1 TILASTOMATEMATIIKKA TILASTOTIETEEN PERUSKÄSITTEITÄ MUUTTUJAT FREKVENSSIJAKAUMA AINEISTON LUOKITTELU...

Koko: px
Aloita esitys sivulta:

Download "1 TILASTOMATEMATIIKKA... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 3 MUUTTUJAT... 6 4 FREKVENSSIJAKAUMA... 8 5 AINEISTON LUOKITTELU..."

Transkriptio

1 SISÄLLYSLUETTELO 1 TILASTOMATEMATIIKKA JOHDANTO LINKKEJÄ LÄHTEET TILASTOTIETEEN PERUSKÄSITTEITÄ HAVAINTOAINEISTO POPULAATIO OTOS HAVAINTOAINEISTON KERÄÄMISTAVAT MUUTTUJAT MITTA-ASTEIKOT JATKUVA VAI DISKREETTI? FREKVENSSIJAKAUMA AINEISTON LUOKITTELU DIAGRAMMIT TUNNUSLUVUT

2 1 TILASTOMATEMATIIKKA 1.1 Johdanto Tilastotiede on saanut alkunsa väestö- ja talousaloja kuvaavista tilastoista. Tilastollisilla menetelmillä on tärkeä asema yhteiskunnallisten toimintojen suunnittelussa, lääketieteen tutkimuksessa, yritysten toimintojen kehittämisessä se monilla muilla aloilla. Tietojenkäsittelyn kehittyminen on tehnyt tilastoista niin yleisiä ja jokapäiväisiä asioita, että ne ovat jatkuvasti esillä lehdissä, internetissä ja televisiossa. Tilastoja on esimerkiksi talouselämästä, urheilusta, politiikasta ja säätilojen muutoksista. Jokaisen kansalaisen perustaitoihin kuuluu tänä päivänä osata lukea ja tulkita tilastoja. Tämän vuoksi tulee tuntea tiettyjä tilastotieteen perusasioita sekä opetella tilastojen lukemista taulukoina, kuvioina ja erilaisten tunnuslukujen avulla. Pohdintatehtävä Mieti millaisia käyttötarpeita voi olla a) työttömyystilastoilla b) hintatilastoilla? 1.2 Linkkejä Suomen suurin tilastojen tuottaja on valtion ylläpitämä Tilastokeskus. Sen lisäksi virallisia tilastoja tekevät monet muut valtion virastot ja laitokset sekä kunnat, liikelaitokset ja monet järjestöt. Tilastollisia tutkimuksia tehdään myös yritysten omiin tarpeisiin. Tilastokeskus (www.stat.fi), Väestörekisterikeskus (www.vaestorekisterikeskus.fi), Stakes (www.stakes.fi), Suomen ympäristökeskus (www.ymparisto.fi), Suomen elokuvasäätiö (www.ses.fi) 1.3 Lähteet Helakorpi, Ansaharju ja Söderström (1999) Origo. WSOY oppimaterialit. Hemmo, Taskinen ja Vahviainen (2004) Sigma, Tilastot ja todennäköisyys. TAMMI oppimateriaalit. Karjalainen Leila (2001) Liiketalouden matematiikka 1. Gummerus. 2

3 Karvonen, Käenniemi, Möller ja Poskela (2001) ProbleMatikka. Otava oppimateriaalit. Kettunen, Laakkonen ja Salminen (2007) Numerotaito. WSOY oppimateriaalit. Peltola ja Vuorenmaa (2006) Näppärästi numeroilla. WSOY oppimateriaalit. 2 TILASTOTIETEEN PERUSKÄSITTEITÄ 2.1 Havaintoaineisto Tilastot eivät synny itsestään vaan ne täytyy kerätä. Useimmiten tilastot muodostuvat suuresta määrästä numerotietoja. Tilastollista tutkimusta varten kerättyä tietoa kutsutaan havaintoaineistoksi tai tilastoaineistoksi. Havainnollisuuden vuoksi aineisto esitetään yleensä taulukoituna tai kuvioiden avulla. Havaintoaineisto koostuu havaintoyksiköistä (tilastoyksiköistä) ja niiden ominaisuuksista eli muuttujista. Jos tutkitaan esimerkiksi luokan oppilaiden koulumatkojen pituuksia ja kengän numeroa, oppilaat ovat havaintoyksikköjä, ja koulumatkan pituus ja kengän numero ovat muuttujia. 2.2 Populaatio Se joukko, johon tutkimus kohdistuu, on nimeltään perusjoukko eli populaatio. Populaatio voi olla esimerkiksi kaupungin asukkaat, Kajaanin Ammattikorkeakoulun opiskelijat, radiossa soitetut kappaleet, tietokoneiden sovellusohjelmat, esikouluiässä olevat lapset jne. Jos havaintoaineistoon kuuluu kaikki perusjoukon havaintoyksiköt, sitä kutsutaan kokonaisaineistoksi. 2.3 Otos Koko perusjoukkoa on usein mahdotonta tai ainakin kovin työlästä tutkia. Tästä syystä kokonaisaineiston sijasta tutkitaan usein otosta. Otos on sellainen osa perusjoukon havaintoyksiköistä, jotka on kerätty jollain otantamenetelmällä. Otantamenetelmät ovat erilaisia tapoja poimia havaintoyksiköitä perusjoukosta niin, että otos kuvaisi perusjoukkoa 3

4 mahdollisimman hyvin. Jos havaintoyksiköt poimitaan perusjoukosta jollain muulla tavalla kuin otantamenetelmällä, kerättyä aineistoa kutsutaan näytteeksi Yksinkertainen satunnaisotanta arvonta Otannan perusmenetelmä on yksinkertainen satunnaisotanta. Yksinkertaisessa satunnaisotannassa jokaisella alkiolla on yhtä suuri todennäköisyys tulla poimituksi otokseen. Yksinkertainen satunnaisotanta valitaan arpomalla Systemaattinen otanta - joka k:s Systemaattinen otanta sopii käytettäväksi silloin, kun perusjoukkoa ei tarkkaan pystytä määrittämään, esimerkiksi liikkeen asiakastutkimus ovensuukyselynä, liikennetutkimus maantiellä jne.. Systemaattisessa otannassa valitaan ensin poimintaväli. Jos perusjoukon koko on tiedossa, niin poimintaväli saadaan jakamalla perusjoukon koko halutulla otoskoolla. Jos poimintaväliksi valitaan k, niin seuraavaksi arvotaan k:n ensimmäisen tilastoyksikön joukosta yksi ja sen jälkeen poimitaan järjestyksessä joka k:s. tilastoyksikkö. Menetelmä sopii käytettäväksi myös silloin, jos käytettävissä on luettelo perusjoukon jäsenistä. Luettelosta voidaan poimia otos systemaattista otantaa käyttäen Ositettu otanta - avainryhmien edustus taattu 4

5 Esimerkki Jos tutkimuksen tarkoituksena on vertailla Suomessa asuvia suomenkielisiä ja ruotsinkielisiä, niin yksinkertaisella satunnaisotannalla arvottu otos luultavasti sisältäisi aika vähän ruotsinkielisiä. Vertailua varten ruotsinkielisiä pitäisi kuitenkin olla niin paljon, että voitaisiin tehdä kaikkia Suomessa asuvia ruotsinkielisiä koskevia päätelmiä. Ratkaisu on ositettu otanta, jossa arvotaan otos erikseen suomenkielisistä ja erikseen ruotsinkielisistä. Jos halutaan nimenomaan verrata kyseisiä ryhmiä toisiinsa, niin käytetään tasaista kiintiöintiä: suomenkielisiä arvotaan mukaan yhtä monta kuin ruotsinkielisiäkin. Tällöin otoksesta ei tietenkään suoraan voi tehdä kaikkia Suomessa asuvia koskevia päätelmiä, ainoastaan päätelmiä suomenkielisistä ja ruotsinkielisistä. Ositetussa otannassa voidaan osittavana muuttujana käyttää mitä tahansa tutkimuksen kannalta tärkeää muuttujaa, kuten ikäryhmä, sukupuoli, asuinseutu jne Ryväsotanta Ryväsotannassa perusjoukon alkiot ryhmitellään ryppäisiin. Vain osa ryppäistä pääsee mukaan otokseen. Esimerkki Oppilaitoksen opiskelijoista voidaan poimia otos arpomalla ensin otos luokkahuoneista, jolloin luokkahuoneet ovat nk. ryppäitä. Arvotuissa luokkahuoneissa käydään sitten suorittamassa kysely. Otoksessa pitäisi myös huomioida päivä ja iltaopiskelijat. Tämän voisi toteuttaa arpomalla otos luokkahuoneista päiväsaikaan ja toinen otos ilta-aikaan. Tässä yhdistetään ryväsotantaan ositettu otanta, jolla taataan päivä- ja iltaopiskelijoiden edustus. 5

6 Esimerkki Jos tutkitaan tänä vuonna peruskoulun aloittavia, niin voidaan poimia ensin otos kouluista, jolloin koulut ovat ryppäitä. Tämän jälkeen arvotaan kustakin otokseen tulleesta koulusta tietty määrä tutkimuksen kohderyhmään kuuluvia oppilaita. Jos poimituista ryppäistä tutkitaan kaikki ryppäisiin kuuluvat alkiot, puhutaan yksiasteisesta ryväsotannasta. Jos poimituista ryppäistä valitaan vain osa alkioista tutkittavaksi, niin kyseessä on kaksiasteinen ryväsotanta. 2.4 Havaintoaineiston keräämistavat Havaintoaineistoa voidaan kerätä monella eri tavalla: kyselyllä, haastattelulla, havainnoimalla, systemaattisella koejärjestelyllä ja valmiista tietokannasta. Tavan valitseminen riippuu siitä, millaista tietoa halutaan kerätä. 3 MUUTTUJAT Tilastollinen muuttuja on kvantitatiivinen (eli määrällinen) jos sen luonnollinen kuvaustapa on reaaliluku. Jos muuttujaa ei kuvata reaaliluvulla (tai luku on vain tietty koodiarvo), muuttujaa sanotaan kvalitatiiviseksi (eli laadulliseksi) muuttujaksi. Esimerkki 3.1. Seuraavan lomakkeen muuttujista ovat kvalitatiivisia ikä ja pituus sekä kvantitatiivisia sukupuoli ja mielipide kouluruoasta. Sukupuoli mies nainen Ikä Pituus Mielipide kouluruoasta 1 Ruoka on huonoa. 2 Ruoka on melko hyvää. 3 Ruoka on erinomaista 6

7 3.1 Mitta-asteikot Muuttujat voidaan jaotella neljään luokkaan mitta-asteikon mukaan: 1) laatu- eli nominaaliasteikko 2) järjestys- eli ordinaaliasteikko, 3) välimatka- eli intervalliasteikko sekä 4) suhdelukuasteikko Nominaali- eli laatuasteikko Nominaali- eli laatuasteikolla havainnot luokitellaan kahteen tai useampaan luokkaan samanlaisuutensa tai erilaisuutensa perusteella. Mittauksen kohteet ovat siinä mielessä tasaarvoisia, ettei millään luokalla ole enempää mitattavaa ominaisuutta kuin toisella luokalla. Luokkia ei siis voi laittaa järjestykseen mitattavan ominaisuuden suhteen. Esimerkkejä: työllinen/työtön/ työvoimaan kuulumaton, kaupunki/maalaiskunta, suomalainen/ruotsalainen/norjalainen Ordinaali- eli järjestysasteikko Ordinaali- eli järjestysasteikolla mitattavasta kohteesta voidaan sanoa, onko sillä mitattavaa ominaisuutta enemmän, yhtä paljon vai vähemmän kuin toisella kohteella. Järjestysasteikko on kuin venyvä mittanauha. Nauhan pituudesta riippumatta kohteet ovat oikeassa järjestyksessä. Kohteiden välisillä etäisyyksillä ei sen sijaan ole merkitystä. Esimerkkinä ordinaaliasteikosta ovat paljon käytetyt asenneskaalat: täysin eri mieltä/jokseenkin eri mieltä/ei osaa sanoa/jokseenkin samaa mieltä/täysin samaa mieltä Intervalli- eli välimatka-asteikko Järjestyksen lisäksi intervalli-asteikolla on mielekästä verrata välimatkoja. Lämpömittari sisältää tällaisen asteikon. 0-piste on mielivaltainen: Celsiuksen nolla on Fahrenheitin 32 astetta. Kuitenkin lämpötilan nousu -20 asteesta -10 asteeseen on yhtä suuri kuin nousu +10 asteesta +20 asteeseen. Toinen esimerkki intervalliasteikosta on kalenteri, jolla mitataan aikaa päivissä Suhdeasteikko 7

8 Lisäämällä intervalliasteikkoon absoluuttinen nollapiste päästään suhdeasteikkoon. Tähän luokkaan kuuluvia muuttujia ovat pituus, paino, perheen tulot, yleensä raha- ja lukumäärämitat. 3.2 Jatkuva vai diskreetti? Välimatka- ja suhdelukuasteikolliset muuttujat voivat olla jatkuvia tai epäjatkuvia eli diskreettejä. Jatkuva muuttuja voi saada mitä tahansa arvoja tietyllä välillä, esimerkkinä henkilön pituus. Diskreetti muuttuja, esimerkiksi kengän numero, voi saada vain tiettyjä arvoja. 4 FREKVENSSIJAKAUMA Havaintoaineiston keräämisen jälkeen aineisto käsitellään niin, että kaikki olennainen tieto saadaan näkyviin. Aineiston käsittely aloitetaan yleensä frekvenssien laskemisella. 4.1 Frekvenssi Frekvenssi on muuttujan arvojen esiintymiskertojen lukumäärä. Esimerkki 4.1. Opettaja kerää havaintoaineiston kysymällä luokan oppilailta heidän sisarustensa lukumäärän. Kahdenkymmenenkahden oppilaan sisarusten lukumäärät olivat Opettaja laskee muuttujan arvojen esiintymiskerrat tukkimiehen kirjanpidolla frekvenssien määrittämiseksi. Sisarusten Frekvenssi f 0 3 lukumäärä Tällä tavalla laadittu taulukko, jossa esiintyvät muuttujien arvot ja niihin liittyvät frekvenssit, on nimeltään frekvenssijakauma. 8

9 4.2 Suhteellinen frekvenssi Suhteellinen frekvenssi kertoo esiintymiskertojen määrän prosentteina. Esimerkki 4.2. Edellisen esimerkin suhteelliset frekvenssit. Sisarusten Frekvenssi f Suhteellinen frekvenssi f lukumäärä 0 3 % 3/22 = 0, % /22 = 0,5 = 50 % 2 6 6/22 = 0, % 3 2 2/22 = 0, % Havaintoyksiköitä yhteensä 22 Suhteellisten frekvenssien avulla on helpompi vertailla keskenään aineistoja, joissa havaintoyksiköitä on eri määrä. 5 AINEISTON LUOKITTELU 5.1 Luokittelu Kun muuttujien arvoja on niin paljon, että niitä ei ole mielekästä ilmoittaa frekvenssitaulukossa yksittäisinä arvoina, ne luokitellaan sopiviin luokkiin. Luokkien määrä on harkinnanvarainen. Teknisillä aloilla luokkien määrä lasketaan kaavalla 3 n eli otetaan havaintojen lukumäärästä kuutiojuuri ja pyöristetään se ylempään kokonaislukuun. Jos luokkia on paljon, saadaan tarkempi tulos kuin harvalla luokkavälillä. Esimerkki 5.1. Seuraavassa on erään luokan oppilaiden pituudet senttimetreinä: Lukusuoralle sijoitetuista pisteistä nähdään, mille välille pituudet asettuvat ja moneenko luokkaan aineisto kannattaa jakaa. 9

10 Sitten aineisto luokitellaan ja lasketaan sen frekvenssit. Luokka f f % % % % % 5.2 Todelliset luokkarajat Luokitellun jatkuvan muuttujan luokkarajat eivät ole todellisia luokkarajoja. Todellisissa luokkarajoissa otetaan huomioon mahdolliset lukuarvon pyöristykset. Esimerkki 5.2. Pituus 161 cm voi todellisuudessa olla 160,5 cm - 161,4 cm. Kaikki nämä pituudet pyöristyvät 161 senttimetriin. Esimerkin 5.1 todelliset luokkarajat siis ovat Luokka Todellinen alaraja Todellinen yläraja ,5 160, ,5 170, ,5 180, ,5 190,5 5.3 Luokkakeskus Luokitellussa aineistossa tarvitaan usein yksi lukuarvo edustamaan kutakin luokkaa. Tällainen arvo on luokan keskimmäinen arvo eli luokan todellisen alarajan ja todellisen ylärajan keskiarvo: 10

11 Luokkakeskus = (todellinen alaraja + todellinen yläraja) / 2 Esimerkki 5.3. Esimerkin 5.1 luokan luokkakeskus on siis (160, ,5) / 2 = 165, Luokkavälin pituus Luokkavälin pituus on todellisten luokkarajojen erotus. Esimerkki 5.4. Luokkavälin pituus esimerkissä 5.1 on 170,5-160,5 = 10,0. 6 DIAGRAMMIT Frekvenssijakauman perusteella voi olla hankala muodostaa kokonaiskuvaa tarkasteltavasta tilanteesta. Tilastokuvaajilla eli diagrammeilla on tarkoitus havainnollistaa tietoa. 6.1 Pylväsdiagrammi Pylväsdiagrammilla kuvataan diskreettiä muuttujaa. Pylvään korkeus määräytyy frekvenssin tai suhteellisen frekvenssin mukaan. Pylväät piirretään erillisinä. Pystypylväitä käytetään silloin, kun molemmat muuttujat ovat määrää mittaavia. 6.2 Palkkidiagrammi 11

12 Pylväsdiagrammin sijasta voidaan diskreettiä muuttujaan kuvata myös palkkidiagrammilla. Palkin pituus määräytyy frekvenssin tai suhteellisen frekvenssin mukaan. Palkit piirretään erillisinä. Vaakapylväitä suositellaan käytettäväksi silloin, kun toinen kuvattava muuttuja on tyypiltään laadullinen. 6.3 Sektoridiagrammi Sektoridiagrammilla kuvataan diskreetin muuttujan suhteellisia frekvenssejä. Sektorin keskuskulman suuruus määräytyy suhteellisen frekvenssin mukaan. 6.4 Histogrammi Histogrammilla voidaan esittää jatkuvien muuttujien jakaumia. Ne soveltuvat yhden muuttujan jakauman kuvailuun. Pylvään korkeus ilmaisee pylvään luokkaan kuuluvien havaintojen määrän 12

13 (eli frekvenssin). Pylväät piirretään yhteen siten, että pylvään keskikohdassa on luokkakeskus ja reunoilla todelliset luokkarajat. 6.5 Viivadiagrammi Viivadiagrammissa yhdistetään viivalla luokkakeskusten kohdalle merkityt frekvenssipisteet. Jakauman hännät päätyvät 0-tasolle. Viivadiagrammit soveltuvat parhaiten vaihtelun tai kehityssuunnan esittämiseen tietyn ajanjakson aikana. Viivadiagrammia kutsutaan myös frekvenssimonikulmioksi. 13

14 7 TUNNUSLUVUT Frekvenssit ja diagrammit eivät aina riitä tilastojen havainnollistamiseksi. Tämän vuoksi havaintoaineistoa voidaan kuvata erilaisilla tunnusluvuilla. 7.1 Keskiarvo, Keskiarvo ilmaisee muuttujan arvojen keskimääräisen suuruuden. Se lasketaan jakamalla muuttujan arvojen summa arvojen lukumäärällä. Esimerkki 7.1. Kokkiopiskelijan päästötodistuksessa oli äidinkieli 3, englanti 4, matematiikka 5, tietotekniikka 5 ja liikunta 1. Mikä oli näiden aineiden keskiarvo? = ( ) / 5 = 3,6 Luokitellussa aineistossa käytetään keskiarvonlaskemisessa luokkakeskuksia. Esimerkki 7.2. Esimerkin 5.1 oppilaiden pituuksien keskiarvo lasketaan kertomalla kunkin luokan luokkakeskus sen frekvenssillä ja jakamalla frekvenssien summalla: Luokka (cm) f luokkakeskus (cm) 155, , , ,5 Yhteensä, n 22 = (5 155, , , ,5)/22 = 169,1 (cm). 14

15 7.2 Mediaani, Md Mediaani ilmaisee keskimmäisen muuttujan arvon. Aineisto on laitettava suuruusjärjestykseen ennen mediaanin määrittämistä, joten muuttujan on oltava vähintään järjestysasteikollinen. Jos muuttujan arvoja on parillinen määrä, käytetään mediaanina kahden keskimmäisen muuttujan arvon keskiarvoa. Esimerkki 7.3. Esimerkin 7.1 kokkiopiskelijan arvosanojen 1, 3, 4, 5, 5 keskimmäinen arvo eli mediaani Md = 4. Luokitellussa aineistossa mediaani on sen luokan luokkakeskus, joka jakaa muuttujan arvot kahteen yhtä suureen osaan. Esimerkki 7.4. Esimerkin 5.1 oppilaiden pituudet olivat Luokka (cm) f luokkakeskus (cm) 155, , , ,5 n 22 Koska muuttujan arvoja on yhteensä 22 (ts. n = 22), keskimmäiset muuttujan arvot ovat yhdestoista ja kahdestoista arvo. Nämä muuttujan arvot ovat mediaaniluokassa cm, joten mediaani Md = 165,5 cm. 7.3 Moodi, Mo Tyyppiarvo eli moodi (Mo) on muuttujan yleisin arvo. Moodin frekvenssi on siis suurin. Esimerkki 7.5. Opiskelijan todistuksen arvosanat jakautuivat seuraavasti: 15

16 Eniten on arvosanoja 3 (6 kpl), joten se on moodi: Mo = Vaihteluvälin pituus, R Hajontaluvut kertovat, kuinka lähellä keskiarvoa muuttujan arvot ovat. Kahdella muuttujalla voi olla sama keskiluku (esimerkiksi keskiarvo), mutta niiden hajonta voi olla täysin erilainen. Hajontalukuja käytetään erityisesti silloin, kun halutaan vertailla kahta jakaumaa. Yksinkertaisin hajontaluku on vaihteluvälin pituus, R. Se on muuttujan suurimman ja pienimmän arvon erotus. Luokitetulla aineistolla vaihteluväli lasketaan ylimmän luokan ylärajan ja alimman luokan alarajan erotuksena. 7.5 Keskihajonta, s Tarkemmin muuttujan arvon hajontaa kuvaa keskihajonta. Se on havaintojen keskimääräinen poikkeama keskiarvosta. Keskihajontaa laskettaessa otetaan huomioon jokainen havainto ja sen erotus havaintojen keskiarvosta. Mitä lähempänä keskiarvoa ja toisiaan havaintoarvot ovat, sitä pienempi keskihajonta on. Otoksen keskihajonnan kaava on missä x i :t ovat havaintoarvoja, on keskiarvo ja n on havaintojen lukumäärä. Useimmissa laskimissa on näppäimet sekä otoksen (jaetaan arvolla n-1) että perusjoukon (jaetaan arvolla n = N) keskihajonnan laskemiseksi. Excelissä funktio keskihajonta laskee hajonnan otoksen perusteella ja funktio keskihajontap perusjoukon hajonnan. Esimerkki 7.6. Erään luokan oppilaiden arvosanat englannissa ja matematiikassa jakautuivat seuraavasti: 16

17 Keskiluvut englannissa: = 7,81, Md = 8 ja Mo = 9 Keskiluvut matematiikassa: = 7,88, Md = 8 ja Mo = 8 Englannin arvosanojen vaihteluvälin pituus R englanti = 10-4 = 6 ja matematiikan arvosanojen vaihteluvälin pituus R matematiikka = 10-5 = 5. Excelillä lasketut keskihajonnat ovat s englanti = 1,8 ja s matematiikka = 1,3. Vaikka keskiluvut eivät juuri poikkea englannin ja matematiikan arvosanojen jakaumien välillä, jakaumien hajontaluvuista huomaa, että arvosanat matematiikassa ovat jakautuneet lähemmäs jakauman keskiarvoa kuin englannissa. 17

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Johdatus tilastotieteeseen ja mittaaminen TKK (c) Ilkka Mellin (2004) 2 ja mittaaminen: Mitä opimme? 1/3 Tilastollisen tutkimuksen kaikki mahdolliset kohteet

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

TILASTO- JA TALOUSMATEMATIIKKA s. 1

TILASTO- JA TALOUSMATEMATIIKKA s. 1 TILASTO- JA TALOUSMATEMATIIKKA s. 1 Käsitteitä: Tilastoja voidaan havainnollistaa: o Tilastokuvioilla eli diagrammeilla Tavallisimmin käytettyjä tilastokuvioita ovat pylväsdiagrammit Muodostuu erillisistä

Lisätiedot

1.1 Tilastotieteen peruskäsitteitä

1.1 Tilastotieteen peruskäsitteitä Tilastotieteen peruskäsitteitä 1.1 Tilastotieteen peruskäsitteitä 1. Muodostetaan taulukon perusteella suhteellinen frekvenssijakauma. Lehti Levikki f % Helsingin 365994 365 994 0,13579... 13,6% Sanomat

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo

Lisätiedot

Tilastollisten aineistojen kuvaaminen

Tilastollisten aineistojen kuvaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta... JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

5. Keskiluvut. luokan väliin, ei sen määrääminen tuota vaikeuksia. Näin on seuraavissa esimerkeissä:

5. Keskiluvut. luokan väliin, ei sen määrääminen tuota vaikeuksia. Näin on seuraavissa esimerkeissä: 22 5. Keskiluvut Kaikkein pisimmälle on informaation tiivistämisessä menty silloin, kun otosta kuvataan vain yhdellä luvulla, joka mahdollisimman hyvin edustaa kaikkia otoksen arvoja. Tällaisia lukuja

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla

Poimi yrityksistä i) neljän, ii) kymmenen suuruinen otos. a) yksinkertaisella satunnaisotannalla palauttaen, b) systemaattisella otannalla 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Harjoitus 2, viikko 38, syksy 2012 1. Tutustu liitteen 1 kuvaukseen Suuresta bränditutkimuksesta v. 2009. Mikä tämän kuvauksen perusteella on ko.

Lisätiedot

Määrällisen aineiston esittämistapoja. Aki Taanila

Määrällisen aineiston esittämistapoja. Aki Taanila Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

Matin alkuvuoden budjetti

Matin alkuvuoden budjetti 1 TILASTOJEN TULKINTAA 1. euroa Matin alkuvuoden budjetti 600 500 400 300 200 100 0 tammikuu helmikuu maaliskuu huhtikuu a) Milloin Matti on kuluttanut eniten rahaa ostoksiin? Arvioi, kuinka paljon vaatteisiin

Lisätiedot

Teema 5: Ristiintaulukointi

Teema 5: Ristiintaulukointi Teema 5: Ristiintaulukointi Kahden (tai useamman) muuttujan ristiintaulukointi: aineiston analysoinnin ja tulosten esittämisen perusmenetelmä usein samat tiedot esitetään sekä taulukkona että kuvana mahdollisen

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 1 Sisältö: 1. Kvantitatiivisen tutkimuksen perusteita.2 2. Määrällisen tutkimusprosessin vaiheet..3

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

TUTKIMUSKURSSI I (407040A-02), OSA A), KVANTITATIIVISEN TUTKIMUKSEN PERUSKURSSI, TILASTOLLISET ANALYYSIMENETELMÄT

TUTKIMUSKURSSI I (407040A-02), OSA A), KVANTITATIIVISEN TUTKIMUKSEN PERUSKURSSI, TILASTOLLISET ANALYYSIMENETELMÄT TUTKIMUSKURSSI I (407040A-02), OSA A), KVANTITATIIVISEN TUTKIMUKSEN PERUSKURSSI, TILASTOLLISET ANALYYSIMENETELMÄT Jouni Peltonen, 2016 jouni.peltonen@oulu.fi ktk331 Jouni Peltonen Miten kurssi suoritetaan,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Sisältö. Perusteiden Kertaus. Tilastollinen analyysi. Peruskäsitteitä. Peruskäsitteitä. Kvantitatiivinen metodologia verkossa

Sisältö. Perusteiden Kertaus. Tilastollinen analyysi. Peruskäsitteitä. Peruskäsitteitä. Kvantitatiivinen metodologia verkossa Sisältö Kvantitatiivinen metodologia verkossa Perusteiden Kertaus Pekka Rantanen Helsingin yliopisto Tilastollinen analyysi Tilastotieteen tavoitteet Kvantitatiivisen tutkimuksen peruskäsitteitä Tilastollisten

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO

MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO 8.9.2016/1 MTTTP1 Tilastotieteen johdantokurssi Luento 8.9.2016 1 JOHDANTO Tilastotiede menetelmätiede, joka käsittelee - tietojen hankinnan suunnittelua otantamenetelmät, koejärjestelyt, kyselylomakkeet

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas OTOSTAMISEEN LIITTYVIÄ ONGELMIA Otostamisen ongelmat liittyvä satunnaistamisen epäonnistumiseen Ongelmat otantakehyksen määrittämisessä Väärän otantamenetelmän

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen

Lisätiedot

Kansainvälinen aikuistutkimus (PIAAC) Päätuloksia ja tietoja NAO-kohderyhmästä

Kansainvälinen aikuistutkimus (PIAAC) Päätuloksia ja tietoja NAO-kohderyhmästä Kansainvälinen aikuistutkimus (PIAAC) Päätuloksia ja tietoja NAO-kohderyhmästä Antero Malin Professori Koulutuksen tutkimuslaitos Jyväskylän yliopisto 25.10.2013 Kansainvälinen aikuistutkimus (PIAAC) PIAAC:

Lisätiedot

kaupungit <- read.table("http://users.jyu.fi/~nataanko/kaupunkidata.txt", header=true)

kaupungit <- read.table(http://users.jyu.fi/~nataanko/kaupunkidata.txt, header=true) TILP260 8. demot kevät 2012 Tehtävä 6. PISA-tutkimuksen monivaiheinen otanta Ositettu otanta Ositteina Ahvenanmaa, Uusimaa, Etelä-, Väli-, Itä- ja Pohjois-Suomi. Ositetun otannan avulla varmistetaan, että

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Kuvio 1. Matematiikan seuranta-arvioinnin kaikkien tehtävien yhteenlaskkettu pistejakauma

Kuvio 1. Matematiikan seuranta-arvioinnin kaikkien tehtävien yhteenlaskkettu pistejakauma TIIVISTELMÄ Opetushallitus arvioi keväällä 2011 matematiikan oppimistuloksia peruskoulun päättövaiheessa. Tiedot kerättiin otoksella, joka edusti kattavasti eri alueita ja kuntaryhmiä koko Suomessa. Mukana

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Mielipiteet ydinvoimasta Maaliskuu 2014

Mielipiteet ydinvoimasta Maaliskuu 2014 Mielipiteet ydinvoimasta Maaliskuu 2014 TUTKIMUKSEN TILAAJA Energiateollisuus ry. TUTKIMUSMENETELMÄ: Puhelinhaastattelu HAASTATTELUAJANKOHTA: 3.-16.3.2014 HAASTATTELUJEN MÄÄRÄ: 1001 SISÄLTÖ: Tulosten tilastolliset

Lisätiedot

Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä.

Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä. ARKKITEHTITOIMISTOJEN LIITTO ATL RY Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä. Julkisten hankintojen tarjousten valintakriteerinä

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen. Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Viestinnän mentelmät I: sisällön erittely. Sisällönanalyysi/sisällön erittely. Sisällön erittely. Juha Herkman

Viestinnän mentelmät I: sisällön erittely. Sisällönanalyysi/sisällön erittely. Sisällön erittely. Juha Herkman Viestinnän mentelmät I: sisällön erittely Juha Herkman 10.1.008 Helsingin yliopisto, viestinnän laitos Sisällönanalyysi/sisällön erittely Sisällönanalyysi (SA), content analysis Veikko Pietilä: Sisällön

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KATO (MISSING DATA, ATTRITION) Kun otostetuista havaintoyksiköistä saavutetaan (mitataan) vain osa, tarkoittaa kato sitä osaa tutkittavista tai mittauksista,

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

Opettajan tilastotietolähteet. Reija Helenius

Opettajan tilastotietolähteet. Reija Helenius Opettajan tilastotietolähteet Tilastojen luku- ja käyttötaito: mitä ja miksi? 2 Statistical literacy is the ability to read and interpret summary statistics in the everyday media: in graphs, tables, statements,

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4 TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

Kvantitatiivisen aineiston analyysi

Kvantitatiivisen aineiston analyysi Kvantitatiivisen aineiston analyysi Liiketalouden tutkimusmenetelmät SL 2014 Kvantitatiivinen vs. kvalitatiivinen? tutkimuksen lähtökohtana ovat joko tiedostetut tai tiedostamattomat taustaoletukset (tieteenfilosofiset

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu

YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu Tampereen yliopisto / YKY / Tero Mamia YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu 15.12.2014 Nimi: Opiskelijanumero: Tutkinto-ohjelma / pääaine: OHJE: Täytä ensin omat tietosi lomakkeen yläreunaan.

Lisätiedot

Malmin lentokentän tulevaisuus. Malmin lentokentän tulevaisuus

Malmin lentokentän tulevaisuus. Malmin lentokentän tulevaisuus Tutkimuksen toteuttaminen Kysely toteutettiin osana TNS Gallup Oy:n puhelinomnibustutkimusta. Malmin lentokenttää koskevat kysymykset esitettiin Uudellamaalla asuville. Yhteensä tehtiin 1.023 haastattelua.

Lisätiedot

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Mittariston laatiminen laatutyöhön

Mittariston laatiminen laatutyöhön Mittariston laatiminen laatutyöhön Perusopetuksen laatukriteerityö Vaasa 18.9.2012 Tommi Karjalainen Opetus- ja kulttuuriministeriö Millainen on hyvä mittaristo? Kyselylomaketutkimuksen vaiheet: Aiheen

Lisätiedot