7. Tasapainoitetut hakupuut

Koko: px
Aloita esitys sivulta:

Download "7. Tasapainoitetut hakupuut"

Transkriptio

1 7.. Monitiehakpt 7. Tasapainoitett hakpt Tässä lssa jatketaan järjestetyn sanakirjan tarkastela esittämällä kehittynyt ptietorakenne. Lssa 7.. esitetään monitiehakpn käsite. Se on järjestetty p, jonka jokaisessa sisäsolmssa oi olla seita tietoyksiköitä ja solmlla seita lapsia. Se on binäärihakpn (lk 6.3.) yleistys. Yksi sen hyödyistä on sisäsolmjen määrän äheneminen binäärihakphn errattna. Lssa 7.2. tarkastellaan 2 yksityiskohtaisesti määrättyä monitiehakpta, (2,) pta, josta käytetään myös nimityksiä 2 p tai 2 3 p, koska sillä oi olla kahdesta neljään lasta. Kaikki sen lehdet oat samalla tasolla. Se on tehokas haka käsittäille operaatioille yltäen tällöin samaan kin AVL p eli aikakompleksisteen O(log n). Näitä ielä kehittyneempiä ptyyppejä oat pna mstat pt (red black tree) ja iistopt (splay tree), joita ei tässä tarkastella. 7. lk 36 Tässä kataan, kinka monilapsisia monitiepita käytetään hakpina. Jälleen phn talletettaa tieto esitetään tietoyksikköinä, pareina (k,x), 00 jossa 0 k on 000 aain 000 ja x0 tähän liittyä alkio. Olkoon järjestetyn pn solm. Se on d solm, jos sillä on d lasta. Monitiehakp (mlti way search tree) on järjestetty p T, jolla on seraaat ominaisdet (ka 7..(a)): 2 Jokaisella pn T sisäsolmlla on ähintään kaksi lasta. Jokainen pn T sisäsolm sisältää kokoelman tietoyksiköitä motoa (k,x), jossa k on aain ja x alkio. Jokainen pn T d solm, jonka lapset oat,, d, sisältää d tietoyksikköä (k, x ),, (k d, x d ), missä k k d. Määritellään lisäksi k 0 = ja k d = +. Jokaiselle tietoyksikölle (k,x), joka on talletett solmn :n aliphn jreltaan i, i =,, d, on k i k k i. 7. lk Kn siis solmn ajatellaan talletetksi jokko aaimia mkaanlkien kitteelliset erikoisaaimet k 0 = ja k d = + (rajoittimia), niin aliphn T jreltaan i talletetn aaimen k täytyy olla solmn talletetn kahden aaimen älissä. Tällöin d lapsen solmssa on talletettna 00 0 d 000 arsinaista aainta, ja se modostaa samalla perstan han sorittamiseksi monitiepssa Ka 7.. (alk) (a) Monitiehakp T lk 366 Jälleen pn lehdet oat ainoastaan paikanpitäjiä. Täten binäärihakpta oidaan pitää monitiehakpn erikoistapaksena. Toisessa ääripäässä yhden sisäsolmn monitiehakp oi käsittää seita tietoyksiköitä. Sillä, että käsittääkö monitiehakpn sisäsolm kaksi ai seampia lapsia, on seraaa shde tietoyksiköiden määrän ja lehtisolmjen määrän älillä. 2 Lase 7.. Monitiehakplla, joka sisältää n tietoyksikköä, on n+ lehteä. Persteln oi esittää harjoitstehtäänä. 7. lk 367

2 Hak monitiepssa Hak tapaht soraiiaisesti monitiepssa aaimella k. Lähdetään pollle 00 0 pn 000 jresta 000 (ka 0 7..(b) (c)). Oltaessa d solmssa han aikana errataan aainta k aaimiin k,, k d, jotka on talletett solmn. Jos on k = k i jollekin i:lle, hak onnist. Mtoin jatketaan haka solmn lapsessa i, missä k i < k < k i. (määriteltiin k 0 = ja k d = + ). Jos tllaan lehteen, tiedetään, ettei haettaaa aainta ole pssa eli hak epäonnist. Monitiehakpiden tietorakenteita 2 Lssa esitettyjä yleisten piden esitystapoja oidaan soeltaa myös monitiehakpille. Lisätietona niissä pitää tallettaa khnkin solmn pelkästään tietoyksiköiden (tai aainten) jokko. 7. lk Ka 7.. (jatkoa) (b) Aaimen 2 (epäonnistnt hak) hakpolk pssa T lk Käytettäessä monitiehakpta T edstamaan sanakirjaa D khnkin sisäsolmn talletetaan iittas järjestettyyn tietoyksiköiden jokkoon. Solmn talletetta sanakirjaa ktstaan sekndääritietorakenteeksi. Tämä tkee laajempaa kokonaistta, pta, joka on tässä 00 primääritietorakenne Ka 7.. (lopp) (c) Aaimen 2 (onnistnt hak) hakpolk pssa T lk 370 Solmn talletett sanakirja esitetään merkinnällä D(). Tähän talletetaan tietoyksiköt. Näiden persteella löydetään lapsisolm, johon siirrytään han seraaassa aiheessa. Pn T jokaisessa solmssa, jonka lapset oat,, d ja tietoyksiköt (k, x ),, (k d, x d ), oat talletettina tietoyksiköt (k, x, ), (k 2, x 2, 2 ),, (k d, x d, d ), (+, nll, d ). Sanakirjan D() tietoyksiköllä (k i, x i, i ) on aain k i ja alkio (x i, i ) (iimeisessä tietoyksikössä erikoisaain + ). 2 Haettaessa aaimen k alkiota psta Td solmn prosessointi oidaan tehdä sorittamalla hak tietoyksikön (k i, x i, i ) löytämiseksi sanakirjasta D() pienimmällä aaimella, joka on srempi tai yhtä sri kin k. On olemassa kaksi tapasta: 7. lk 37

3 Jos on k i < k < k i, haka jatketaan käsittelemällä lasta i. (Jos palatetaan erikoisaain k d = +, k on silloin srempi kin kaikki aaimet, jotka on talletett solmn ja haka jatketaan käsitellen lasta d.) Mssa tapaksessa (k = k i ) hak päättyy onnistneena. 2 Monitiehakpn tilaaatims n tietoyksikölle on O(n) taallisten sanakirjatotetsten kera sekndääritietorakenteita arten pssa T. Soritsaika, joka on käytettää d solmssa han aikana, riipp siitä, miten sekndääritietorakenne D() totetetaan. Jos se totetetaan talkkopohjaisena järjestettynä sekenssinä tai AVL pna, on prosessoitaissa ajassa O(log d). Jos se sen sijaan totetetaan järjestämättömän sekenssin tai listapohjaisen järjestetyn sekenssin alla, solmn prosessointi kestää ajan O(d). Viitatkoon d max pn T minkä tahansa solmn lasten maksimimäärään. Olkoon h pn korkes. Näin ollen hakaika monitiehakpssa on joko O(hd max ) tai O(h log d max ) riippen sekndääritietorakenteen D() totetksesta. 7. lk 372 Jos d max on akio, han soritsaika on O(h) riippmatta sekndääritietorakenteen totetksesta. Sen mkaisesti päätaoitteena on pitää pn korkes mahdollisimman matalana, ts. h tietoyksiköiden määrän 00 0 n logaritmisena fnktiona. 0 Tämä aikaansaa tasapainoitetn hakpn (balanced search tree), jota pohditaan seraaaksi (2,) p 2 Tämä on monitiehakplaji, joka pitää solmihin talletett sekndääritietorakenteet kooltaan sppeina ja pn tasapainoitettna. Nämä taoitteet saatetaan ylläpitämällä ominaisdet (ka 7.2): Koko ominaiss: Jokaisella sisäsolmlla on enintään neljä lasta ja ähintään kaksi. Syyysominaiss: Kaikki lehdet oat samalla syyydellä. 7. lk Solmjen koosta kiinnipitäminen tekee solmista monitiehassa yksinkertaisia. Siitä tlee myös aihtoehtoinen nimi, 2 3 p, koska jokaisella sisäsolmlla on joko 2, 3 tai lasta. Lisäksi solmn sanakirja D() sisältää sekenssin, jossa kaikki operaatiot tehdään akioajassa 00 0 O(), 000 sillä 000 d max 0 =. Korkesominaisdesta seraa raja plle: Ka 7.2. (2,) p lk 37 Lase 7.2. (2,) pn korkes on Θ(log n), kn tietoyksiköitä on n. 2 Perstel: Olkoon h (2,) pn T korkes, kn tietoyksiköitä on n. Lase osoitetaan todeksi seraaien epäyhtälöjen alla: (log(n + ))/2 h log(n + ). (7.) Koon ja syyyden nojalla lehtien lkmäärä pssa T on ähintään 2 h ja enintään h. Laseen 7.. persteella lehtien määrä pssa T on n lk 37

4 Täten saadaan 2 h n + h Ottamalla 2 kantainen logaritmi jokaisesta osasta saadaan h log(n + ) 2h, josta tlee tämän laseen tlos (7.). 2 Lase 7.2. sanoo, että koko ja syyysominaisdet riittäät pitämään monitiepn tasapainoitettna. Lisäksi se osoittaa han (2,) pssa toimian ajassa O(log n) ja ettei sekndäärirakenteen totets ole ratkaisea seikka (yksinkertaisin paras, talkko tai lista), koska lasten maksimimäärä on akio d max. 7. lk 376 Lisäys Uden tietoyksikön (k,x) lisäämiseksi (2,) phn T on alksi haettaa aain k. Olettaen, ettei pssa ole tätä aainta k, hak päättyy epäonnistneena lehteen z. Olkoon tämän anhempi. Usi tietoyksikkö lisätään solmn ja samoin si lapsi w (lehti) solmlle solmn z asemmalle polelle. Näin ollen lisätään (k,x,w) sanakirjaan D(). Kissa 7.3. ja 7.. esitetään sarja perättäisiä lisäyksiä (2,) phn. Tarkastellaan yksityiskohtaisesti aaimen lisäystä phn kassa 7.3(g), josta saadaan ka 7.3.(i). 2 Lisäysmenetelmä säilyttää syyysominaisden, koska si lehti lisätään samalle tasolle kin olemassa oleat lehdet ja si aain alimmalle sisäsolmtasolle. Se saattaa silti ahingoittaa kokoominaistta. Jos solm on solm ennen lisäystä, siitä tlisi solm sen jälkeen, mikä ei ole sallitta. Tällöin esiintyy ylioto (oerflow), joka on ratkaistaa sopiasti pn säilyttämiseksi lajissa (2,). 7. lk w z (a) (b) (c) (d) (e) Ka 7.3. (alk) Lisäyksiä (2,) phn: (a) Lähtötilanteen p, jossa on yksi tietoyksikkö, (b) aaimen 6 lisäys, (c) aaimen 2 lisäys, (d) aaimen lisäys, joka aihettaa yliodon, (e) jako, joka tottaa den jren ja (f) jaon jälkeen. (f) 2 7. lk 378 (g) (i) 3 (h) 2 Ka 7.3 (jatkoa) (g) Aaimen 3 lisäys, (h) aaimen lisäys, joka aihettaa yliodon, (i) jako ja (j) jaon jälkeen. 6 (j) 2 7. lk 379

5 (k) z Ka 7.3. (lopp) (k) Aaimen 0 lisäys ja (l) aaimen 8 lisäys. (l) 2 7. lk 380 Olkoot,, solmn lapset ja k,, k solmn talletett aaimet. Yliodon korjaamiseksi solmsta jaetaan (split) solm seraaasti (ka 7..): Solm korataan kahdella solmlla ja, missä on 3 solm lapsinaan, 2, 3 ja aaiminaan k ja k 2. on 2 solm lapsinaan ja ja aaimenaan k. 2 Jos on pn T jri, lodaan si jri. Mtoin olkoon solmn anhempi. Lisätään aain k 3 solmn ja asetetaan ja solmn lapsiksi niin, että jos oli i:s :n lapsi, niin ja tleat :n i:nneksi ja i+:nneksi lapseksi. Jako operaatio soritetaan selästi ajassa O(). 7. lk 38 h h 2 = k 0 k 2 k 3 k (a) Ka 7.. (2,) pn solmn jako: (a) ylioto solmssa, (b) :n kolmas aain lisätään :n anhempaan ja (c) korataan 3 solmlla ja 2 solmlla. h h 2 k 3 = 2 3 k k 2 k 2 3 (b) h k 3 h 2 3 k k 2 k 2 3 (c) 2 7. lk 382 Solmn jaon seraksena si ylioto oi esiintyä :n anhemmassa. Jos sellainen esiintyy, se sysää polestaan jaon solmn (ka 7..). Jako joko poistaa yliodon tai leittää sitä nykyisen solmn anhempaan Näin 000 jako operaatioiden 0 lkmäärää rajoittaa pn korkes, joka on laseen 7.2. mkaisesti O(log n). Lisäyksen sorittaminen (2,) phn aatii kaikkiaan aikaa O(log n) (a) Ka 7.. (alk) Lisäys (2,) phn aihettaen sarjan jakoja: (a) Ennen lisäystä lk 383

6 (b) (c) (d) 3 7 Ka 7.. (jatkoa) (b) Aaimen 7 lisäys, joka aihettaa yliodon, (c) jako ja (d) jaon aihettama si ylioto lk 38 (e) Ka 7.. (lopp) (e) Toinen jako, joka tottaa den jrisolmn, sekä (f) lopllinen p. (f) 2 7. lk 38 Poisto Kn edellinen aihto on tehty, tietoyksikkö poistetaan solmsta sanakirjasta D() ja poistetaan myös :n i:s lehtilapsi. eli Nyt 00 tarkastellaan tietoyksikön 000 0poistamista (2,) psta T. Ensiksi pitää lonnollisesti sorittaa hak aaimella k. Tietoyksikön poisto (2,) psta oidaan aina redsoida tapakseksi, jossa poistettaa tietoyksikkö sijaitsee alimmalla sisäsolmtasolla, ts. sen lapset oat lehtiä. Jos poistettaa tietoyksikkö (k i, x i ) sijaitsee tätä ylempänä pn solmssa z, aihdetaan alksi tietoyksikkö (k i, x i ) sellaisen kanssa, joka on talletettna solmssa ja tämän lapset oat lehtiä (ka 7.6.(d)): 2. Etsitään oikeanpolimmainen sisäsolm alipsta, jonka jri on solmn zi:s lapsi, kn solmn kaikki lapset oat lehtiä. Solmn aain on tällöin alipn i srin, ts. alhaaltapäin lähin poistetlle k i. 2. Vaihdetaan solmn z tietoyksikkö (k i,x i ) solmn iimeisen tietoyksikön kanssa. 7. lk Tietoyksikön ja lapsen poistaminen solmsta säilyttää syyysominaisden, mtta ei ältämättä koko ominaistta. Jos on ennen poistoa 2 solm, siitä tlisi solm, mikä ei ole sallitta (2,) pssa. Tällöin esiintyy alioto (nderflow). 2 Aliodon korjaamiseksi tarkistetaan, onko solmn iereinen sisars 3 solm tai solm. Jos tällainen iereinen sisars w on olemassa, soritetaan siirto (transfer), jossa siirretään solmn w lapsi solmn, w:n aain :n ja w:n anhempaan sekä :n aain solmn (ka 7.6.(b) (c)). Jos solmlla on ainoastaan yksi ierekkäinen sisars, joka on 2 solm, tai molemmat ierekkäiset sirarkset oat 2 solmja, soritetaan slattaminen (fsion), jossa lomitetaan sisarksensa kanssa lomalla si solm ja siirretään aain solmn anhemmasta solmn (ka 7.6. (e) (f)). 7. lk 387

7 w (a) Ka 7.6. Poistojen sarja (2,) psta: (a) aaimen poisto aihettaen aliodon, (b) siirto ja (c) siirron jälkeen (g) (b) 6 0 w (c) Ka 7.6. (g) Aaimen 3 poisto ja (h) tämän jälkeen lk 388 (h) lk 390 (d) Ka 7.6. (d) Aaimen 2 poisto, (e) slattaminen ja (f) tämän jälkeen. (f) (e) lk 389 Slattaminen solmssa saattaa aikaansaada den aliodon solmn anhemmassa, mikä polestaan tottaa siirron tai slattamisen solmssa (ka 7.7.). Tästä johten slattamisoperaatioiden määrää rajoittaa pn korkes, joka on laseen 7.2. mkaan O(log n). Jos alioto 00 0 leiää 000 jreen 000 saakka, 0 niin jri yksinkertaisesti poistetaan (ka 7.7. (c) (d)). Analyysi 2 (2,) pna totetetn sanakirjan pääoperaatiot findelement, insertitem ja remoe oat kaikki lokkaa O(log n). Soritsajat tleat seraaista seikoista. (2,) pn korkes, kn pssa on n tietoyksikköä, on O(log n) laseen 7.. mkaan. Jako, siirto ja slattaminen aatiat ajan O(). Tietoyksikön hak, lisäys ja poisto käyät O(log n) solmssa. 7. lk 39

8 (a) Ka 7.7. Slattamisten leiäminen (2,) pssa: (a) aaimen poisto, joka aihettaa aliodon, ja (b) slattaminen. (b) 2 7. lk 392 (c) Ka 7.7. (lopp) (c) Toinen slattaminen, joka aihettaa jren poistamisen, ja (d) lopllinen p. (d) 2 7. lk 393

7. Tasapainoitetut hakupuut

7. Tasapainoitetut hakupuut 7.1. Monitiehakpt 7. Tasapainoitett hakpt Tässä lssa jatketaan järjestetyn sanakirjan tarkastela esittämällä kehittynyt ptietorakenne. Lssa 7.1. esitetään monitiehakpn käsite. Se on järjestetty p, jonka

Lisätiedot

7. Tasapainoitetut hakupuut

7. Tasapainoitetut hakupuut 7. Tasapainoitetut hakupuut Tässä luvussa jatketaan järjestetyn sanakirjan tarkastelua esittämällä kehittynyt puutietorakenne. Luvussa 7.1. esitetään monitiehakupuun käsite. Se on järjestetty puu, jonka

Lisätiedot

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y.

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y. 3.8 Yhtedettömien kielten rajoitksista Yhtedettömille kielille on oimassa säännöllisten kielten pmppaslemman astine. Nt kitenkin merkkijonoa on pmpattaa samanaikaisesti kahdesta paikasta. Lemma 3.9 ( -lemma

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

Σ on numeroituvasti ääretön. Todistus. Muodostetaan bijektio f : N Σ seuraavasti. Olkoon

Σ on numeroituvasti ääretön. Todistus. Muodostetaan bijektio f : N Σ seuraavasti. Olkoon 17 Nmeroitat ja linmeroitat jokot Määritelmä 110 Jokko X on nmeroitasti ääretön, jos on olemassa bijektio f : N X Jokko on nmeroita, jos se on äärellinen tai nmeroitasti ääretön Jokko, joka ei ole nmeroita

Lisätiedot

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c. Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä

Lisätiedot

4. Taajuusalueen suodatus 4.1. Taustaa. 4.2. Perusteita

4. Taajuusalueen suodatus 4.1. Taustaa. 4.2. Perusteita 4. Taajsaleen sodats 4.. Tastaa Forier esitti. 87 idean että laskien yhteen jaksollisia painotettja fnktioita oidaan esittää kinka tahansa monimtkainen jaksollinen fnktio. Ka 4.. esittää tällaista. Jaksolliset

Lisätiedot

Optioiden hinnoittelu binomihilassa

Optioiden hinnoittelu binomihilassa Mat-2.3114 Investointiteoria Optioien hinnoittel binomihilassa 26.3.2015 Yksiperioiset optiot 1/3 Olkoon S kohe-eten arvo perioin alssa siten, että perioin päättyessä sen arvo on S toennäköisyyellä p tai

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Omakotitalon energiaratkaisu Pieni askel omavaraisuuteen.

Omakotitalon energiaratkaisu Pieni askel omavaraisuuteen. Omakotitalon energiaratkais Pieni askel omavaraisteen. www.arime.fi Phdasta energiaa lonnosta Arinko on meidän kakien elämään vattava ehtymätön energianlähde ja se tottaa välillisesti srimman osan ihmisten

Lisätiedot

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015

Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 1. Onko olemassa yhtenäistä verkkoa, jossa (a) jokaisen kärjen aste on 6, (b) jokaisen kärjen aste on 5, ja paperille piirrettynä sivut eivät

Lisätiedot

Tesomajärven koulusta Tesoman kouluksi

Tesomajärven koulusta Tesoman kouluksi Tesomajärven kolsta Tesoman kolksi Tesomajärven kol aloitti toimintansa v.1967 Kola käytiin kahdessa vorossa, parhaimmillaan kola kävi yli 1000 oppilasta Tesomajärven alakoln liitettiin myöhemmin Ikrin

Lisätiedot

Käyttöarvon kvantitatiivisesta mittaamisesta. Tommi Höynälänmaa 19. marraskuuta 2012

Käyttöarvon kvantitatiivisesta mittaamisesta. Tommi Höynälänmaa 19. marraskuuta 2012 Käyttöarvon kvantitatiivisesta mittaamisesta Tommi Höynälänmaa 19. marraskta 2012 1 1 Yleistä Ajan t mittainen henkilötyöaika keskimääräistyötä (tehokkdeltaan keskimääräistä työtä) saa tavarantotannossa

Lisätiedot

MS-A0004 - Matriisilaskenta Laskuharjoitus 3

MS-A0004 - Matriisilaskenta Laskuharjoitus 3 MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+

Lisätiedot

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä. .. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se

Lisätiedot

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68 Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8

Lisätiedot

Induktio kaavan pituuden suhteen

Induktio kaavan pituuden suhteen Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos

Lisätiedot

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,

Lisätiedot

havainnollistus, muokkaus ja viimeistely

havainnollistus, muokkaus ja viimeistely Tekstin havainnollists, mokkas ja viimeistely Lettavs ja merkintätavat Tiina Airaksinen Kappaleiden jäsentäminen Kappale = asiakokonaiss Testi: Pystytkö keksimään otsikon? Ei yhden virkkeen / yhden sivn

Lisätiedot

Matematiikan tukikurssi 3.4.

Matematiikan tukikurssi 3.4. Matematiikan tukikurssi 3.4. Neliömuodot, Hessen matriisi, deiniittisyys, konveksisuus siinä tämän dokumentin aiheet. Neliömuodot ovat unktioita, jotka ovat muotoa T ( x) = x Ax, missä x = (x 1,, x n )

Lisätiedot

Lisää segmenttipuusta

Lisää segmenttipuusta Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

2.2 Täydellinen yhtälö. Ratkaisukaava

2.2 Täydellinen yhtälö. Ratkaisukaava . Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.

Lisätiedot

JOENSUUN SEUDUN HANKINTATOIMI KOMISSIOMALLI 28.03.2014

JOENSUUN SEUDUN HANKINTATOIMI KOMISSIOMALLI 28.03.2014 JOENSUUN SEUDUN HANKINTATOIMI KOMISSIOMALLI 28.03.2014 KOMISSIO Komissio otetaan käyttöön kaikissa kilpailutuksissa, joiden hankintakausi alkaa 1.1.2012 tai sen jälkeen Raha liikkuu Joensuun seudun hankintatoimen

Lisätiedot

Algoritmit ja tietorakenteet Copyright Hannu Laine. 1, kun n= 0. n*(n-1)!, kun n>0;

Algoritmit ja tietorakenteet Copyright Hannu Laine. 1, kun n= 0. n*(n-1)!, kun n>0; 1 Rekursio Rekursion periaate ja rekursio määrittelyvälineenä Rekursiota käytetään tietotekniikassa ja matematiikassa erilaisiin tarkoituksiin. Eräänä käyttöalueena on asioiden määrittely. Esimerkkinä

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Luento 6. June 1, 2015. Luento 6

Luento 6. June 1, 2015. Luento 6 June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi

Lisätiedot

Dynaaminen optimointi

Dynaaminen optimointi Dynaaminen optimointi Tapa ratkaista optimointitehtävä Tehtävä ratkaistaan vaiheittain ja vaiheet yhdistetään rekursiivisesti Perustuu optimaalisuusperiaatteeseen: Optimaalisen ratkaisupolun loppuosa on

Lisätiedot

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu Rahoitsriskit ja johdannaiset Matti Estola lento 1 Binomipt ja optioiden hinnoittel 1. Optiohintojen mallintaminen Esimerkki. Oletetaan, että osakkeen spot -krssi on $ ja spot -krssilla 3 kk:n kltta on

Lisätiedot

Tesomajärven koulusta Tesoman kouluksi

Tesomajärven koulusta Tesoman kouluksi Tesomajärven kolsta Tesoman kolksi Tesomajärven kol aloitti toimintansa v.1967 Kola käytiin kahdessa vorossa, parhaimmillaan kola kävi yli 1000 oppilasta Tesomajärven alakoln on liitetty myöhemmin Ikrin

Lisätiedot

Lukion. Calculus. Polynomifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Polynomifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Polynomifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Polynomifunktiot (MAA) Pikatesti ja kertauskokeet Tehtävien ratkaisut

Lisätiedot

Yhteistyötä teatterista & Taiteesta tuotteeksi -hankkeet

Yhteistyötä teatterista & Taiteesta tuotteeksi -hankkeet Yhteistyötä teatterista & Taiteesta totteeksi -hankkeet Iisalmi, Keitele, Kirvesi, Lapinlahti, Pielavesi, Sonkajärvi ja Vieremä 10.8.2015 10.03.2016 Sisällys Johdanto... 3 Yhdistystoiminta ja osallistminen...

Lisätiedot

Tarjoajalla on oltava hankinnan kohteen laatu ja laajuus huomioon ottaen kokemusta seuraavilla alueilla:

Tarjoajalla on oltava hankinnan kohteen laatu ja laajuus huomioon ottaen kokemusta seuraavilla alueilla: Kysymykset ja vastaukset 1 (5) Avainkumppanin hankinta johtamisen kehittämisen projektiin Espoon kaupungin hankintapalveluun saapui kysymyksiä koskien Avainkumppanin hankinta johtamisen kehittämisen projektiin

Lisätiedot

11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa

11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa 11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa Tilavuusdatan katseluprosessi on käsitteellisesti yksinkertaista. Se pitää sisällään tilavuuden kierron katselusuuntaan ja sitten säteen

Lisätiedot

Kuntosaliharjoittelun kesto tunteina Kokonaishyöty Rajahyöty 0 0 5 1 5 10 2 15 8 3 23 6 4 29 4 5 33 -

Kuntosaliharjoittelun kesto tunteina Kokonaishyöty Rajahyöty 0 0 5 1 5 10 2 15 8 3 23 6 4 29 4 5 33 - Harjoitukset 1 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Oheisessa taulukossa on esitettynä kuluttajan saama hyöty kuntosaliharjoittelun kestosta riippuen. a) Laske taulukon tyhjään

Lisätiedot

x = x x 2 + 2y + 3 y = x + 2y f 2 (x, y) = 0. f 2 f 1

x = x x 2 + 2y + 3 y = x + 2y f 2 (x, y) = 0. f 2 f 1 Matematiikan K/P syksy Laskharjoits 9 Mallivastakset Tehtävän differentiaaliyhtälösysteemi: x = x x + y + y = x + y Merkitään f (x, y) = x x + y + ja f (x, y) = x + y Kriittisessä pisteessä f (x, y) =

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Integrointi Integrointi on erivoinnin käänteistoimitus: jos funktion F(x) erivaatta on f (x), niin funktion f (x) integraali on F(x). Täten, koska esimerkiksi funktion

Lisätiedot

Asia T-237/00. Patrick Reynolds vastaan Euroopan parlamentti

Asia T-237/00. Patrick Reynolds vastaan Euroopan parlamentti Asia T-237/00 Patrick Reynolds vastaan Euroopan parlamentti Henkilöstö Tilapäinen siirto muihin tehtäviin yksikön edun mukaisesti Henkilöstösääntöjen 38 artikla Poliittinen ryhmä Siirron ennenaikainen

Lisätiedot

Oppimisen haasteet ja mahdollisuudet terveysalan simulaatioissa

Oppimisen haasteet ja mahdollisuudet terveysalan simulaatioissa Oppimisen haasteet ja mahdollisdet terveysalan simlaatioissa Marianne Teräs, THM, FT Aikiskasvatksen dosentti Helsingin yliopisto Esitys 18.9.2015 Somen elvytysvasthenkilöiden valtaknnallinen 10 v jhlasymposimi

Lisätiedot

Algoritmit 2. Luento 8 Ke 13.4.2016. Timo Männikkö

Algoritmit 2. Luento 8 Ke 13.4.2016. Timo Männikkö Algoritmit 2 Luento 8 Ke 13.4.2016 Timo Männikkö Luento 8 Rekursioyhtälöt Master-lause Lähin pistepari Ahne menetelmä Lyhin virittävä puu Kruskalin menetelmä Primin menetelmä Merkkitiedon tiivistäminen

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio.

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. Harjoitukset 2 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. a) Mikä on kysynnän hintajousto 12 :n ja 6 :n välillä?

Lisätiedot

Massaeditorikoulutus 8.12.2015. KANSALLISKIRJASTO - Kirjastoverkkopalvelut

Massaeditorikoulutus 8.12.2015. KANSALLISKIRJASTO - Kirjastoverkkopalvelut Massaeditorikoulutus 8.12.2015 Massaeditoinnin toimintaperiaate Kokoelman tai hakutuloksen tietueet (itemit) voidaan eksportoida CSV-tiedostona omalle työasemalle taulukkomuodossa CSV:tä muokataan Libre/OpenOfficen

Lisätiedot

VES 340751 1(3) 1 Sopimuksen peruste ja tarkoitus

VES 340751 1(3) 1 Sopimuksen peruste ja tarkoitus VES 340751 1(3) Tarkentava virkaehtosopimus, joka tehtiin 2 päivänä kesäkuuta 2009 sisäasiainministeriön sekä Julkisalan koulutettujen neuvottelujärjestö JUKO ry:n, Palkansaajajärjestö Pardia ry:n ja Julkisten

Lisätiedot

Kolme pientä opinto-ohjaajaa ja suuren suuri lukio

Kolme pientä opinto-ohjaajaa ja suuren suuri lukio Kolme pientä opinto-ohjaajaa ja suuren suuri lukio Järki päätti ottaa selvää, keitä koulussamme hiihtelevät ja opoiksi itseään kutsuvat ihmisolennot todellisuudessa oikein ovat ja mistä he tulevat. Opinto-ohjaajat

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Kenguru 2016 Mini-Ecolier (2. ja 3. luokka) Ratkaisut

Kenguru 2016 Mini-Ecolier (2. ja 3. luokka) Ratkaisut sivu 1 / 11 TEHTÄVÄ 1 2 3 4 5 6 VASTAUS E B C D D A TEHTÄVÄ 7 8 9 10 11 12 VASTAUS E C D C E C TEHTÄVÄ 13 14 15 16 17 18 VASTAUS A B E E B A sivu 2 / 11 3 pistettä 1. Anni, Bert, Camilla, David ja Eemeli

Lisätiedot

/m 3 Alv 24 % Yhteensä Vesi 1,76 0,42 2,18 Jätevesi 1,88 0,45 2,33

/m 3 Alv 24 % Yhteensä Vesi 1,76 0,42 2,18 Jätevesi 1,88 0,45 2,33 1/5 KEMIN VESI OY:N TAKSA Taksan voimaantulopäivä 1.1.2013. Kemin Vesi Oy perii liittymistä ja käyttöä koskevia maksuja, sopimusehdot ja yleiset toimitusehdot huomioiden. Kaikki perittävät maksut ovat

Lisätiedot

- Kommentoi koodisi. Koodin kommentointiin kuuluu kuvata metodien toiminta ja pääohjelmassa tapahtuvat tärkeimmät toiminnat. Esim.

- Kommentoi koodisi. Koodin kommentointiin kuuluu kuvata metodien toiminta ja pääohjelmassa tapahtuvat tärkeimmät toiminnat. Esim. Projektityö olioista. Projektityön ohjeistus: - Jokainen valitsee vain yhden aiheen projektityökseen. Projektityön tarkoitus on opetella tekemään hieman isompi, toimiva ohjelma olioita käyttäen. Ohjelmakoodi

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä

Lisätiedot

II- luento. Etiikan määritelmiä. Eettisen ajattelu ja käytänteet. 1 Etiikka on oikean ja väärän tutkimusta

II- luento. Etiikan määritelmiä. Eettisen ajattelu ja käytänteet. 1 Etiikka on oikean ja väärän tutkimusta II- luento Eettisen ajattelu ja käytänteet Etiikan määritelmiä 1 Etiikka on oikean ja väärän tutkimusta 2. Etiikka ei ole samaa kuin moraali, se on moraalin tutkimusta 3. Etiikka ei ole tutkimusta siitä,

Lisätiedot

b/don 03" DI Do o0 au11

b/don 03 DI Do o0 au11 VALTIOVARAINMINISTERIÖ Kunta- ja aluehallinto-osasto Kunnanhallitukselle Päätös 28.12.2012 1 (3) V M/2199/02.02.06.00/2012 LAPPEENRANNAN KAUPUNKI kaupunginhallitus 0 Z. 01. 2013 b/don 03" DI Do o0 au11

Lisätiedot

HELSINGIN KAUPUNKI VUOKRASOPIMUS 1 LIIKUNTAVIRASTO

HELSINGIN KAUPUNKI VUOKRASOPIMUS 1 LIIKUNTAVIRASTO HELSINGIN KAUPUNKI VUOKRASOPIMUS 1 TOIMISTOTILAN VUOKRAAMINEN LIIKUNTAMYLLYSTÄ HELSINKI TRIATHLON RY:LLE Vuokranantaja Vuokralainen Helsingin kaupungin liikuntavirasto PL 4800, Toivonkatu 2 A 00099 Helsingin

Lisätiedot

String-vertailusta ja Scannerin käytöstä (1/2) String-vertailusta ja Scannerin käytöstä (2/2) Luentoesimerkki 4.1

String-vertailusta ja Scannerin käytöstä (1/2) String-vertailusta ja Scannerin käytöstä (2/2) Luentoesimerkki 4.1 String-vertailusta ja Scannerin käytöstä (1/2) Vertailuja tehdessä törmätään usein tilanteeseen, jossa merkkijonoa (esimerkiksi merkkijonomuuttujaa) pitää vertailla toiseen merkkijonoon. Tällöin tavanomainen

Lisätiedot

k = kiinteistötyypin mukainen kerroin seuraavan taulukon mukaan:

k = kiinteistötyypin mukainen kerroin seuraavan taulukon mukaan: 1 VESIHUOLTOLAITOKSEN TAKSA Liite PatL 2 / 17.12.2015 KIRKKONUMMEN KUNTA/VESIHUOLTOLAITOS Voimaantlopäivä 1.4.2016 Vesiholtolaitos perii, liittymistä ja käyttöä koskevat sopimsten ehdot ja yleiset toimitsehdot

Lisätiedot

Hae Opiskelija käyttöohje

Hae Opiskelija käyttöohje Hae Opiskelija käyttöohje Yleistä Hae Opiskelija hakuikkunan toiminto on uudistettu tavoitteena saada selkeämpi ja helppokäyttöisempi rakenne. Käyttäjä valitsee ensin, kumpaa hakua haluaa käyttää, Perushaku

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

9.10.2015. Vesimaksun yksikköhinta, / m 3 Liittyjältä peritään vesimaksua toimitetusta vedestä mitatun kulutuksen mukaan.

9.10.2015. Vesimaksun yksikköhinta, / m 3 Liittyjältä peritään vesimaksua toimitetusta vedestä mitatun kulutuksen mukaan. Liite 1 1 (5) HSY:N VESIHUOLLON TAKSA 1.1.2016 ALKAEN 1 Käyttömaksut Käyttömaksu peritään kiinteistön käyttämän veden ja poisjohdettavan jäteveden määrän ja laadun perusteella. Maksua peritään erikseen

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

ThermiSol EPS- ja Platina -eristeiden paloturvallinen käyttö tiiliverhoillussa ulkoseinässä

ThermiSol EPS- ja Platina -eristeiden paloturvallinen käyttö tiiliverhoillussa ulkoseinässä TUTKIMUSRAPORTTI VTT-R-00774-12 ThermiSol EPS- ja Platina -eristeiden paloturvallinen käyttö tiiliverhoillussa ulkoseinässä Kirjoittaja: Luottamuksellisuus: Esko Mikkola Julkinen 2 (6) Sisällysluettelo

Lisätiedot

TW- EAV510: WDS- TOIMINTO KAHDEN TW- EAV510 LAITTEEN VÄLILLÄ

TW- EAV510: WDS- TOIMINTO KAHDEN TW- EAV510 LAITTEEN VÄLILLÄ TWEAV510: WDSTOIMINTO KAHDEN TWEAV510 LAITTEEN VÄLILLÄ Alla kaksi vaihtoehtoista ohjetta WDSverkon luomiseksi Ohje 1: WDSyhteys käyttää WPAsalausta. Tässä ohjeessa WDSyhteys toimii vain, kun tukiasema

Lisätiedot

Osaamisen tunnistaminen/tunnustaminen

Osaamisen tunnistaminen/tunnustaminen Sotelan ttk 8509 Osaamisen tunnistaminen/tunnustaminen Hyviä käytäntöjä etsimässä Marjatta Karkkulainen 10.3.2015 Missä se osaaminen luuraa??? Lähtökohtana: osaamisen tunnistaminen Hakeutumisvaiheessa

Lisätiedot

Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus

Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus Tässä rajoitutaan tarkastelemaan kahden arvioitsijan tapausta, Olettakaamme, että n havaintoa on arvioitu kahden arvioitsijan

Lisätiedot

www.pwc.com Kaukolämpöliiketoiminnan yhtiöittäminen ja alv Siikajoen kunta

www.pwc.com Kaukolämpöliiketoiminnan yhtiöittäminen ja alv Siikajoen kunta www.pwc.com Kaukolämpöliiketoiminnan yhtiöittäminen ja alv Siikajoen kunta Taustatilanne Siikajoen kunta on harjoittanut lämpölaitosliiketoimintaa omana toimintanaan - Kunnan omistamalla lämpölaitoksella

Lisätiedot

Avioliittoon vihkiminenopas

Avioliittoon vihkiminenopas Avioliittoon vihkiminenopas Suurin on rakkaus Olette kohdanneet ihmisen, jonka kanssa haluatte viettää loppuelämänne. Se on ihmeellisen hienoa. Kirkossa voitte solmia avioliiton, pyytää sille Jumalan

Lisätiedot

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta

Lisätiedot

TOIMEKSIANTOSOPIMUS. 1. Sopijapuolet. 2. Yhteyshenkilöt. 3. Sopimuksen tausta ja tavoitteet. Osoite: Kasurilantie 1, PL 5, 71801, Siilinjärvi

TOIMEKSIANTOSOPIMUS. 1. Sopijapuolet. 2. Yhteyshenkilöt. 3. Sopimuksen tausta ja tavoitteet. Osoite: Kasurilantie 1, PL 5, 71801, Siilinjärvi TOIMEKSIANTOSOPIMUS 1. Sopijapolet Toimeksiantaja: Siilinjärven knta (Jäljempänä Asiakas ) Osoite: Kasrilantie 1, PL 5, 71801, Siilinjärvi Y-tnns: 0172718-0 Toimeksiannon saaja: Vaktsmeklari Novm Oy (Jäljempänä

Lisätiedot

Ohje PhotoPortaalin käytöstä

Ohje PhotoPortaalin käytöstä Ohje PhotoPortaalin käytöstä Yleistä sisällöstä 1. Käyttäjän sisäänkirjautuminen / rekisteröityminen Jos olet kirjautunut aikaisemmin Finland Circuit, Obsession of Light, This is Life, tai johonkin muuhun

Lisätiedot

PRK. Muoviputkien liittimet Soveltuu PEL, PEH, PEM ja PELM -putkille

PRK. Muoviputkien liittimet Soveltuu PEL, PEH, PEM ja PELM -putkille PRK Muoviputkien liittimet Soveltuu PEL, PEH, PEM ja PELM -putkille IMI TA / Liittimet / PRK PRK Tämä PEL, PEH, PEM ja PELM muoviputkille tarkoitettu liitin sopii käytettäväksi sekä maan päällä että maan

Lisätiedot

10. Optiohinnoittelu binomihilassa

10. Optiohinnoittelu binomihilassa 10. Optiohinnoittel binomihilassa 1. Sijoitskohteien hintaprosessit Moniperioisten investointitehtävien tarkastel eellyttää sijoitskohteien hintojen kehittymisen mallintamista joko iskreetteinä tai jatkvina

Lisätiedot

ULVILAN KAUPUNGINVIRASTON JOHTOSÄÄNTÖ

ULVILAN KAUPUNGINVIRASTON JOHTOSÄÄNTÖ ULVILAN KAUPUNGINVIRASTON JOHTOSÄÄNTÖ Hyväksytty: 25.8.2008 Voimaantulo: 1.9.2008 SISÄLLYSLUETTELO 1 LUKU 2 SOVELTAMISALA 2 1 Soveltamisala 2 2 LUKU 2 TOIMINTA-AJATUS JA JOHTAMINEN 2 2 Toiminta-ajatus

Lisätiedot

Perusopetuksen aamu- ja iltapäivätoiminnan laadun arviointi 2016 Västankvarns skola/ Tukiyhdistys Almus ry.

Perusopetuksen aamu- ja iltapäivätoiminnan laadun arviointi 2016 Västankvarns skola/ Tukiyhdistys Almus ry. Perusopetuksen aamu- ja iltapäivätoiminnan laadun arviointi 06 Västankvarns skola/ toteutti perusopetuksen aamu- ja iltapäivätoiminnan seurantakyselyn lapsille ja huoltajille huhtikuussa 06. Vuoden 06

Lisätiedot

Helsingin hengessä sopua ja sovittelua työyhteisön arkeen

Helsingin hengessä sopua ja sovittelua työyhteisön arkeen Helsingin hengessä sopa ja sovittela työyhteisön arkeen Helsingin kapngin toimintaohje ristiriitojen rakentavaan käsittelyyn ja sovitteln Tässä oppaassa määritellään, mitä ovat epäasiallinen kohtel ja

Lisätiedot

OSAKKEENOMISTAJIEN NIMITYSTOIMIKUNNAN TYÖJÄRJESTYS MUNKSJÖ OYJ (Y-TUNNUS 2480661-5)

OSAKKEENOMISTAJIEN NIMITYSTOIMIKUNNAN TYÖJÄRJESTYS MUNKSJÖ OYJ (Y-TUNNUS 2480661-5) OSAKKEENOMISTAJIEN NIMITYSTOIMIKUNNAN TYÖJÄRJESTYS MUNKSJÖ OYJ (Y-TUNNUS 2480661-5) Hyväksytty Munksjö Oyj:n varsinaisessa yhtiökokouksessa 6.4.201613.5.2013 SISÄLTÖ 1 Nimitystoimikunnan tarkoitus...3

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4 DEE- Lineaariset järjestelmät Harjoits 8, rataisehdotset Tämän harjoitsen ideana on opetella -mnnosen ättöä differenssihtälöiden rataisemisessa. Lisäsi ätetään -mnnosen ehäpä hödllisintä ominaistta, eli

Lisätiedot

Ohje EU:n tulli- ja veroalueen ulkopuolelle rekisteröidyillä yksityiskäytössä olevilla huviveneillä Suomeen saapuville

Ohje EU:n tulli- ja veroalueen ulkopuolelle rekisteröidyillä yksityiskäytössä olevilla huviveneillä Suomeen saapuville 1 Ohje EU:n tulli- ja veroalueen ulkopuolelle rekisteröidyillä yksityiskäytössä olevilla huviveneillä Suomeen saapuville Tämä ohje on voimassa 1.5.2015 alkaen Ohjeessa on selostettu pääpiirteittäin täysin

Lisätiedot

Espoon kaupunki Pöytäkirja 22

Espoon kaupunki Pöytäkirja 22 17.02.2016 Sivu 1 / 1 5557/2015 02.02.00 5 7.1.2016 22 terveystoimen vuoden 2016 käyttösuunnitelman tarkistus Valmistelijat / lisätiedot: Markus Syrjänen, puh. 09 816 23000 Marjo Lahtinen, puh. 043 825

Lisätiedot

- Valitaan kohta Asetukset / NAT / Ohjelmallinen palvelin - Seuraavassa esimerkki asetuksista: valitaan käytössä oleva ohjelmistorajapinta

- Valitaan kohta Asetukset / NAT / Ohjelmallinen palvelin - Seuraavassa esimerkki asetuksista: valitaan käytössä oleva ohjelmistorajapinta TW-EAV510: VALVONTAKAMERAN KYTKEMINEN VERKKOON OPERAATTORIN IP-OSOITE - Jotta valvontakameran käyttöä varten saadaan avattua tarvittavat portit, pitää operaattorilta saada julkinen IP-osoite, jotta kaikki

Lisätiedot

2.7 Neliöjuuriyhtälö ja -epäyhtälö

2.7 Neliöjuuriyhtälö ja -epäyhtälö 2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a

Lisätiedot

3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan.

3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan. KOKEIT KURSSI 2 Matematiikan koe Kurssi 2 () 1. Nimeä kulmat ja mittaa niiden suuruudet. a) c) 2. Mitkä kuvion kulmista ovat a) suoria teräviä c) kuperia? 3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden

Lisätiedot

LBC 3210/00 Line Array -sisä-/ulkokaiutin

LBC 3210/00 Line Array -sisä-/ulkokaiutin Viestintäjärjestelmät LBC 3210/00 Line Array -sisä-/lkokaitin LBC 3210/00 Line Array -sisä-/lkokaitin www.boschsecrity.fi Laajennett kntelale Erinomainen pheen ja msiikin erotettavs Lonnollisen äänen tasainen

Lisätiedot

LIITE. asiakirjaan KOMISSION TIEDONANTO

LIITE. asiakirjaan KOMISSION TIEDONANTO EUROOPAN KOMISSIO Bryssel 15.11.2013 COM(2013) 901 final ANNEX 1 LIITE asiakirjaan KOMISSION TIEDONANTO Arviointi toimista, jotka ESPANJA, RANSKA, MALTA, ALANKOMAAT ja SLOVENIA ovat toteuttaneet neuvoston

Lisätiedot

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

5. www-kierroksen mallit

5. www-kierroksen mallit 5. www-kierroksen mallit Tehtävä 1 Ratkaistaan tasapainopiste merkitsemällä kysyntä- ja tarjontakäyrät yhtäsuuriksi: 3 4 q+20=q+6 q=8 ja sijoittamalla p=14. Kuluttajan ja tuottajan ylijäämä voidaan ratkaista

Lisätiedot

(kevät 2019) Markku Laitinen Uurainen Siv u 1

(kevät 2019) Markku Laitinen Uurainen Siv u 1 (kevät 2019) 1 TUEN SAAJAT: -Lonnolliset henkilöt ja yksityisoikedelliset yhteisöt (Oy, Ky, Ay, ossknnat), joka elinkeinonaan harjoittaa tai ryhtyy harjoittamaan maatilalla maatalotta (maatalosyrittäjä).

Lisätiedot

Syksyn aloituskampanjat lippukunnissa

Syksyn aloituskampanjat lippukunnissa Syksyn aloituskampanjat lippukunnissa Partiossa eletään nyt hyvää nousukautta. Jotta sama tilanne jatkuisi, olemme tehneet teille syksyn toiminnan aloittamisen tueksi tarkoitetun vihkon. Viime syksynä

Lisätiedot

Seppo I. Niemelä: Mikrobiologian kvantatiivisten

Seppo I. Niemelä: Mikrobiologian kvantatiivisten Jlkais J1/001 MITTATEKNIIKAN KESKUS Jlkais J1/001 MIKROBIOLOGIAN KVANTITATIIVISTEN VILJELYMÄÄRITYSTEN MITTAUSEPÄVARMUUS Seppo I. Niemelä KEMIAN JAOSTO Mikrobiologian työryhmä Helsinki 001 ALKUSANAT Mikrobiologisten

Lisätiedot

Hoitoketjut sotealueella. Jukka Mattila Johtajaylilääkäri Lapin sairaanhoitopiiri

Hoitoketjut sotealueella. Jukka Mattila Johtajaylilääkäri Lapin sairaanhoitopiiri Hoitoketjt sotealeella Jkka Mattila Johtajaylilääkäri Lapin sairaanhoitopiiri 23.11.2017 Valinnanvapaslakilonnos Lasntokierroksella 15.12.2017 asti 4 Asiakkaan oikes valita Asiakkaalla on oikes valita

Lisätiedot

1780 N:o 567 LIITTEET 1 2 LASKUPERUSTEET TYÖNTEKIJÄN ELÄKELAIN MUKAISTA TOIMINTAA HARJOITTAVILLE ELÄKESÄÄTIÖILLE

1780 N:o 567 LIITTEET 1 2 LASKUPERUSTEET TYÖNTEKIJÄN ELÄKELAIN MUKAISTA TOIMINTAA HARJOITTAVILLE ELÄKESÄÄTIÖILLE 1780 N:o 567 LTTEET 1 LAKPETEET TYÖNTEKJÄN ELÄKELAN MKATA TOMNTAA HAJOTTALLE ELÄKEÄÄTÖLLE N:o 567 1781 ÄLLYLETTELO LTE 1: LAKPETEET TYÖNTEKJÄN ELÄKELAN MKATA TOMNTAA HAJOTTALLE ELÄKEÄÄTÖLLE 1 AKTTEKNET

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet Johdatus L A TEXiin 6. Omat komennot ja lauseympäristöt Markus Harju Matemaattiset tieteet Omat komennot I a L A TEXin valmiiden komentojen lisäksi kirjoittaja voi itse määritellä omia komentojaan. Tämä

Lisätiedot

3. Muuttujat ja operaatiot 3.1

3. Muuttujat ja operaatiot 3.1 3. Muuttujat ja operaatiot 3.1 Sisällys Muuttujat. Nimi ja arvo. Algoritmin tila. Muuttujan nimeäminen. Muuttujan tyyppi. Muuttuja ja tietokone. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeetiikka.

Lisätiedot

Yhdistyksen jäsenet Yhdistyksen varsinaiseksi jäseneksi voi hallitus hyväksyä jokaisen, joka on suorittanut tutkinnon Lahden ammattikorkeakoulussa.

Yhdistyksen jäsenet Yhdistyksen varsinaiseksi jäseneksi voi hallitus hyväksyä jokaisen, joka on suorittanut tutkinnon Lahden ammattikorkeakoulussa. LUONNOS LAMK-alumni ry:n sääntöehdotukset perustamiskokoukseen: Yhdistyksen nimi LAMK alumni ry Yhdistys on suomenkielinen. Yhdistyksen kotipaikka: Lahti Yhdistyksen tarkoitus ja toimintamuodot Yhdistyksen

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot