Teema 5: Ristiintaulukointi
|
|
- Lotta Kyllönen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Teema 5: Ristiintaulukointi Kahden (tai useamman) muuttujan ristiintaulukointi: aineiston analysoinnin ja tulosten esittämisen perusmenetelmä usein samat tiedot esitetään sekä taulukkona että kuvana mahdollisen riippuvuuden havaitseminen (ei vain lineaarisen) Eri tyyppiset taulukot: frekvenssitaulukot soveltuvat kaikille muuttujille: laadulliset ja diskreetit muuttujat sellaisenaan jatkuvat muuttujat luokiteltuina (vrt. pylväskuva) luokkia tarvittaessa yhdisteltävä (tiivistäminen) prosenttitaulukot kuvaavat suhteellisia osuuksia: oltava tarkkana, mitä taulukon osaa kuvataan: sarakkeita / rivejä / kokonaismäärää? esityskäytössä %:t hyvä pyöristää kokonaisluvuiksi laskelmat kuitenkin tehtävä tarkemmilla luvuilla tunnuslukutaulukot kuvaavat jatkuvia muuttujia: esim. keskiarvot ja -hajonnat luokittain Esimerkki frekvenssitaulukosta Kurssin osallistujien ikäjakauma tiedekunnittain: (lähde: WebOodi/KV) Tiedekunta yht. Valtiotieteellinen Matem. luonnontiet Muut tiedekunnat yhteensä tdk: 3 luokkaa, ikä: 4 luokkaa, joten taulukossa 3 4 = 12 solua rivejä ja sarakkeita kutsutaan ehdollisiksi jakaumiksi: esim. ikäjakauma ehdolla että tarkastellaan valtiotieteellistä rivi- ja sarakesummia kutsutaan reunajakaumiksi: ikä: ks. Teema3:n pylväskuva, tdk: ks. Harjoitus 3, Tehtävä 3 taulukon kokonaismäärä (N=403) on solujen tai kumman tahansa reunajakauman summa
2 Esimerkki prosenttitaulukoista Sarakeprosentit ja riviprosentit (huomaa merkitysero): Valtiotieteellinen Matem. luonnontiet Muut tiedekunnat yhteensä % (N=403) Valtiotieteellinen Matem. luonnontiet Muut tiedekunnat yhteensä % (N=403) Esimerkki prosenttitaulukoista, toinen versio Samat %-taulukot kuin edellä, mutta luvut pyöristetty: Valtiotieteellinen Matem. luonnontiet Muut tiedekunnat yhteensä % (N=403) Valtiotieteellinen Matem. luonnontiet Muut tiedekunnat yhteensä % (N=403)
3 Esimerkki prosenttitaulukoista, kolmas muoto Kokonaisprosentit (huomaa erot ja yhtäläisyydet): Valtiotieteellinen Matem. luonnontiet Muut tiedekunnat yhteensä % (N=403) prosenttitaulukoissa oltava mukana havaintojen lukumäärä sarake- ja rivi-%-taulukot yleisimmin käytettyjä tiedekunnittaiset ikäjakaumat vaikuttavat hieman erilaisilta (kaikkien edelläolevien taulukoiden perusteella) taulukoiden tilastollista testausta käsitellään osassa 2 Taulukon visualisointi: kasattu pylväskuva 1 Kurssin osallistujien ikäjakauma (%) tiedekunnittain (N=403) Valtiotieteellinen (N=228) Matem.-luonnontiet. (N=92) Muut tiedekunnat (N=83) % : huomaa pylväiden pinta-alat ja %-akseli
4 Taulukon visualisointi: kasattu pylväskuva 2 Kurssin osallistujien ikäjakauma (%) tiedekunnittain (N=403) Valtiotieteellinen (N=228) Matem.-luonnontiet. (N=92) Muut tiedekunnat (N=83) % : huomaa pylväiden paksuudet ja %-akseli Taulukon visualisointi: monipylväskuva Kurssin osallistujien ikäjakauma (%) tiedekunnittain (N=403) Valtiotieteellinen (N=228) Matem.-luonnontiet. (N=92) Muut tiedekunnat (N=83) % : ikäryhmien %-osuuksia helpompi hahmottaa ja vertailla?
5 Esimerkki tunnuslukutaulukosta ESS 2002: Luottamus eduskuntaan ikäryhmittäin (N=207) asteikko: 0 = en luota ollenkaan, 10 = luotan erittäin vahvasti miehet naiset ikä keskiarvo -hajonta N keskiarvo -hajonta N kaikki Esimerkki tunnuslukutaulukosta, tiiviimpi versio ESS 2002: Luottamus eduskuntaan ikäryhmittäin (N=207) asteikko: 0 = en luota ollenkaan, 10 = luotan erittäin vahvasti miehet naiset ikä ka kh N ka kh N kaikki ka = keskiarvo, kh = keskihajonta
6 Taulukon visualisointi: keskiarvoprofiilit luottamus keskimäärin Luottamus eduskuntaan ikäryhmittäin vuonna 2002 ESS (keskiarvot ja -hajonnat, N=207) asteikko: 0 = en luota ollenkaan, 10 = luotan erittäin vahvasti ikäryhmä miehet naiset selvä ero vain vuotiailla (huomaa kuitenkin pieni N) myös keskiarvoerojen testausta käsitellään osassa 2 Toinen esimerkki tunnuslukutaulukosta KPT 2001: Työmatkan pituus ja pääasiallinen kulkuneuvo Työmatka yhteen suuntaan, km Kulkuneuvo p a m y s ka kh N Joukkoliikenne (106) Henkilöauto (99) Polkupyörä (32) Jalkaisin (72) Muu kulkuneuvo (8) (Työssä kotona) 50 (50) (Ei työssä) (595) (343) Kaikki yhteensä (1305) p = pienin arvo, a = alakvartiili, m = mediaani, y = yläkvartiili, s = suurin arvo ka = keskiarvo, kh = keskihajonta, N = vastausten lkm, = tieto puuttuu
7 Esimerkkejä kolmen muuttujan ristiintaulukoista (KPT) TAULUKKO 1 mies nainen yht TAULUKKO 2 mies nainen yht ika koul koul ika perus perus yo/am kork perus yo/am kork perus yo/am yo/am kork perus yo/am kork perus kork yo/am kork perus yo/am kork yht yht koulutustason luokat kuvattu selkeämmin lomakkeessa (taulukoihin perehdytään tarkemmin yhdessä) Esimerkkejä kolmen muuttujan ristiintaulukoista (KPT) TAULUKKO 3 perus yo/am kork yht TAULUKKO 4 perus yo/am kork yht ika sukup sukup ika mies mies nainen mies nainen mies nainen mies nainen nainen mies nainen mies nainen yht yht TAULUKKO yht koul sukup perus mies nainen yo/am mies nainen kork mies nainen yht TAULUKKO yht sukup koul mies perus yo/am kork nainen perus yo/am kork yht
5 Lisa materiaali. 5.1 Ristiintaulukointi
5 Lisa materiaali 5.1 Ristiintaulukointi 270. a) Aineiston koko nähdään frekvenssitaulukon oikeasta alakulmasta: N = 559. Tilastotieteen johdantokurssille osallistui yhteensä 559 opiskelijaa. Huomaa: Opiskelijoiden
Til.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin
Kandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:
Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
Teema 3: Tilastollisia kuvia ja tunnuslukuja
Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin
Hannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164
86118P JOHDATUS TILASTOTIETEESEEN Harjoituksen 3 ratkaisut, viikko 5, kevät 19 1. a) Havaintomatriisissa on viisi riviä (eli tilastoyksikköä) ja neljä saraketta (eli muuttujaa). Hannu mies LTK 18 Johanna
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
Johdatus tn-laskentaan perjantai 17.2.2012
Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011
Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
Esimerkki 1: auringonkukan kasvun kuvailu
GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Mediaani. Keskihajonta
Ohjeita neljänsien mikroharjoitusten (vk 7) tekemiseksi omatoimisesti: 1. Käynnistä Tixel-ohjelma työpöydän kuvakkeella, paina Enable Content, avaa ADD-INS, valitse Tixel8- valikosta Avaa havaintomatriisi,
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
TUTKIMUSOPAS. SPSS-opas
TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien
2. Aineiston kuvailua
2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien
Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut
Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,
Hyvinkääläisten matkat LÄHDE: WSP FINLAND OY, HELSINGIN SEUDUN LAAJA LIIKENNETUTKIMUS, MATKAPÄIVÄKIRJATUTKIMUS 2007 2008 VIRPI PASTINEN
Hyvinkääläisten matkat LÄHDE: WSP FINLAND OY, HELSINGIN SEUDUN LAAJA LIIKENNETUTKIMUS, MATKAPÄIVÄKIRJATUTKIMUS 2007 2008 VIRPI PASTINEN 10.11.2010 Hyvinkääläiset tekevät syysarkena keskimäärin 3,4. Matkat
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
11. laskuharjoituskierros, vko 15, ratkaisut
11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa
7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
AIHE: Tyossa_kouluttautuminen
TMT Tilastokuvaajia Pron tutkimusjärjestelmä T0_utoala IHE: Tyossa_kouluttautuminen OS : Ryhmä: TES_5K2 Koko otos ilman ryhmittäisiä vertailuja Pro tutkimus Tämän dokumentin analyysit (sivuja voit hakea
MTTTP1, luento KERTAUSTA
19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3
Aluenopeusrajoituksen muutos ja liikenteen rauhoittamistoimenpiteet Kaukajärvellä ja Vehmaisissa-kyselyn vastausten koonti
1 Aluenopeusrajoituksen muutos ja liikenteen rauhoittamistoimenpiteet Kaukajärvellä ja Vehmaisissa-kyselyn vastausten koonti (vastauksia yhteensä n.791kpl) Vastaajien määrä, ikä ja sukupuoli Vastaajan
χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
Teema 10: Regressio- ja varianssianalyysi
Teema 1: Regressio- ja varianssianalyysi Regressioanalyysi lienee t-testin ohella maailman eniten käytetty tilastollinen menetelmä. Sitä sivuttiin jo alustavasti Teemassa 4. Varianssianalyysi liittyy useallakin
I. Ristiintaulukointi Excelillä / Microsoft Office 2010
Savonia-ammattikorkeakoulu Liiketalous Kuopio Tutkimusmenetelmät Likitalo & Mäkelä I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Tässä ohjeessa on mainittu ensi Excelin valinnan/komennon englanninkielinen
Kansallisen käyttäjäkyselyn tulosten visualisointia Tampereen tulokset
Kansallisen käyttäjäkyselyn tulosten visualisointia Tampereen tulokset Mikko Sauna-aho, Tampereen kaupunginkirjasto 1/19 SISÄLLYS 1. Käyttäjäryhmät... 2. Kirjaston palvelut...5. Kirjasto asiointiympäristönä...7.
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
MTTTP1, luento KERTAUSTA JA TÄYDENNYSTÄ. Tunnusluvut. 1) Sijainnin tunnuslukuja. Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1)
20.9.2018/1 MTTTP1, luento 20.9.2018 KERTAUSTA JA TÄYDENNYSTÄ Tunnusluvut 1) Sijainnin tunnuslukuja Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1) Muita sijainnin tunnuslukuja ala- ja yläkvartiili,
Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012
Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170
JYVÄSKYLÄN YLIOPISTON HENKILÖSTÖTILINPÄÄTÖKSEN 2005 LIITEOSA
JYVÄSKYLÄN YLIOPISTON HENKILÖSTÖTILINPÄÄTÖKSEN 2005 LIITEOSA Liiteosa sisältää seuraavat taulukot: Taulukko 1: Taulukko 2: Taulukko 3: Taulukko 4: Taulukko 5: Taulukko 6: Taulukko 7: Taulukko 8 Taulukko
Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas RIIPPUVUUS ALARYHMISSÄ Riippuvuus saattaa olla erilaista jos samassa aineistossa on esim. tutkittavia molemmista sukupuolista Yhteys saattaa olla erilaista
Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4
18.9.2018/1 MTTTP1, luento 18.9.2018 KERTAUSTA Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4 pyöristetyt todelliset luokka- frekvenssi luokkarajat luokkarajat keskus 42 52 41,5
AIHE: Demografiset_muutokset
TMT Tilastokuvaajia Pron tutkimusjärjestelmä Muu AIHE: Demografiset_muutokset OSA 1: Ryhmä: TES_5K2 Koko otos ilman ryhmittäisiä vertailuja Pro tutkimus Tämän dokumentin analyysit (sivuja voit hakea Etsi
1. laskuharjoituskierros, vko 4, ratkaisut
1. laskuharjoituskierros, vko 4, ratkaisut D1. Heitetään kahta virheetöntä noppaa, joiden kuudella tahkolla on silmäluvut 1, 2, 3, 4, 5 ja 6. Tällöin heittotuloksiin liittyvä otosavaruus on S = {(x, y)
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Oma nimesi Tehtävä (5)
Oma nimesi Tehtävä 3.1 1 (5) Taulukot ja niiden laatiminen Tilastotaulukko on perinteinen ja monikäyttöisin tapa järjestää numeerinen havaintoaineisto tiiviiseen ja helposti omaksuttavaan muotoon. Tilastoissa
Bussiyhteyksiin perustuva joukkoliikenne YKR-ANALYYSITULOKSIA HÄMEENLINNAN VOUTILA. Katri Eerola Suomen ympäristökeskus
Bussiyhteyksiin perustuva joukkoliikenne YKR-ANALYYSITULOKSIA HÄMEENLINNAN VOUTILA Katri Eerola Suomen ympäristökeskus Aluerajaus ja aineistot Sijoittuminen liikkumisvyöhykkeille VÄESTÖMÄÄRÄ Koko Kohdealue
Johdatus tilastotieteeseen
Johdatus tilastotieteeseen Jari Päkkilä Kevätlukukausi 2017 Matemaattisten tieteiden laitos Esimerkki mittauksen luotettavuudesta Viime viikon mittausharjoituksessa pelattiin mm. kunnat kartalle -peliä
Henkilöstö henkilötyövuosina % -osuudet (ei sisällä Normaalikoulua) Normaalikoulun henkilöstö henkilötyövuosina
JYVÄSKYLÄN YLIOPISTON HENKILÖSTÖKERTOMUKSEN 2004 LIITEOSA Liiteosa sisältää seuraavat taulukot: Taulukko 1: Taulukko 2: Taulukko 3: Taulukko 4: Taulukko 5: Taulukko 6: Taulukko 7: Taulukko 8: Koko henkilöstö
TAMPEREEN TEKNILLINEN YLIOPISTO KÄYTTÖOHJE TIETOVARASTON KUUTIOT
TAMPEREEN TEKNILLINEN YLIOPISTO KÄYTTÖOHJE TIETOVARASTON KUUTIOT 14.11.2011 Sisältö Perustietoa tietovarastosta... 2 Perustietoa kuutioista... 2 Dimensioiden valinta... 2 Uuden dimension lisääminen aikaisemman
Korvaussuoritukset kaatumis-ja putoamistapaturmista (lakisääteinen tapaturmavakuutus)
miljoonaa euroa Korvaussuoritukset kaatumis-ja putoamistapaturmista (lakisääteinen tapaturmavakuutus) 16 14 16 14 työmatkatapaturmat, vapaa-ehtoisesti vakuutetut yrittäjät 12 1 8 12 1 8 työmatkatapaturmat,
Tule mukaan kehittämään Kauppatoria!
Tule mukaan kehittämään Kauppatoria! Turun Kauppatoria ja lähiympäristön katuja koskeva kysely Tulokset Kyselyn ja tulokset ovat laatineet: Jimi Antikainen, Paula Keskikastari ja Jaana Mäkinen 16.4.2015
AIHE: Tyytyvaisyysmittareita
TMT Tilastokuvaajia Pron tutkimusjärjestelmä P11_Finnair_lentovirk AIHE: Tyytyvaisyysmittareita OSA 1: Ryhmä: TES_5K2 Koko otos ilman ryhmittäisiä vertailuja Pro tutkimus Tämän dokumentin analyysit (sivuja
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien
RISTIINTAULUKOINTI JA Χ 2 -TESTI
RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN
Aluenopeusrajoituksen muutos ja liikenteen rauhoittamistoimenpiteet Viinikassan Nekalassa, yms-kyselyn vastausten koonti
1 Aluenopeusrajoituksen muutos ja liikenteen rauhoittamistoimenpiteet Viinikassan Nekalassa, yms-kyselyn vastausten koonti (vastauksia yhteensä 485 kpl) Vastaajien määrä, ikä ja sukupuoli Vastaajien ikä/sukupuoli
Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.
Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle
Opiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3
Luku 6 Datajoukkojen jakaumat, tunnusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto. lokakuuta 207 6. Datajoukko ja datakehikko Tässä monisteessa datajoukko tarkoittaa järjestettyä listaa keskenään samantyyppisiä
Liite teokseen Semi Purhonen ym., Suomalainen maku: Kulttuuripääoma, kulutus ja elämäntyylien sosiaalinen eriytyminen (Gaudeamus 2014)
Liite teokseen Semi Purhonen ym., Suomalainen maku: Kulttuuripääoma, kulutus ja elämäntyylien sosiaalinen eriytyminen (Gaudeamus 2014) Liitetaulukko 13.2 Järjestötoiminnan aktiivisuutta viimeisen 12 kuukauden
Taloyhtiöiden jätehuoltopalvelut
Taloyhtiöiden jätehuoltopalvelut Jätehuollon hintakehitys Turussa 2016-2017, KTI Kiinteistötieto Muovinkeräyksen tilannekatsaus Jäteneuvonnan järjestäminen Jätehuollon kustannukset ja muovinkeräys Selvityksessä
Vaikuttamisindeksi
Ohjeita viidensien mikroharjoitusten (vk 8) tekemiseksi omatoimisesti: 1. 2 7 12 17 27 32 Vaikuttamisindeksi Käynnistä Tixel-ohjelma työpöydän kuvakkeella, paina Enable Content, avaa ADD-INS, valitse Tixel8-valikosta
... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)
LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa
JOENSUUN ASEMANSEUDUN KEHITTÄMINEN KÄYTTÄJÄKYSELYN TULOKSET
Kuva: Juha-Pekka Vartiainen JOENSUUN ASEMANSEUDUN KEHITTÄMINEN KÄYTTÄJÄKYSELYN TULOKSET Lisätietoja: Hanna Herkkola, hanna.herkkola@ramboll.fi, 5 51 55 VASTAAJIEN TAUSTATIEDOT 1. Sukupuolenne?. Ikäryhmänne
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
Robottiautojen vaikutukset liikkumistottumuksiin. Timo Liljamo
Robottiautojen vaikutukset liikkumistottumuksiin Timo Liljamo timo.liljamo@tut.fi Tutkimuksen sisältö 1. Kirjallisuuskatsaus 2. Kansalaiskyselytutkimus 3. Työpaja Kirjallisuuskatsaus Matkojen pituuden
Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.
Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten
Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)
1/11 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise
Internetin saatavuus kotona - diagrammi
Internetin saatavuus kotona - diagrammi 2 000 ruotsalaista vuosina 2000-2010 vastata Internetiä koskeviin kysymyksiin. Alla oleva diagrammi osoittaa, kuinka suurella osuudella (%) eri ikäryhmissä oli Internet
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä..
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä.. TEHTÄVÄ 1 Taulukko 1 Kuvailevat tunnusluvut pääkaupunkiseudun terveystutkimuksesta vuonna 2007 (n=941) Keskiarvo (keskihajonta) Ikä
AIHE: Tyytyvaisyysmittareita
TMT Tilastokuvaajia Pron tutkimusjärjestelmä 000Muu AIHE: Tyytyvaisyysmittareita OSA 1: Ryhmä: TES_5K2 Koko otos ilman ryhmittäisiä vertailuja Pro tutkimus Tämän dokumentin analyysit (sivuja voit hakea
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
EKOLIITU - HÄMEENLINNAN SEUDUN KESTÄVÄN JA TURVALLISEN LIIKKUMISEN SUUNNITELMA LIIKKUMISEN TUNNUSLUKUJA NYKYTILAN ANALYYSIT I LIIKKUMISEN NYKYTILA
EKOLIITU - HÄMEENLINNAN SEUDUN KESTÄVÄN JA TURVALLISEN LIIKKUMISEN SUUNNITELMA LIIKKUMISEN TUNNUSLUKUJA Sisältö Autoistuminen Hämeenlinnan seudulla Autonomistus vs. palveluiden saavutettavuus Autonomistus
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
Valtionhallinnon ylin johto numeroin kesäkuussa 2013
Valtionhallinnon ylin johto numeroin kesäkuussa 2013 Valtion työmarkkinalaitos Veli-Matti Lehtonen Syyskuu 2013 2 Sisältö 1 Valtionhallinnon ylimmän johdon määrä ja rakenne... 3 2 Vanhuuseläköityminen
Katoavat työpaikat. Pekka Myrskylä
Katoavat työpaikat Pekka Myrskylä 13-14.06.2017 Työpaikkamuutos 1987-2014 1987 % 2014 % Erotus Uudenmaan maakunta 675242 29,1 771293 33,9 96051 14,2 Pohjois-Pohjanmaan maakunt 142326 6,1 155246 6,8 12920
Maanpuolustusjärjestöjen jäsenkysely turvallisuus- ja puolustuspoliittisista kysymyksistä
Maanpuolustusjärjestöjen jäsenkysely turvallisuus- ja puolustuspoliittisista kysymyksistä Taustatiedot Ensisijainen jäsenjärjestösi Sähköinen jäsenkysely toteutettiin 20.10. 5.11.2016 välisenä aikana ja
Webropol 3.0 tulosten raportointi. Aki Taanila
Webropol 3.0 tulosten raportointi Aki Taanila 16.4.2019. Ota Webropol 3.0 käyttöön Kirjaudu Webropoliin ja napsauta ylhäältä linkkiä 3.0-versioon. Valitse Kyselyt: Löydät myös aiemmalla 2.0-versiolla tekemäsi
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
8 TILASTOT ALOITA PERUSTEISTA 33A. Keskiarvo on pituuksien summan ja lukumäärän osamäärä, joten A ja III kuuluvat yhteen. Keskihajonta mittaa havaintoarvojen ryhmittymistä keskiarvon ympärille, joten B
Harjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen