomt ongelmt käsittävät myös mielenkiintoisi / käytännöllisiä ongelmi Äärellinen utomtti on viisikko M = (Q, Σ, δ, q 0, F ), missä Q on utomtin tilojen joukko, Σ on utomtin syötekkosto, δ : Q Σ Q on siirtymäfunktio, q 0 Q on lkutil j F Q (hyväksyvien) lopputilojen joukko Automtti M hyväksyy merkkijonon w = w w w n Σ n jos Q:ss on tilojen jono r 0, r,, r n se r 0 = q 0, δ(r i, w i+ ) = r i+, i = 0,, n, r n F Automtin M tunnistm kieli on L(M) = { w Σ M hyväksyy w:n } 7 9 Kertust Äärelliset utomtit Lskentjärjestelmän, joll on vin äärellisen mont mhollist til, toimint voin kuvt äärellisenä utomttin Äärellinen utomtti hvinnollistetn usein tilsiirtymäkvion q q q q 0 3 E q +, E q5 q6 Kieli on säännöllinen, jos jokin äärellinen utomtti tunnist sen Kielten perusopertiot ovt yhiste, ktentio j sulkeum: A B = { x x A x B } A B = { xy x A y B } A = { x x x k k 0 x i A i } Luse 5 Säännöllisten kielten luokk on suljettu yhisteen suhteen Toisin snoen, jos A j A ovt säännöllisiä kieliä, niin silloin myös A A on säännöllinen Luse 6 Säännöllisten kielten luokk on suljettu ktention suhteen 8 0

6 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss Automtti, joss on enemmän tiloj kuin ekvivlentiss minimlisess utomtiss on reunntti Automttej muoostvt lgoritmit eivät in tuot minimlist utomtti 5 Kullkin tilll q Q olkoon [q] = { q } { r Q q:n j r:n välillä ei ole krt G:ssä } 6 Muoost äärellinen utomtti M = (Q, Σ, δ, q 0, F ), missä Q = { [q] q Q }, (tuplt poisten δ ([q], ) = [δ(q, )], kikill q Q j Σ, 7 Plut M q 0 = [q 0 ] j F = { [q] q F } Minimlisen utomtin käsittely on tehokmp kuin reunntin 3 Algoritmi minimoi Syöte: äärellinen utomtti M = (Q, Σ, δ, q 0, F ) Poist M:n turht tilt ne joihin ei voi päästä lkutilst Muoost suuntmton verkko G, jonk solmuj ovt M:n tilt 3 Lisää G:hen kri kustkin ei-lopputilst kuhunkin lopputiln Toist niin kun kuin G:hen tulee uusi kri: 3 5 () Jokiselle prille q, r Q, q r, j jokiselle Σ: lisää kri (q, r) verkkoon G, jos (δ(q, ), δ(r, )) on kri G:ssä 6

7 [, 3] [] [, 3] [, 5] [, 5] 6 Lopputulos Syöteutomtin M knss ekvivlentti äärellinen utomtti M, joss on minimimäärä tiloj Automtti M on tilojen nimeämistä ville yksikäsitteinen I = {,3} II = {} III = {,5} I II III 8

2.2 Automaattien minimointi

2.2 Automaattien minimointi 24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä T 79.1001/1002 Tietojenkäsittelyteorin perusteet 2.3 Äärellisen utomtin käsitteen formlisointi eknistinen mlli: syötenuh: nuhpää: ohjusyksikkö: i n p δ u q 1 q 2 Äärellinen utomtti koostuu äärellistilisest

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008 OHJ-2300 Johdatus tietojenäsittelyteoriaan Sysy 2008 1 2 Organisaatio & aiataulu Luennot: prof. Tapio Elomaa P1: Ti 14-16 TC 103 ja to 14 16 TC 133 P2: Ti 14-16 TB 219 ja to 12 14 TB 224 26.8. 20.11. Jussi

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2012 13 III periodi Versiohistori: vuodet luennoij 2012 2013

Lisätiedot

LAP: Laskennan perusmallit

LAP: Laskennan perusmallit LAP: Lskennn perusmllit Mtti Nykänen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: mtti.nyknen@uef.fi Lukuvuoden 2011-12 III periodi Sisältö 1 Kurssin sem opetuksess 1 2 Kurssin sem

Lisätiedot

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen)

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen) 58226 Lskennn mllit Erilliskoe 4.2.2, rtkisuj (Jyrki Kivinen). [6+6+3+3 pistettä] () Kieli A koostuu niistä kkoston {, } merkkijonoist, joiss esiintyy osjono. Esitä kielelle A sekä deterministinen äärellinen

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen luentomonisteest krsien muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden

Lisätiedot

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 }, T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

Output. Input Automaton

Output. Input Automaton 16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

Kertausta 1. kurssikokeeseen

Kertausta 1. kurssikokeeseen Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.

Lisätiedot

Kertausta: kielet ja automaatit. ICS-C2000 Tietojenkäsittelyteoria. Alue ja aiheet. Äärelliset automaatit

Kertausta: kielet ja automaatit. ICS-C2000 Tietojenkäsittelyteoria. Alue ja aiheet. Äärelliset automaatit Kertust: kielet j utomtit Lskennllisen ongelmn rtkisevi tietokoneohjelmi j -litteit voidn trkstell utomttein ICS-C2 Tietojenkäsittelyteori Luento 2: Äärelliset utomtit Alto-yliopisto Perustieteiden korkekoulu

Lisätiedot

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista TAMPEREEN YLIOPISTO Vlinnisten opintojen syventäviin opintoihin kuuluv tutkielm Luri Kumpulinen Büchin utomteist Luonnontieteiden tiedekunt Tietojenkäsittelytieteiden tutkinto-ohjelm Huhtikuu 2017 Tmpereen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

T /2 Tietojenkäsittelyteorian perusteet T/Y

T /2 Tietojenkäsittelyteorian perusteet T/Y T-791001/2 Tietojenkäsittelyteorin perusteet T/Y Tietojenkäsittelytieteen litos, Alto-yliopisto Alto-yliopisto Perustieteiden korkekoulu Tietojenkäsittelytieteen litos Syksy 2013 T 791001/1002 Tietojenkäsittelyteorin

Lisätiedot

Laskennan perusmallit 2013: Kertausta

Laskennan perusmallit 2013: Kertausta Lskennn perusmllit 13: Kertust Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi 8. helmikuut 13 Lähtökoht j trkstelun kohde Lskentongelmt erityisesti

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

2.5 Säännöllisten kielten rajoituksista

2.5 Säännöllisten kielten rajoituksista 68 2.5 Säännöllisten kielten rjoituksist Minkä thns kkoston formlej kieliä (= päätösongelmi, tunnistusongelmi) on ylinumeroituv määrä kun ts säännöllisiä lusekkeit (= merkkijonoj) on numeroituv määrä Näin

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

T /1002 Tietojenkäsittelyteorian perusteet T/Y

T /1002 Tietojenkäsittelyteorian perusteet T/Y T-791001/1002 Tietojenkäsittelyteorin perusteet T/Y Hrri Hnpää Tietojenkäsittelyteorin lortorio, TKK Syksy 2007 Hrri Hnpää 1 T 791001/1002 Tietojenkäsittelyteorin perusteet T/Y Introduction to Theoreticl

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015 TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on

Lisätiedot

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3 T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w

Lisätiedot

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen.

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen. 2.8 Säännöllisten kielten rjoituksist Krdinliteettisyistä on oltv olemss (pljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituv määrä, säännöllisiä lusekkeit vin numeroituvsti. Voidnko löytää konkreettinen,

Lisätiedot

Yhteydettömän kieliopin jäsennysongelma

Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C Tietojenkäsittelyteori Kevät 6 Kierros 8, 7.. mliskuut Demonstrtiotehtävien rtkisut D: Määrittele Turingin koneen stndrdimllin muunnelm, joss koneen työnuh on molempiin suuntiin ääretön, j osoit

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en

Lisätiedot

Q on automaatin tilojen äärellinen joukko; Σ on automaatin syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila;

Q on automaatin tilojen äärellinen joukko; Σ on automaatin syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila; Q on utomtin tilojen äärellinen joukko; Σ on utomtin syötekkosto; δ : Q Σ Q on utomtin siirtymäfunktio; q Q on utomtin lkutil; F Q on utomtin hyväksyvien tilojen joukko. Siirtymäfunktio δ on määritelmän

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka

Lisätiedot

Lyhyt johdatus joukko-oppiin ja relaatioihin

Lyhyt johdatus joukko-oppiin ja relaatioihin Lyhyt johtus joukko-oppiin j reltioihin Tommi Syrjänen 1 Johnto Tämän oppn trkoituksen on esittää lyhyt tiivistelmä joukko-opin j reltioien perusteist. Esitys seur pääpiirteissään kirjn Lewis, Ppimitriou:

Lisätiedot

T /1002 Tietojenkäsittelyteorian perusteet T/Y

T /1002 Tietojenkäsittelyteorian perusteet T/Y T-791001/1002 Tietojenkäsittelyteorin perusteet T/Y Hrri Hnpää Tietojenkäsittelyteorin lortorio, TKK Syksy 2006 Hrri Hnpää 1 Luento 0: Aiheen esittely j kurssin käytännöt Luento 1: temttisi peruskäsitteitä;

Lisätiedot

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.

Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).

Lisätiedot

TIEA241 Automaatit ja kieliopit

TIEA241 Automaatit ja kieliopit TIEA241 Automtit j kieliopit Antti Vlmri Jyväskylän yliopisto Informtioteknologin tiedekunt Symoleit 1 1 Johdnto 4 2 Äärelliset utomtit j säännölliset kielet 10 3 Yhteysriippumttomt kieliopit 87 4 Lskettvuus

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.

Lisätiedot

6.2 Algoritmin määritelmä

6.2 Algoritmin määritelmä 6.2 Algoritmin määritelmä Mitä lgoritmill yleensä trkoitetn? Peritteess: Yksiselitteisesti kuvttu jono (tietojenkäsittely)opertioit, jotk voidn toteutt meknisesti. Käytännössä: luonnollist kieltä, pseudokoodi

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013 TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen

Lisätiedot

5.3 Ratkeavia ongelmia

5.3 Ratkeavia ongelmia 153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=

ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M := ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

Chomskyn hierarkia ja yhteysherkät kieliopit

Chomskyn hierarkia ja yhteysherkät kieliopit Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

Kertausta ja täydennystä

Kertausta ja täydennystä LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

Aiheet. ICS-C2000 Tietojenkäsittelyteoria M := Äärelliset automaatit vs. säännölliset lausekkeet. Äärelliset automaatit

Aiheet. ICS-C2000 Tietojenkäsittelyteoria M := Äärelliset automaatit vs. säännölliset lausekkeet. Äärelliset automaatit Aiheet ICS-C2000 Tietojenkäsittelyteori Luento 4: Säännölliset lusekkeet Alto-yliopisto Perustieteiden korkekoulu Tietotekniikn litos Kevät 2016 Säännöllisten lusekkeiden syntksi Säännöllisten lusekkeiden

Lisätiedot

8. Kieliopit ja kielet

8. Kieliopit ja kielet 8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

Säännöllisten kielten sulkeumaominaisuudet

Säännöllisten kielten sulkeumaominaisuudet Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen

Lisätiedot

Diskreetin matematiikan perusteet Ratkaisut 4 / vko 11

Diskreetin matematiikan perusteet Ratkaisut 4 / vko 11 Diskreetin mtemtiikn perusteet Rtkisut 4 / vko 11 Tuntitehtävät 41-42 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-46 loppuviikon hrjoituksiss. Kotitehtävät 43-44 trkstetn loppuviikon hrjoituksiss.

Lisätiedot

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters

Lisätiedot

Ei-yhteydettömät kielet [Sipser luku 2.3]

Ei-yhteydettömät kielet [Sipser luku 2.3] Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2004 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa, opettajan suuntautumisvaihtoehdossa

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut 583 Tietorkenteet j lgoritmit (kevät 205) Toinen välikoe, mllirtkisut. () Brnh n oun. Brnh n oun on lgoritmityyppi, joss tutkitn kikki ongelmn mhollisi rtkisuj puumisess rkenteess. Kun hvitn, että jokin

Lisätiedot