1 TILASTOMATEMATIIKKA TILASTOTIETEEN PERUSKÄSITTEITÄ MUUTTUJAT FREKVENSSIJAKAUMA AINEISTON LUOKITTELU...

Koko: px
Aloita esitys sivulta:

Download "1 TILASTOMATEMATIIKKA... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 3 MUUTTUJAT... 6 4 FREKVENSSIJAKAUMA... 8 5 AINEISTON LUOKITTELU..."

Transkriptio

1 SISÄLLYSLUETTELO 1 TILASTOMATEMATIIKKA JOHDANTO LINKKEJÄ LÄHTEET TILASTOTIETEEN PERUSKÄSITTEITÄ HAVAINTOAINEISTO POPULAATIO OTOS HAVAINTOAINEISTON KERÄÄMISTAVAT MUUTTUJAT MITTA-ASTEIKOT JATKUVA VAI DISKREETTI? FREKVENSSIJAKAUMA AINEISTON LUOKITTELU DIAGRAMMIT TUNNUSLUVUT

2 1 TILASTOMATEMATIIKKA 1.1 Johdanto Tilastotiede on saanut alkunsa väestö- ja talousaloja kuvaavista tilastoista. Tilastollisilla menetelmillä on tärkeä asema yhteiskunnallisten toimintojen suunnittelussa, lääketieteen tutkimuksessa, yritysten toimintojen kehittämisessä se monilla muilla aloilla. Tietojenkäsittelyn kehittyminen on tehnyt tilastoista niin yleisiä ja jokapäiväisiä asioita, että ne ovat jatkuvasti esillä lehdissä, internetissä ja televisiossa. Tilastoja on esimerkiksi talouselämästä, urheilusta, politiikasta ja säätilojen muutoksista. Jokaisen kansalaisen perustaitoihin kuuluu tänä päivänä osata lukea ja tulkita tilastoja. Tämän vuoksi tulee tuntea tiettyjä tilastotieteen perusasioita sekä opetella tilastojen lukemista taulukoina, kuvioina ja erilaisten tunnuslukujen avulla. Pohdintatehtävä Mieti millaisia käyttötarpeita voi olla a) työttömyystilastoilla b) hintatilastoilla? 1.2 Linkkejä Suomen suurin tilastojen tuottaja on valtion ylläpitämä Tilastokeskus. Sen lisäksi virallisia tilastoja tekevät monet muut valtion virastot ja laitokset sekä kunnat, liikelaitokset ja monet järjestöt. Tilastollisia tutkimuksia tehdään myös yritysten omiin tarpeisiin. Tilastokeskus (www.stat.fi), Väestörekisterikeskus (www.vaestorekisterikeskus.fi), Stakes (www.stakes.fi), Suomen ympäristökeskus (www.ymparisto.fi), Suomen elokuvasäätiö (www.ses.fi) 1.3 Lähteet Helakorpi, Ansaharju ja Söderström (1999) Origo. WSOY oppimaterialit. Hemmo, Taskinen ja Vahviainen (2004) Sigma, Tilastot ja todennäköisyys. TAMMI oppimateriaalit. Karjalainen Leila (2001) Liiketalouden matematiikka 1. Gummerus. 2

3 Karvonen, Käenniemi, Möller ja Poskela (2001) ProbleMatikka. Otava oppimateriaalit. Kettunen, Laakkonen ja Salminen (2007) Numerotaito. WSOY oppimateriaalit. Peltola ja Vuorenmaa (2006) Näppärästi numeroilla. WSOY oppimateriaalit. 2 TILASTOTIETEEN PERUSKÄSITTEITÄ 2.1 Havaintoaineisto Tilastot eivät synny itsestään vaan ne täytyy kerätä. Useimmiten tilastot muodostuvat suuresta määrästä numerotietoja. Tilastollista tutkimusta varten kerättyä tietoa kutsutaan havaintoaineistoksi tai tilastoaineistoksi. Havainnollisuuden vuoksi aineisto esitetään yleensä taulukoituna tai kuvioiden avulla. Havaintoaineisto koostuu havaintoyksiköistä (tilastoyksiköistä) ja niiden ominaisuuksista eli muuttujista. Jos tutkitaan esimerkiksi luokan oppilaiden koulumatkojen pituuksia ja kengän numeroa, oppilaat ovat havaintoyksikköjä, ja koulumatkan pituus ja kengän numero ovat muuttujia. 2.2 Populaatio Se joukko, johon tutkimus kohdistuu, on nimeltään perusjoukko eli populaatio. Populaatio voi olla esimerkiksi kaupungin asukkaat, Kajaanin Ammattikorkeakoulun opiskelijat, radiossa soitetut kappaleet, tietokoneiden sovellusohjelmat, esikouluiässä olevat lapset jne. Jos havaintoaineistoon kuuluu kaikki perusjoukon havaintoyksiköt, sitä kutsutaan kokonaisaineistoksi. 2.3 Otos Koko perusjoukkoa on usein mahdotonta tai ainakin kovin työlästä tutkia. Tästä syystä kokonaisaineiston sijasta tutkitaan usein otosta. Otos on sellainen osa perusjoukon havaintoyksiköistä, jotka on kerätty jollain otantamenetelmällä. Otantamenetelmät ovat erilaisia tapoja poimia havaintoyksiköitä perusjoukosta niin, että otos kuvaisi perusjoukkoa 3

4 mahdollisimman hyvin. Jos havaintoyksiköt poimitaan perusjoukosta jollain muulla tavalla kuin otantamenetelmällä, kerättyä aineistoa kutsutaan näytteeksi Yksinkertainen satunnaisotanta arvonta Otannan perusmenetelmä on yksinkertainen satunnaisotanta. Yksinkertaisessa satunnaisotannassa jokaisella alkiolla on yhtä suuri todennäköisyys tulla poimituksi otokseen. Yksinkertainen satunnaisotanta valitaan arpomalla Systemaattinen otanta - joka k:s Systemaattinen otanta sopii käytettäväksi silloin, kun perusjoukkoa ei tarkkaan pystytä määrittämään, esimerkiksi liikkeen asiakastutkimus ovensuukyselynä, liikennetutkimus maantiellä jne.. Systemaattisessa otannassa valitaan ensin poimintaväli. Jos perusjoukon koko on tiedossa, niin poimintaväli saadaan jakamalla perusjoukon koko halutulla otoskoolla. Jos poimintaväliksi valitaan k, niin seuraavaksi arvotaan k:n ensimmäisen tilastoyksikön joukosta yksi ja sen jälkeen poimitaan järjestyksessä joka k:s. tilastoyksikkö. Menetelmä sopii käytettäväksi myös silloin, jos käytettävissä on luettelo perusjoukon jäsenistä. Luettelosta voidaan poimia otos systemaattista otantaa käyttäen Ositettu otanta - avainryhmien edustus taattu 4

5 Esimerkki Jos tutkimuksen tarkoituksena on vertailla Suomessa asuvia suomenkielisiä ja ruotsinkielisiä, niin yksinkertaisella satunnaisotannalla arvottu otos luultavasti sisältäisi aika vähän ruotsinkielisiä. Vertailua varten ruotsinkielisiä pitäisi kuitenkin olla niin paljon, että voitaisiin tehdä kaikkia Suomessa asuvia ruotsinkielisiä koskevia päätelmiä. Ratkaisu on ositettu otanta, jossa arvotaan otos erikseen suomenkielisistä ja erikseen ruotsinkielisistä. Jos halutaan nimenomaan verrata kyseisiä ryhmiä toisiinsa, niin käytetään tasaista kiintiöintiä: suomenkielisiä arvotaan mukaan yhtä monta kuin ruotsinkielisiäkin. Tällöin otoksesta ei tietenkään suoraan voi tehdä kaikkia Suomessa asuvia koskevia päätelmiä, ainoastaan päätelmiä suomenkielisistä ja ruotsinkielisistä. Ositetussa otannassa voidaan osittavana muuttujana käyttää mitä tahansa tutkimuksen kannalta tärkeää muuttujaa, kuten ikäryhmä, sukupuoli, asuinseutu jne Ryväsotanta Ryväsotannassa perusjoukon alkiot ryhmitellään ryppäisiin. Vain osa ryppäistä pääsee mukaan otokseen. Esimerkki Oppilaitoksen opiskelijoista voidaan poimia otos arpomalla ensin otos luokkahuoneista, jolloin luokkahuoneet ovat nk. ryppäitä. Arvotuissa luokkahuoneissa käydään sitten suorittamassa kysely. Otoksessa pitäisi myös huomioida päivä ja iltaopiskelijat. Tämän voisi toteuttaa arpomalla otos luokkahuoneista päiväsaikaan ja toinen otos ilta-aikaan. Tässä yhdistetään ryväsotantaan ositettu otanta, jolla taataan päivä- ja iltaopiskelijoiden edustus. 5

6 Esimerkki Jos tutkitaan tänä vuonna peruskoulun aloittavia, niin voidaan poimia ensin otos kouluista, jolloin koulut ovat ryppäitä. Tämän jälkeen arvotaan kustakin otokseen tulleesta koulusta tietty määrä tutkimuksen kohderyhmään kuuluvia oppilaita. Jos poimituista ryppäistä tutkitaan kaikki ryppäisiin kuuluvat alkiot, puhutaan yksiasteisesta ryväsotannasta. Jos poimituista ryppäistä valitaan vain osa alkioista tutkittavaksi, niin kyseessä on kaksiasteinen ryväsotanta. 2.4 Havaintoaineiston keräämistavat Havaintoaineistoa voidaan kerätä monella eri tavalla: kyselyllä, haastattelulla, havainnoimalla, systemaattisella koejärjestelyllä ja valmiista tietokannasta. Tavan valitseminen riippuu siitä, millaista tietoa halutaan kerätä. 3 MUUTTUJAT Tilastollinen muuttuja on kvantitatiivinen (eli määrällinen) jos sen luonnollinen kuvaustapa on reaaliluku. Jos muuttujaa ei kuvata reaaliluvulla (tai luku on vain tietty koodiarvo), muuttujaa sanotaan kvalitatiiviseksi (eli laadulliseksi) muuttujaksi. Esimerkki 3.1. Seuraavan lomakkeen muuttujista ovat kvalitatiivisia ikä ja pituus sekä kvantitatiivisia sukupuoli ja mielipide kouluruoasta. Sukupuoli mies nainen Ikä Pituus Mielipide kouluruoasta 1 Ruoka on huonoa. 2 Ruoka on melko hyvää. 3 Ruoka on erinomaista 6

7 3.1 Mitta-asteikot Muuttujat voidaan jaotella neljään luokkaan mitta-asteikon mukaan: 1) laatu- eli nominaaliasteikko 2) järjestys- eli ordinaaliasteikko, 3) välimatka- eli intervalliasteikko sekä 4) suhdelukuasteikko Nominaali- eli laatuasteikko Nominaali- eli laatuasteikolla havainnot luokitellaan kahteen tai useampaan luokkaan samanlaisuutensa tai erilaisuutensa perusteella. Mittauksen kohteet ovat siinä mielessä tasaarvoisia, ettei millään luokalla ole enempää mitattavaa ominaisuutta kuin toisella luokalla. Luokkia ei siis voi laittaa järjestykseen mitattavan ominaisuuden suhteen. Esimerkkejä: työllinen/työtön/ työvoimaan kuulumaton, kaupunki/maalaiskunta, suomalainen/ruotsalainen/norjalainen Ordinaali- eli järjestysasteikko Ordinaali- eli järjestysasteikolla mitattavasta kohteesta voidaan sanoa, onko sillä mitattavaa ominaisuutta enemmän, yhtä paljon vai vähemmän kuin toisella kohteella. Järjestysasteikko on kuin venyvä mittanauha. Nauhan pituudesta riippumatta kohteet ovat oikeassa järjestyksessä. Kohteiden välisillä etäisyyksillä ei sen sijaan ole merkitystä. Esimerkkinä ordinaaliasteikosta ovat paljon käytetyt asenneskaalat: täysin eri mieltä/jokseenkin eri mieltä/ei osaa sanoa/jokseenkin samaa mieltä/täysin samaa mieltä Intervalli- eli välimatka-asteikko Järjestyksen lisäksi intervalli-asteikolla on mielekästä verrata välimatkoja. Lämpömittari sisältää tällaisen asteikon. 0-piste on mielivaltainen: Celsiuksen nolla on Fahrenheitin 32 astetta. Kuitenkin lämpötilan nousu -20 asteesta -10 asteeseen on yhtä suuri kuin nousu +10 asteesta +20 asteeseen. Toinen esimerkki intervalliasteikosta on kalenteri, jolla mitataan aikaa päivissä Suhdeasteikko 7

8 Lisäämällä intervalliasteikkoon absoluuttinen nollapiste päästään suhdeasteikkoon. Tähän luokkaan kuuluvia muuttujia ovat pituus, paino, perheen tulot, yleensä raha- ja lukumäärämitat. 3.2 Jatkuva vai diskreetti? Välimatka- ja suhdelukuasteikolliset muuttujat voivat olla jatkuvia tai epäjatkuvia eli diskreettejä. Jatkuva muuttuja voi saada mitä tahansa arvoja tietyllä välillä, esimerkkinä henkilön pituus. Diskreetti muuttuja, esimerkiksi kengän numero, voi saada vain tiettyjä arvoja. 4 FREKVENSSIJAKAUMA Havaintoaineiston keräämisen jälkeen aineisto käsitellään niin, että kaikki olennainen tieto saadaan näkyviin. Aineiston käsittely aloitetaan yleensä frekvenssien laskemisella. 4.1 Frekvenssi Frekvenssi on muuttujan arvojen esiintymiskertojen lukumäärä. Esimerkki 4.1. Opettaja kerää havaintoaineiston kysymällä luokan oppilailta heidän sisarustensa lukumäärän. Kahdenkymmenenkahden oppilaan sisarusten lukumäärät olivat Opettaja laskee muuttujan arvojen esiintymiskerrat tukkimiehen kirjanpidolla frekvenssien määrittämiseksi. Sisarusten Frekvenssi f 0 3 lukumäärä Tällä tavalla laadittu taulukko, jossa esiintyvät muuttujien arvot ja niihin liittyvät frekvenssit, on nimeltään frekvenssijakauma. 8

9 4.2 Suhteellinen frekvenssi Suhteellinen frekvenssi kertoo esiintymiskertojen määrän prosentteina. Esimerkki 4.2. Edellisen esimerkin suhteelliset frekvenssit. Sisarusten Frekvenssi f Suhteellinen frekvenssi f lukumäärä 0 3 % 3/22 = 0, % /22 = 0,5 = 50 % 2 6 6/22 = 0, % 3 2 2/22 = 0, % Havaintoyksiköitä yhteensä 22 Suhteellisten frekvenssien avulla on helpompi vertailla keskenään aineistoja, joissa havaintoyksiköitä on eri määrä. 5 AINEISTON LUOKITTELU 5.1 Luokittelu Kun muuttujien arvoja on niin paljon, että niitä ei ole mielekästä ilmoittaa frekvenssitaulukossa yksittäisinä arvoina, ne luokitellaan sopiviin luokkiin. Luokkien määrä on harkinnanvarainen. Teknisillä aloilla luokkien määrä lasketaan kaavalla 3 n eli otetaan havaintojen lukumäärästä kuutiojuuri ja pyöristetään se ylempään kokonaislukuun. Jos luokkia on paljon, saadaan tarkempi tulos kuin harvalla luokkavälillä. Esimerkki 5.1. Seuraavassa on erään luokan oppilaiden pituudet senttimetreinä: Lukusuoralle sijoitetuista pisteistä nähdään, mille välille pituudet asettuvat ja moneenko luokkaan aineisto kannattaa jakaa. 9

10 Sitten aineisto luokitellaan ja lasketaan sen frekvenssit. Luokka f f % % % % % 5.2 Todelliset luokkarajat Luokitellun jatkuvan muuttujan luokkarajat eivät ole todellisia luokkarajoja. Todellisissa luokkarajoissa otetaan huomioon mahdolliset lukuarvon pyöristykset. Esimerkki 5.2. Pituus 161 cm voi todellisuudessa olla 160,5 cm - 161,4 cm. Kaikki nämä pituudet pyöristyvät 161 senttimetriin. Esimerkin 5.1 todelliset luokkarajat siis ovat Luokka Todellinen alaraja Todellinen yläraja ,5 160, ,5 170, ,5 180, ,5 190,5 5.3 Luokkakeskus Luokitellussa aineistossa tarvitaan usein yksi lukuarvo edustamaan kutakin luokkaa. Tällainen arvo on luokan keskimmäinen arvo eli luokan todellisen alarajan ja todellisen ylärajan keskiarvo: 10

11 Luokkakeskus = (todellinen alaraja + todellinen yläraja) / 2 Esimerkki 5.3. Esimerkin 5.1 luokan luokkakeskus on siis (160, ,5) / 2 = 165, Luokkavälin pituus Luokkavälin pituus on todellisten luokkarajojen erotus. Esimerkki 5.4. Luokkavälin pituus esimerkissä 5.1 on 170,5-160,5 = 10,0. 6 DIAGRAMMIT Frekvenssijakauman perusteella voi olla hankala muodostaa kokonaiskuvaa tarkasteltavasta tilanteesta. Tilastokuvaajilla eli diagrammeilla on tarkoitus havainnollistaa tietoa. 6.1 Pylväsdiagrammi Pylväsdiagrammilla kuvataan diskreettiä muuttujaa. Pylvään korkeus määräytyy frekvenssin tai suhteellisen frekvenssin mukaan. Pylväät piirretään erillisinä. Pystypylväitä käytetään silloin, kun molemmat muuttujat ovat määrää mittaavia. 6.2 Palkkidiagrammi 11

12 Pylväsdiagrammin sijasta voidaan diskreettiä muuttujaan kuvata myös palkkidiagrammilla. Palkin pituus määräytyy frekvenssin tai suhteellisen frekvenssin mukaan. Palkit piirretään erillisinä. Vaakapylväitä suositellaan käytettäväksi silloin, kun toinen kuvattava muuttuja on tyypiltään laadullinen. 6.3 Sektoridiagrammi Sektoridiagrammilla kuvataan diskreetin muuttujan suhteellisia frekvenssejä. Sektorin keskuskulman suuruus määräytyy suhteellisen frekvenssin mukaan. 6.4 Histogrammi Histogrammilla voidaan esittää jatkuvien muuttujien jakaumia. Ne soveltuvat yhden muuttujan jakauman kuvailuun. Pylvään korkeus ilmaisee pylvään luokkaan kuuluvien havaintojen määrän 12

13 (eli frekvenssin). Pylväät piirretään yhteen siten, että pylvään keskikohdassa on luokkakeskus ja reunoilla todelliset luokkarajat. 6.5 Viivadiagrammi Viivadiagrammissa yhdistetään viivalla luokkakeskusten kohdalle merkityt frekvenssipisteet. Jakauman hännät päätyvät 0-tasolle. Viivadiagrammit soveltuvat parhaiten vaihtelun tai kehityssuunnan esittämiseen tietyn ajanjakson aikana. Viivadiagrammia kutsutaan myös frekvenssimonikulmioksi. 13

14 7 TUNNUSLUVUT Frekvenssit ja diagrammit eivät aina riitä tilastojen havainnollistamiseksi. Tämän vuoksi havaintoaineistoa voidaan kuvata erilaisilla tunnusluvuilla. 7.1 Keskiarvo, Keskiarvo ilmaisee muuttujan arvojen keskimääräisen suuruuden. Se lasketaan jakamalla muuttujan arvojen summa arvojen lukumäärällä. Esimerkki 7.1. Kokkiopiskelijan päästötodistuksessa oli äidinkieli 3, englanti 4, matematiikka 5, tietotekniikka 5 ja liikunta 1. Mikä oli näiden aineiden keskiarvo? = ( ) / 5 = 3,6 Luokitellussa aineistossa käytetään keskiarvonlaskemisessa luokkakeskuksia. Esimerkki 7.2. Esimerkin 5.1 oppilaiden pituuksien keskiarvo lasketaan kertomalla kunkin luokan luokkakeskus sen frekvenssillä ja jakamalla frekvenssien summalla: Luokka (cm) f luokkakeskus (cm) 155, , , ,5 Yhteensä, n 22 = (5 155, , , ,5)/22 = 169,1 (cm). 14

15 7.2 Mediaani, Md Mediaani ilmaisee keskimmäisen muuttujan arvon. Aineisto on laitettava suuruusjärjestykseen ennen mediaanin määrittämistä, joten muuttujan on oltava vähintään järjestysasteikollinen. Jos muuttujan arvoja on parillinen määrä, käytetään mediaanina kahden keskimmäisen muuttujan arvon keskiarvoa. Esimerkki 7.3. Esimerkin 7.1 kokkiopiskelijan arvosanojen 1, 3, 4, 5, 5 keskimmäinen arvo eli mediaani Md = 4. Luokitellussa aineistossa mediaani on sen luokan luokkakeskus, joka jakaa muuttujan arvot kahteen yhtä suureen osaan. Esimerkki 7.4. Esimerkin 5.1 oppilaiden pituudet olivat Luokka (cm) f luokkakeskus (cm) 155, , , ,5 n 22 Koska muuttujan arvoja on yhteensä 22 (ts. n = 22), keskimmäiset muuttujan arvot ovat yhdestoista ja kahdestoista arvo. Nämä muuttujan arvot ovat mediaaniluokassa cm, joten mediaani Md = 165,5 cm. 7.3 Moodi, Mo Tyyppiarvo eli moodi (Mo) on muuttujan yleisin arvo. Moodin frekvenssi on siis suurin. Esimerkki 7.5. Opiskelijan todistuksen arvosanat jakautuivat seuraavasti: 15

16 Eniten on arvosanoja 3 (6 kpl), joten se on moodi: Mo = Vaihteluvälin pituus, R Hajontaluvut kertovat, kuinka lähellä keskiarvoa muuttujan arvot ovat. Kahdella muuttujalla voi olla sama keskiluku (esimerkiksi keskiarvo), mutta niiden hajonta voi olla täysin erilainen. Hajontalukuja käytetään erityisesti silloin, kun halutaan vertailla kahta jakaumaa. Yksinkertaisin hajontaluku on vaihteluvälin pituus, R. Se on muuttujan suurimman ja pienimmän arvon erotus. Luokitetulla aineistolla vaihteluväli lasketaan ylimmän luokan ylärajan ja alimman luokan alarajan erotuksena. 7.5 Keskihajonta, s Tarkemmin muuttujan arvon hajontaa kuvaa keskihajonta. Se on havaintojen keskimääräinen poikkeama keskiarvosta. Keskihajontaa laskettaessa otetaan huomioon jokainen havainto ja sen erotus havaintojen keskiarvosta. Mitä lähempänä keskiarvoa ja toisiaan havaintoarvot ovat, sitä pienempi keskihajonta on. Otoksen keskihajonnan kaava on missä x i :t ovat havaintoarvoja, on keskiarvo ja n on havaintojen lukumäärä. Useimmissa laskimissa on näppäimet sekä otoksen (jaetaan arvolla n-1) että perusjoukon (jaetaan arvolla n = N) keskihajonnan laskemiseksi. Excelissä funktio keskihajonta laskee hajonnan otoksen perusteella ja funktio keskihajontap perusjoukon hajonnan. Esimerkki 7.6. Erään luokan oppilaiden arvosanat englannissa ja matematiikassa jakautuivat seuraavasti: 16

17 Keskiluvut englannissa: = 7,81, Md = 8 ja Mo = 9 Keskiluvut matematiikassa: = 7,88, Md = 8 ja Mo = 8 Englannin arvosanojen vaihteluvälin pituus R englanti = 10-4 = 6 ja matematiikan arvosanojen vaihteluvälin pituus R matematiikka = 10-5 = 5. Excelillä lasketut keskihajonnat ovat s englanti = 1,8 ja s matematiikka = 1,3. Vaikka keskiluvut eivät juuri poikkea englannin ja matematiikan arvosanojen jakaumien välillä, jakaumien hajontaluvuista huomaa, että arvosanat matematiikassa ovat jakautuneet lähemmäs jakauman keskiarvoa kuin englannissa. 17

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

3 Mittaamisen taso ja tilaston keskiluvut

3 Mittaamisen taso ja tilaston keskiluvut 3 Mittaamisen taso ja tilaston keskiluvut Tämä tutkimus on sellainen, että (jos nyt jänisten laskua voidaan mittaamiseksi kutsua) mittaamisessa on eroteltavissa neljä erilaista mittaamisen tasoa, mittausasteikkoa.

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

TILASTO- JA TALOUSMATEMATIIKKA s. 1

TILASTO- JA TALOUSMATEMATIIKKA s. 1 TILASTO- JA TALOUSMATEMATIIKKA s. 1 Käsitteitä: Tilastoja voidaan havainnollistaa: o Tilastokuvioilla eli diagrammeilla Tavallisimmin käytettyjä tilastokuvioita ovat pylväsdiagrammit Muodostuu erillisistä

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...

1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta... JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen

Lisätiedot

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011 Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

2.4 Muuttujien luokittelemisesta

2.4 Muuttujien luokittelemisesta MAB5: Tilastotieteen lähtökohdat 2.4 Muuttujien luokittelemisesta Eräs tapa luokitella muuttujat on seuraava jako kahteen muuttujatyyppiin: kvantitatiivinen muuttuja eli muuttuja, jonka arvo esitetään

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä.

Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä. Tehtävä 1 Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä Ei Hypoteesi ei ole hyvä tutkimushypoteesi, koska se on liian epämääräinen.

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Ma8 Todennäköisyys ja tilastot

Ma8 Todennäköisyys ja tilastot Ma8 Todennäköisyys ja tilastot H1 Tilastollisen aineiston kuvaaminen 1.1 Vastaa kuvaajan perusteella kysymyksiin. a) Kuinka paljon tarvitset kuvaajan mukaan unta? b) Paljonko 20-vuotias tarvitsee unta?

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 1 Sisältö: 1. Kvantitatiivisen tutkimuksen perusteita.2 2. Määrällisen tutkimusprosessin vaiheet..3

Lisätiedot

Sisältö. Perusteiden Kertaus. Tilastollinen analyysi. Peruskäsitteitä. Peruskäsitteitä. Kvantitatiivinen metodologia verkossa

Sisältö. Perusteiden Kertaus. Tilastollinen analyysi. Peruskäsitteitä. Peruskäsitteitä. Kvantitatiivinen metodologia verkossa Sisältö Kvantitatiivinen metodologia verkossa Perusteiden Kertaus Pekka Rantanen Helsingin yliopisto Tilastollinen analyysi Tilastotieteen tavoitteet Kvantitatiivisen tutkimuksen peruskäsitteitä Tilastollisten

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

1 Jalkapallo 100 0,806 81 % Vastaus: 81 % Esimerkki 1. Desimaaliluvun muuntaminen prosenttiluvuksi: 0,81 = 81 % 2 Prosentti- ja potenssilaskenta

1 Jalkapallo 100 0,806 81 % Vastaus: 81 % Esimerkki 1. Desimaaliluvun muuntaminen prosenttiluvuksi: 0,81 = 81 % 2 Prosentti- ja potenssilaskenta 1 Jalkapallo Esimerkki 1 Desimaaliluvun muuntaminen prosenttiluvuksi: 0,81 = 81 % Tampere Utd:n maalivahti Mikko Kavén torjui 100 maalia kaudella 2004. Kohti maalia laukauksia oli 124. Kuinka monta prosenttia

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 1 Sisältö: 1. Kvantitatiivisen tutkimuksen perusteita.2 2. Määrällisen tutkimusprosessin vaiheet..3

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 1 Sisältö: 1. Kvantitatiivisen tutkimuksen perusteita.2 2. Määrällisen tutkimusprosessin vaiheet..3

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

Kertausosa. 1. a) Lenkkareiden merkki on laatueroasteikollinen muuttuja. Montako millimetriä on tällöin satanut?

Kertausosa. 1. a) Lenkkareiden merkki on laatueroasteikollinen muuttuja. Montako millimetriä on tällöin satanut? V πr h π 7 0,...(cm,0...(l) Montako millimetriä on tällöin satanut? V,0...l,7...(mm) 8 l 8 l Täytyy sataa vähintään,7 mm, että astia täyttyisi. Lasketaan todennäköisyys, että sataa vähintään,7 mm.,7...

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta.

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 9.3.2012 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tilastojen tulkintatehtäviä lukion 2. ja 3. vuosikursseille

Tilastojen tulkintatehtäviä lukion 2. ja 3. vuosikursseille Yhteystiedot: Tilastokeskus tilastokoulu@tilastokeskus.fi Tilastojen tulkintatehtäviä lukion 2. ja 3. vuosikursseille Oppilaan nimi: Vastaa suoraan tähän koepaperiin. Hyödynnä koepaperille jätettyjä vastausviivoja

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

kaupungit <- read.table("http://users.jyu.fi/~nataanko/kaupunkidata.txt", header=true)

kaupungit <- read.table(http://users.jyu.fi/~nataanko/kaupunkidata.txt, header=true) TILP260 8. demot kevät 2012 Tehtävä 6. PISA-tutkimuksen monivaiheinen otanta Ositettu otanta Ositteina Ahvenanmaa, Uusimaa, Etelä-, Väli-, Itä- ja Pohjois-Suomi. Ositetun otannan avulla varmistetaan, että

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

Mitä tilastollinen analyysi on?

Mitä tilastollinen analyysi on? Mitä tilastollinen analyysi on? Tilastotiede (engl. statistics) on tieteenala, jonka kohteena ovat numeerisen tilastoaineiston keräämiseen ja muokkaamiseen, esittämiseen, tilastolliseen analyysiin ja tulosten

Lisätiedot

TILASTOT JA TODENNÄKÖISYYS

TILASTOT JA TODENNÄKÖISYYS TILASTOT JA TODENNÄKÖISYYS Perusopetuksen opetussuunnitelmien perusteissa 2004 on vuosiluokille 6 9 määritelty tietyt tavoitteet koskien tilastoja ja todennäköisyyttä. Seuraavat keskeiset sisällöt tulevat

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Luento 4.9.2014 1 JOHDANTO

Luento 4.9.2014 1 JOHDANTO 1 1 JOHDANTO Luento 4.9.2014 Tilastotiede menetelmätiede, joka käsittelee - tietojen hankinnan suunnittelua otantamenetelmät koejärjestelyt kyselylomakkeet - tietojen keruuta - tietojen esittämistä kuvailevaa

Lisätiedot

1.5 Frekvenssijakaumista

1.5 Frekvenssijakaumista MAB5: Tilastotieteen lähtökohdat Tilastotieteessä frekvenssi tarkoittaa lukumäärää ja nimenomaan tilastomuuttujan arvon esiintymiskertojen lukumäärää. Sen symbolina käytetään kirjainta f. Frekvenssijakauma

Lisätiedot

Äidinkielen valtakunnallinen koe 9.luokka

Äidinkielen valtakunnallinen koe 9.luokka Keväällä 2013 Puumalan yhtenäiskoulussa järjestettiin valtakunnalliset kokeet englannista ja matematiikasta 6.luokkalaisille ja heille tehtiin myös äidinkielen lukemisen ja kirjoittamisen testit. 9.luokkalaisille

Lisätiedot

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa 1 Tarkasteluja lähtötason merkityksestä opintomenestykseen MAMK:n tekniikassa 2 1. Tutkimuksen perusteita Tekniikan alalle otetaan opiskelijoita kolmesta eri lähteestä : -ammattitutkinnon suorittaneet

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä.

Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä. ARKKITEHTITOIMISTOJEN LIITTO ATL RY Rakennusalan tarjouskilpailujen toteutus tasapuoliseksi: kokonaistaloudellisuuden arviointi hinta-laatu -menetelmällä. Julkisten hankintojen tarjousten valintakriteerinä

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

Ohje tutkimustiedon tulkintaan

Ohje tutkimustiedon tulkintaan Ohje tutkimustiedon tulkintaan Tilastotyöryhmä 27.3.2003 Sisällysluettelo 1 Johdanto 1 2 Tutkimustiedon tulkinta 1 3 Tutkimuksen tuoteseloste 3 4 Keskeisiä tilastokäsitteitä 4 1. JOHDANTO 2. TUTKIMUSTIEDON

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Aki Taanila AIKASARJAENNUSTAMINEN

Aki Taanila AIKASARJAENNUSTAMINEN Aki Taanila AIKASARJAENNUSTAMINEN 26.4.2011 SISÄLLYS JOHDANTO... 1 1 AIKASARJA ILMAN SYSTEMAATTISTA VAIHTELUA... 2 1.1 Liukuvan keskiarvon menetelmä... 2 1.2 Eksponentiaalinen tasoitus... 3 2 AIKASARJASSA

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3. Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.2009 Tietosuoja - lähtökohdat! Periaatteena on estää yksiköiden suora

Lisätiedot

TVT-kurssimoduulin mitat

TVT-kurssimoduulin mitat Teemu Kerola & Teija Kujala TVT-kurssimoduulin mitat Turun lähiseminaari Kurssin moduulit Moduulien kustannukset 1 Kurssimoduulit Perinteiset kurssimoduulit (esim.) luentokalvot luento oppimismoduuli harjoitustehtävät

Lisätiedot

Diagrammeja ja tunnuslukuja luokkani oppilaista

Diagrammeja ja tunnuslukuja luokkani oppilaista Diagrammeja ja tunnuslukuja luokkani oppilaista Aihepiiri Tilastollisiin tunnuslukuihin tutustuminen Luokka-aste Kesto Tarvittavat materiaalit / välineet Lyhyt kuvaus tehtävästä Yläaste 9. luokka 30 min

Lisätiedot

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan ammattiopiston viimeisenä keväänä vahvistaa AMK:uun pyrkivien taitoja pääsykoetta varten saada jo etukäteen 5 op:n suoritus valinnaisiin Tulos:

Lisätiedot

Mielipiteet ydinvoimasta Maaliskuu 2014

Mielipiteet ydinvoimasta Maaliskuu 2014 Mielipiteet ydinvoimasta Maaliskuu 2014 TUTKIMUKSEN TILAAJA Energiateollisuus ry. TUTKIMUSMENETELMÄ: Puhelinhaastattelu HAASTATTELUAJANKOHTA: 3.-16.3.2014 HAASTATTELUJEN MÄÄRÄ: 1001 SISÄLTÖ: Tulosten tilastolliset

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4 TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten

Lisätiedot

7. Tutkimuksen teko. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina

7. Tutkimuksen teko. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina. Kevät 2005 Empiirinen ohjelmistotutkimus / Taina 7. 7.1. Johdanto Tämä luku perustuu kirjaan C. Wohlin et al., Experimentation in Software Engineering, An Introduction, Kluwer Academic Publishers, 2000. ISBN 0-7923-8682-5. Tähän asti olemme käsitelleet

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

Mielipiteet ydinvoimasta Maaliskuu 2015. Mielipiteet ydinvoimasta maaliskuu 2015

Mielipiteet ydinvoimasta Maaliskuu 2015. Mielipiteet ydinvoimasta maaliskuu 2015 Mielipiteet ydinvoimasta 2015 Sisältö sivu 1. Aineiston rakenne 3 2. Tutkimustulokset Yleissuhtautuminen ydinvoimaan energianlähteenä 5 Ydinvoiman hyväksyminen ilmastomuutoksen torjuntakeinona 11 3. Liitteet

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Jos epäilet, että aineistosi eivät

Lisätiedot

Tilastomenetelmien lopputyö

Tilastomenetelmien lopputyö Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien

Lisätiedot

8.1. Tuloperiaate. Antti (miettien):

8.1. Tuloperiaate. Antti (miettien): 8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei

Lisätiedot

Opettajan tilastotietolähteet. Reija Helenius

Opettajan tilastotietolähteet. Reija Helenius Opettajan tilastotietolähteet Tilastojen luku- ja käyttötaito: mitä ja miksi? 2 Statistical literacy is the ability to read and interpret summary statistics in the everyday media: in graphs, tables, statements,

Lisätiedot

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS 1 Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS Tutkimuksen aineiston keräämisessä voidaan käyttää joko laadullista tai määrällistä tutkimusmenetelmää. Tutkimusmenetelmiä voidaan myös yhdistää,

Lisätiedot

2.6 Frekvenssien kuvaamisesta

2.6 Frekvenssien kuvaamisesta MAB5: Tilastotieteen lähtökohdat 2.6 Frekvenssien kuvaamisesta Pelkästä taulukosta, jollaisia näit edellä, on vaikea saada kunnolla selvää. Ainakin ison taulukon tapauksessa on laadittava kaavio, jos asiasta

Lisätiedot

Mielipiteet ydinvoimasta

Mielipiteet ydinvoimasta Mielipiteet ydinvoimasta Maaliskuu 12 Pauli Minkkinen 22262 TUTKIMUKSEN TILAAJA Energiateollisuus ry. TUTKIMUSMENETELMÄ: Puhelinhaastattelu HAASTATTELUAJANKOHTA: 28.2.-12.3.12 HAASTATTELUJEN MÄÄRÄ: 02

Lisätiedot

Ma8 Todennäköisyys ja tilastot

Ma8 Todennäköisyys ja tilastot Ma8 Todennäköisyys ja tilastot Arvioitavat tehtävät 1. Kuvaajassa on esitetty väkivaltaisesti tai tapaturmaisesti kuolleiden miesten ja naisten lukumäärät eri ikäryhmittäin vuonna 1999. (Lähde: Tilastokeskus)

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Muuttujien määrittely

Muuttujien määrittely Tarja Heikkilä Muuttujien määrittely Määrittele muuttujat SPSS-ohjelmaan lomakkeen kysymyksistä. Harjoitusta varten lomakkeeseen on muokattu kysymyksiä kahdesta opiskelijoiden tekemästä Joupiskan rinneravintolaa

Lisätiedot

Harjoituksia. MAB5: Tilastotieteen lähtökohdat

Harjoituksia. MAB5: Tilastotieteen lähtökohdat MAB5: Tilastotieteen lähtökohdat Harjoituksia Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? : Celsius asteikon nollapiste on mielivaltaisesti

Lisätiedot