Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä.

Koko: px
Aloita esitys sivulta:

Download "Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä."

Transkriptio

1 Tehtävä 1 Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä Ei Hypoteesi ei ole hyvä tutkimushypoteesi, koska se on liian epämääräinen. Mitä tarkoittaa hyvä keino konkreettisesti? Terveydentila voidaan myös määrittää usealla tavalla ja sitä voidaan mitata usealla eri mittarilla. Hypoteesissa voisi jo suoraan viitata terveydentilan mittaamiseen käytettyihin muuttujiin. Tutkimusraportissa tulee myös tarkasti määrittää miten liikuntaneuvonta on toteutettu ja mitä sen sisältö on, joskin hypoteesiin sitä ei liene tarpeellista sisällyttää, mutta jos tässä asetetaan hypoteesia interventiotutkimuksessa, olisi hypoteesissa hyvä mainita koe- ja kontrolliryhmät. (esim. Oma arvio terveydentilasta on korkeammalla tasolla koe- kuin kontrolliryhmässä).

2 Tehtävä 2 Siviilisäätyä mitataan usein kysymyksellä, jossa tutkittavan pitää kertoa onko hän naimaton, naimisissa oleva, leski, tai eronnut. Mikä on tämän muuttujan mitta-asteikko? Jatkuva Epäjatkuva Diskreetti suhdeasteikko Muuttujalle on määritelty ennalta selkeät vastausluokat, joiden välillä ei ole määrättyä järjestystä tai merkityksellistä erotusta (ts. mitta-asteikko ei siis ole jatkuva tai järjestysasteikollinen). Muuttuja ei ilmoita mitään laskettavaa lukumäärää, joten mitta-asteikko ei ole diskreetti suhdeasteikko. Siviilisäätymuuttujan mitta-asteikkoa voi siis pitää epäjatkuvana.

3 Tehtävä 3 Lue tämä tehtävänanto huolella ja vastaa annetun tiedon perusteella kysymykseen. Peruskoulun ekaluokkalaisille luokan seinään piirretään viiva 125 cm kohdalle ja oppilaita kehotetaan seisomaan viivan kohdalla seinää vasten. Mittaustuloksena kirjataan oliko tutkittavan pituus sellainen, että viiva jäi näkyviin vai peittyikö se näkyvistä. Mikä on tämän muuttujan mitta-asteikko? Luokitusasteikko Välimatka-asteikko Suhdeasteikko Pituus sinällään on jatkuva muuttuja, mutta tässä tiedetään vain oliko pituus yli vai alle 125 cm, ts. muuttujan on kaksiluokkainen. Käytännössä muuttujaa pidetään usein luokitusasteikollisena, mutta tässä hyväksytään myös järjestysasteikon tulkinta (kyseessä on siis epäjatkuva muuttuja).

4 Tehtävä 4 Lue tämä tehtävänanto huolellisesti ennen kuin vastaat kysymyksiin annetun tiedon pohjalta. Osana tutkimusta vuotiaille koululaisille esitettiin 10 kysymystä heidän asenteistaan erilaisia koululiikuntamuotoja kohtaan (mm. juoksulenkit, pallopelien pelaaminen, jne.). Jokaisessa kysymyksessä on viisi vastausvaihtoehtoa: erittäin miellyttävä, miellyttävä, ei miellyttävä eikä epämiellyttävä, epämiellyttävä, erittäin epämiellyttävä. Vastausvaihtoehdoille päätettiin antaa seuraava pisteytys: 4,3,2,1,0 (tässä järjestyksessä). Kun oppilaat olivat vastanneet kysymyksiin, kullekin vastaukselle annettiin sitä vastaava pistemäärä. Tämän jälkeen joka oppilaalle muodostettiin summapistemäärä laskemalla yhteen niiden kysymysten pisteet, joihin hän oli vastannut. A. Mikä on oppilaan summapistemäärän pienin mahdollinen arvo? B. Mikä on oppilaan summapistemäärän suurin mahdollinen arvo? C. Kuvaavatko suuremmat summapistemäärät asennetta myönteisesti (koettiin miellyttäväksi) kielteisesti (koettiin epämiellyttäväksi) D. Mikä on summapistemäärän mitta-asteikko? Luokitusasteikko Välimatka-asteikko Suhdeasteikko Osakysymysten alin pistemäärä on nolla pistettä joten summapistemäärän pienimmäksi arvoksi saadaan 10 0 = 0 (A). Osakysymysten korkein pistemäärä on 4, joten korkeimmaksi pistemääräksi saadaan 10 4 = 40 (B). Osakysymykset oli muotoiltu niin, että niissä suurempi pistemäärä liittyi liikuntamuodon kokemista miellyttäväksi, joten suuremmat summapistemäärät kuvaavat myönteisempää suhtautumista liikuntamuotoon (C). Osakysymysten mitta-asteikko on järjestysasteikko (epäjatkuvan muuttujan tapaan selkeät vastausluokat, luokkien välillä on järjestys, mutta luokkien välillä ei välttämättä ole yhtä pitkä etäisyys). Yhteenlasketun summapistemäärän pitäisi siis olla myös järjestysasteikko. Käytännössä kuitenkin ajatellaan, että osiovastaukset ovat välimatka-asteikollisia. Tämän taustalla on ajatus, että tässä esitelty summapistemäärä kuvaa yleistä asennetta liikuntamuotoihin. Tämä on voi olla perusteltua, jos tutkimukseen on valittu edustava ja riittävä määrä liikuntamuotoja perusjoukkoon nähden. Vastauksena hyväksytään siis järjestysasteikko ja välimatka-asteikko (D). Osioanalyysi on tilastollisen tutkimuksen haara, joka tutkii mm. sitä, kannattaako osiovastauksista muodostaa summapistemäärää vai tarkastella vastauksia jollakin muulla tavalla.

5 Seuraavissa kuvioissa on esitetty eri vastausten esitysmääriä.

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

Tentti erilaiset kysymystyypit

Tentti erilaiset kysymystyypit Tentti erilaiset kysymystyypit Monivalinta Monivalintatehtävässä opiskelija valitsee vastauksen valmiiden vastausvaihtoehtojen joukosta. Tehtävään voi olla yksi tai useampi oikea vastaus. Varmista, että

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Mittariston laatiminen laatutyöhön

Mittariston laatiminen laatutyöhön Mittariston laatiminen laatutyöhön Perusopetuksen laatukriteerityö Vaasa 18.9.2012 Tommi Karjalainen Opetus- ja kulttuuriministeriö Millainen on hyvä mittaristo? Kyselylomaketutkimuksen vaiheet: Aiheen

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen. Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2004) 1 ja mittaaminen Johdatus tilastotieteeseen ja mittaaminen TKK (c) Ilkka Mellin (2004) 2 ja mittaaminen: Mitä opimme? 1/3 Tilastollisen tutkimuksen kaikki mahdolliset kohteet

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

Tentti erilaiset kysymystyypit

Tentti erilaiset kysymystyypit Tentti erilaiset kysymystyypit Kysymystyyppien kanssa kannatta huomioida, että ne ovat yhteydessä tentin asetuksiin ja erityisesti Kysymysten toimintatapa-kohtaan, jossa määritellään arvioidaanko kysymykset

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

KUNTIEN JA HUS:N ASIAKAS- JA POTILASTIETOJÄRJESTELMÄN HANKINTA

KUNTIEN JA HUS:N ASIAKAS- JA POTILASTIETOJÄRJESTELMÄN HANKINTA KUNTIEN JA HUS:N ASIAKAS- JA POTILASTIETOJÄRJESTELMÄN HANKINTA Perustelumuistio Liite 4: Toimittajan resurssien ja osaamisen arvioinnin tulokset (vertailuperuste 3.2) 1 Sisällysluettelo 1. Dokumentin tarkoitus

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

WHOQOL-BREF MAAILMAN TERVEYSJÄRJESTÖN ELÄMÄNLAATUMITTARI - LYHYT VERSIO

WHOQOL-BREF MAAILMAN TERVEYSJÄRJESTÖN ELÄMÄNLAATUMITTARI - LYHYT VERSIO WHOQOL-BREF MAAILMAN TERVEYSJÄRJESTÖN ELÄMÄNLAATUMITTARI - LYHYT VERSIO Ulottuvuus 1 Ulottuvuus 2 Ulottuvuus 3 Ulottuvuus 4 Kaavat eri ulottuvuuksien yhteispisteiden laskemiseen (6-Q3) + (6-Q4) + Q10 +

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Määräys. Soveltamisala. Ilmoittautumisen määräaika. Ilmoittautumisen yhteydessä annettavat tiedot

Määräys. Soveltamisala. Ilmoittautumisen määräaika. Ilmoittautumisen yhteydessä annettavat tiedot Määräys 1 (9) 64/2012 M Määräys TAAJUUSALUEEN 791-821 MHZ JA 832-862 MHZ HUUTOKAUPASTA 1 Soveltamisala 2 Ilmoittautumisen määräaika 3 Annettu Helsingissä päivänä kuuta 2012 Viestintävirasto on määrännyt

Lisätiedot

Kenguru 2012 Ecolier sivu 1 / 7 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Ecolier sivu 1 / 7 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Ecolier sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Luottamuksellinen kyselylomake

Luottamuksellinen kyselylomake Luottamuksellinen kyselylomake Hakemus terapiaan terapeuttikandidaatille, joka opiskelee HumaNova Utbildning OY:ssa Terapiapalkkio on 30 /istunto (sis. alv.) ja maksetaan suoraan terapeuttikandidaatille

Lisätiedot

KiVa Koulu tilannekartoituskysely 2014 Koulupalaute: Joensuu

KiVa Koulu tilannekartoituskysely 2014 Koulupalaute: Joensuu KiVa Koulu tilannekartoituskysely 2014 Koulupalaute: Joensuu Tulkintaohjeita: Kaikki koulut viittaavat oppilaiden vastauksiin kaikissa Suomen kouluissa. Tulokset on raportoitu erikseen alakoulujen ja yläkoulujen

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 MFKA-Kustannus Oy Rautatieläisenkatu 6, 0020 HELSINKI, puh. (09) 102 378 http://www.mfka.fi Peruskoulun

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

2. luentokrt KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA

2. luentokrt KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA 13.4.2015 1 2. luentokrt Taksonomiataulu osa 2 eli miten suunnitella opetusta ja oppilasarviointia tehtävien vaativuustasot

Lisätiedot

Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta ole mainittu.

Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta ole mainittu. Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 6..009 OSA Ratkaisuaika 30 min Pistemäärä 0 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta

Lisätiedot

1. Onko terveytenne yleisesti ottaen... (ympyröikää yksi numero) 1 erinomainen 2 varsin hyvä 3 hyvä 4 tyydyttävä 5 huono

1. Onko terveytenne yleisesti ottaen... (ympyröikää yksi numero) 1 erinomainen 2 varsin hyvä 3 hyvä 4 tyydyttävä 5 huono 1. Onko terveytenne yleisesti ottaen... 1 erinomainen 2 varsin hyvä 3 hyvä 4 tyydyttävä 5 huono 2. Jos vertaatte nykyistä terveydentilaanne vuoden takaiseen, onko terveytenne yleisesti ottaen... 1 tällä

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Harjoituspaketti 2. 17. helmikuuta 2008

Harjoituspaketti 2. 17. helmikuuta 2008 17. helmikuuta 2008 ISLP:n Kansainvälinen tilastotieteellisen lukutaidon kilpailu (International Statistical Literacy Competition of the ISLP) http://www.stat.auckland.ac.nz/~iase/islp/competition Harjoituspaketti

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

KIPUKYSELY Suomen Kivuntutkimusyhdistys ry. 2003

KIPUKYSELY Suomen Kivuntutkimusyhdistys ry. 2003 KIPUKYSELY Suomen Kivuntutkimusyhdistys ry. 2003 Tämän kyselyn tarkoituksena on saada riittävän monipuolinen kuva kipuongelmastanne. Lomakkeessa on kysymyksiä, joihin pyydämme Teitä vastaamaan joko ympyröimällä

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

RBDI Suomen oloihin kehitetty lyhyt masennusoireilun kysely

RBDI Suomen oloihin kehitetty lyhyt masennusoireilun kysely Vastauspäivämäärä Potilaan nimi Henkilötunnus Tiedustelemme tällä lomakkeella mielialan erilaisia piirteitä. Vastatkaa kuhunkin kysymykseen sillä tavalla millaiseksi tunnette itsenne tällä hetkellä. Rastittakaa

Lisätiedot

Maahanmuuttajien terveys ja hyvinvointitutkimus MAAMU: Esittelyä ja alustavia tuloksia

Maahanmuuttajien terveys ja hyvinvointitutkimus MAAMU: Esittelyä ja alustavia tuloksia Maahanmuuttajien terveys ja hyvinvointitutkimus MAAMU: Esittelyä ja alustavia tuloksia 14.5.2012 14.5.2012 Anu Castaneda 1 Esityksen sisältö 1. Maamu-tutkimus ja sen tavoitteet 2. Menetelmät 3. Tutkimuksen

Lisätiedot

Kevään 2010 fysiikan valtakunnallinen koe

Kevään 2010 fysiikan valtakunnallinen koe 120 Kevään 2010 fysiikan valtakunnallinen koe 107 114 100 87 93 Oppilasmäärä 80 60 40 20 0 3 5 7 14 20 30 20 30 36 33 56 39 67 48 69 77 76 56 65 35 25 10 9,75 9,5 9,25 9 8,75 8,5 8,25 8 7,75 7,5 7,25 7

Lisätiedot

OHJEET LUE TÄMÄ AIVAN ENSIKSI!

OHJEET LUE TÄMÄ AIVAN ENSIKSI! 1/8 OHJEET LUE TÄMÄ AIVAN ENSIKSI! Sinulla on nyt hallussasi testi, jolla voit arvioida oman älykkyytesi. Tämä testi muodostuu kahdesta osatestistä (Testi 1 ja Testi ). Testi on tarkoitettu vain yli neljätoistavuotiaille.

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Pauliina Munter Tietohallinto/Opetusteknologiapalvelut 2014

Pauliina Munter Tietohallinto/Opetusteknologiapalvelut 2014 Oppitunti - Oppitunti rakentuu yleensä peräkkäisistä teksti- ja kysymyssivuista siten, että opiskelija tekstin luettuaan vastaa sitä koskevaan kysymykseen ja käy siten oppitunnin sivu sivulta läpi opettajan

Lisätiedot

Monivalintamuuttujien käsittely

Monivalintamuuttujien käsittely Tarja Heikkilä Monivalintamuuttujien käsittely Datatiedosto: Yhdistä.sav Yhdistetään SPSS-ohjelmalla samaan kysymykseen kuuluvat muuttujat. Esimerkkiin liittyvä kysymys ja muita vastaavia kysymyksiä on

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kenguru 2011 Benjamin (6. ja 7. luokka)

Kenguru 2011 Benjamin (6. ja 7. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAB2 koe Jussi Tyni Lue ohjeet huolellisesti! Muista, että välivaiheet perustelevat vastauksesi. Muista kirjoittaa konseptille nimesi ja tee pisteytysruudukko konseptin yläreunaan. A-osio. Ei laskinta!

Lisätiedot

KiVa Koulu tilannekartoituskysely 2016 sivu 1/14. KiVa Koulu tilannekartoituskysely 2016 sivu 2/14. KiVa Koulu tilannekartoituskysely 2016 sivu 3/14

KiVa Koulu tilannekartoituskysely 2016 sivu 1/14. KiVa Koulu tilannekartoituskysely 2016 sivu 2/14. KiVa Koulu tilannekartoituskysely 2016 sivu 3/14 KiVa Koulu tilannekartoituskysely 2016 sivu 1/14 Tervetuloa täyttämään kysely! Koulutunnus: Oppilaiden tilannekartoitussalasana: Kirjaudu kyselyyn KiVa Koulu tilannekartoituskysely 2016 sivu 2/14 Kukaan

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

KiVa Koulu tilannekartoituskysely 2014 Koulupalaute: Tiirismaan peruskoulu

KiVa Koulu tilannekartoituskysely 2014 Koulupalaute: Tiirismaan peruskoulu Page 1 of 7 KiVa Koulu tilannekartoituskysely 2014 Koulupalaute: Tiirismaan peruskoulu Tulkintaohjeita: Kaikki koulut viittaavat oppilaiden vastauksiin kaikissa Suomen kouluissa. Oma koulu viittaa oman

Lisätiedot

ADR-ajolupakokeiden pitäminen ja arviointi

ADR-ajolupakokeiden pitäminen ja arviointi Ohje 1 (5) Antopäivä: 3.2.2012 Voimaantulopäivä: 10.2.2012 Voimassa: 30.6.2016 saakka Säädösperusta: Asetus vaarallisten aineiden kuljettajien ajoluvasta 401/2011 Muutostiedot: Kumoaa/muuttaa ohjeen TRAFI/22055/03.04.03.01/2011.

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

Väittämä Oikein Väärin Vastaus sivulla. 1. Haarautuminen on yksi tieteen kehittymisen muoto. x 14

Väittämä Oikein Väärin Vastaus sivulla. 1. Haarautuminen on yksi tieteen kehittymisen muoto. x 14 VALINTAKOE 1 (7) 16.5.2017 Osio 1 Eriksson K, Isola A, Kyngäs H, Leino-Kilpi H, Lindström U, Paavilainen E, Pietilä A-M, Salanterä S, Vehviläinen-Julkunen K, Åstedt-Kurki P. Hoitotiede. 3. uudistettu painos.

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu

YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu Tampereen yliopisto / YKY / Tero Mamia YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu 15.12.2014 Nimi: Opiskelijanumero: Tutkinto-ohjelma / pääaine: OHJE: Täytä ensin omat tietosi lomakkeen yläreunaan.

Lisätiedot

Johtimien kuormitettavuus

Johtimien kuormitettavuus Johtimien kuormitettavuus Pekka Rantala Kevät 2015 Suurin jatkuva virta Suurin jatkuva virta, jolla johdinta saa kuormitta = kuormitettavuus. Sen pitää olla sellainen, että johtimen eristysaineen lämpötila

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Google Forms / Anna Haapalainen. Google Forms Googlen lomake-työkalu

Google Forms / Anna Haapalainen. Google Forms Googlen lomake-työkalu Google Forms Googlen lomake-työkalu Google Forms / Anna Haapalainen Googlen lomaketyökalulla on helppoa tehdä sähköisiä kyselyitä, tehtäviä tai kokeita. Voidaksesi luoda Googlen lomakkeita, sinulla tulee

Lisätiedot

KiVa Koulu tilannekartoituskysely 2016 Koulupalaute: Henrikin koulu

KiVa Koulu tilannekartoituskysely 2016 Koulupalaute: Henrikin koulu KiVa Koulu tilannekartoituskysely 2016 Koulupalaute: Henrikin koulu Tulkintaohjeita: Kaikki koulut viittaavat oppilaiden vastauksiin kaikissa Suomen kouluissa. Oma koulu viittaa oman koulunne oppilaiden

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

HUOM! Tämä on 1. vuosikurssin muualla tai aikaisemmin käyneille. Tähän hakemukseen on liitettävä myös pastorin suositus.

HUOM! Tämä on 1. vuosikurssin muualla tai aikaisemmin käyneille. Tähän hakemukseen on liitettävä myös pastorin suositus. 2015 2016 2.Vuosikurssi HUOM! Tämä on 1. vuosikurssin muualla tai aikaisemmin käyneille. Tähän hakemukseen on liitettävä myös pastorin suositus. Hakijalle Iloitsemme halustasi antaa kokonainen vuosi Herralle

Lisätiedot

Kenguru 2016 Benjamin (6. ja 7. luokka)

Kenguru 2016 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Hoivakodissa / kotihoivassa?

Hoivakodissa / kotihoivassa? Johdanto Hoivakodissa / kotihoivassa? Diskreetin valinnan koe Heikki Pursiainen 1 Timo Seppälä 2 1 VATT 2 THL 21. elokuuta 2013 Taustaa Väestö ikääntyy nopeasti, kuten kaikki toistavat ad nauseam. Vanhuspalveluiden

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Mitä on näyttö vaikuttavuudesta. Matti Rautalahti Suomalainen Lääkäriseura Duodecim

Mitä on näyttö vaikuttavuudesta. Matti Rautalahti Suomalainen Lääkäriseura Duodecim Mitä on näyttö vaikuttavuudesta Matti Rautalahti Suomalainen Lääkäriseura Duodecim Sidonnaisuudet Päätoimi Suomalaisessa Lääkäriseurassa Duodecimissa Suomen ASH ry hallitus Tieteellinen näyttö Perustana

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

3 Mittaamisen taso ja tilaston keskiluvut

3 Mittaamisen taso ja tilaston keskiluvut 3 Mittaamisen taso ja tilaston keskiluvut Tämä tutkimus on sellainen, että (jos nyt jänisten laskua voidaan mittaamiseksi kutsua) mittaamisessa on eroteltavissa neljä erilaista mittaamisen tasoa, mittausasteikkoa.

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka syksy Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

TURVALLISESTI JÄRVENPÄÄSSÄ. erikoissuunnittelija Tero Seitsonen Lasten ja nuorten & Sivistyksen ja vapaa-ajan palvelualueet

TURVALLISESTI JÄRVENPÄÄSSÄ. erikoissuunnittelija Tero Seitsonen Lasten ja nuorten & Sivistyksen ja vapaa-ajan palvelualueet TURVALLISESTI JÄRVENPÄÄSSÄ erikoissuunnittelija Tero Seitsonen Lasten ja nuorten & Sivistyksen ja vapaa-ajan palvelualueet ALUEELLINEN TERVEYS- JA HYVINVOINTITUTKIMUS Yleistä Toteutettiin vuosien 2013-2015

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 1 Sisältö: 1. Kvantitatiivisen tutkimuksen perusteita.2 2. Määrällisen tutkimusprosessin vaiheet..3

Lisätiedot

POHJOIS-SUOMESSA 1985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY OHJELMAAN KUULUVIEN TUTKITTAVIEN ÄIDEILLE

POHJOIS-SUOMESSA 1985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY OHJELMAAN KUULUVIEN TUTKITTAVIEN ÄIDEILLE ID TERVEYSTIETEIDEN LAITOS POHJOIS-SUOMESSA 985-86 SYNTYNEIDEN HYVINVOINTI- JA TERVEYSTUTKIMUSOHJELMA KYSELY OHJELMAAN KUULUVIEN TUTKITTAVIEN ÄIDEILLE PL 5000, 9004 OULUN YLIOPISTO, PUH. 08-5750, FAX.

Lisätiedot

Muutokset ADR- ajolupakoulutuksessa ja -kokeissa 1.7.2011.

Muutokset ADR- ajolupakoulutuksessa ja -kokeissa 1.7.2011. Muutokset ADR- ajolupakoulutuksessa ja -kokeissa 1.7.2011. Vantaa 11.4.2011, Oulu 12.4.2011, Tampere 14.4.2011 Pekka Kärkkäinen ADR- ajolupakokeet ja myönnetyt ajoluvat 2010 Perusajolupa kokeita 4384,

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kenguru 2011 Ecolier RATKAISUT (4. ja 5. luokka)

Kenguru 2011 Ecolier RATKAISUT (4. ja 5. luokka) sivu 1 / 7 OIKEAT VASTAUSVAIHTOEHDOT ON ALLEVIIVATTU. JOISSAKIN TEHTÄVISSÄ ON MYÖS RATKAISUN SELITYS TAI PERUSTELU. 3 pistettä 1. Pasi haluaa maalata sanan KENGURU. Hän maalaa yhden kirjaimen joka päivä

Lisätiedot

PUOLIPYÖREÄN SADEVESIJÄRJESTELMÄN ASENNUSOHJE

PUOLIPYÖREÄN SADEVESIJÄRJESTELMÄN ASENNUSOHJE PUOIPYÖREÄN SDEVESIJÄRJESTEMÄN SENNUSOHJE 1 6 5 8 7 10 3 11 14 9 2 4 12 13 11 14 17 Tuotelista Nro Tuote 1 Pisko kouru 2 Pisko ulkokulma 90 3 Pisko sisäkulma 90 4 Pisko tukkopää, oikea ja vasen 5 Pisko

Lisätiedot

ESIPUHE... 3 SISÄLLYSLUETTELO... 4

ESIPUHE... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE... 3 SISÄLLYSLUETTELO... 4 1. JOHDANTO JA PÄÄMÄÄRÄT... 6 1.1 TIETEELLISEN TIEDON OMINAISPIIRTEITÄ... 7 1.2 IHMISTIETEELLISEN TUTKIMUKSEN PIIRTEITÄ... 8 1.3 TILASTOTIEDE IHMISTIETEIDEN

Lisätiedot

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä MATEMATIIKKA JOENSUUN SEUDUN OPETUSSUUNNITELMASSA Merkitys, arvot ja asenteet Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen

Lisätiedot

Ohjelmassa on käytettävä funktiota laskeparkkimaksu laskemaan kunkin asiakkaan maksu. Funktio floor pyöristää luvun lähimmäksi kokonaisluvuksi.

Ohjelmassa on käytettävä funktiota laskeparkkimaksu laskemaan kunkin asiakkaan maksu. Funktio floor pyöristää luvun lähimmäksi kokonaisluvuksi. Tehtävä 24. Kallioparkki veloittaa 2 euroa kolmelta ensimmäiseltä pysäköintitunnilta. Yli kolmen tunnin pysäköinnistä veloitetaan lisäksi 0.5 euroa jokaiselta yli menevältä tunnilta. Kuitenkin maksimiveloitus

Lisätiedot

2.4 Muuttujien luokittelemisesta

2.4 Muuttujien luokittelemisesta MAB5: Tilastotieteen lähtökohdat 2.4 Muuttujien luokittelemisesta Eräs tapa luokitella muuttujat on seuraava jako kahteen muuttujatyyppiin: kvantitatiivinen muuttuja eli muuttuja, jonka arvo esitetään

Lisätiedot

Sisällysluettelo ja ohjeet tilastojen tulkintaan (osa 1) 1.1 Esittelee kyselyn tulokset kokonaisuudessa

Sisällysluettelo ja ohjeet tilastojen tulkintaan (osa 1) 1.1 Esittelee kyselyn tulokset kokonaisuudessa Sisällysluettelo ja ohjeet tilastojen tulkintaan (osa 1) 1.1 Esittelee kyselyn tulokset kokonaisuudessa - Kurin määritelmät ovat x-koordinaatistolla - Vastaukset on esitetty graafi sesti värikoodeja käyttäen.

Lisätiedot

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi)

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi) Kenguru 2013 Junior sivu 1 / 9 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

S: siirtää listan ensimmäisen luvun viimeiseksi V: vaihtaa keskenään listan kaksi ensimmäistä lukua

S: siirtää listan ensimmäisen luvun viimeiseksi V: vaihtaa keskenään listan kaksi ensimmäistä lukua A Lista Sinulle on annettu lista, joka sisältää kokonaisluvut 1, 2,, n jossakin järjestyksessä. Tehtäväsi on järjestää luvut pienimmästä suurimpaan käyttäen seuraavia operaatioita: S: siirtää listan ensimmäisen

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Tausta tutkimukselle

Tausta tutkimukselle Näin on aina tehty Näyttöön perustuvan toiminnan nykytilanne hoitotyöntekijöiden toiminnassa Vaasan keskussairaalassa Eeva Pohjanniemi ja Kirsi Vaaranmaa 1 Tausta tutkimukselle Suomessa on aktiivisesti

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

SIIVOJA HALLITSEE EKG-REKISTERÖINNIN, VAIKKA SE ON VAIKEAA JOPA KLIINISEN FYSIOLOGIAN ERIKOISHOITAJILLE!

SIIVOJA HALLITSEE EKG-REKISTERÖINNIN, VAIKKA SE ON VAIKEAA JOPA KLIINISEN FYSIOLOGIAN ERIKOISHOITAJILLE! Hanna-Maarit Riski Yliopettaja Turun ammattikorkeakoulu SIIVOJA HALLITSEE EKG-REKISTERÖINNIN, VAIKKA SE ON VAIKEAA JOPA KLIINISEN FYSIOLOGIAN ERIKOISHOITAJILLE! JOHDANTO Iltasanomissa 17.3.2011 oli artikkeli,

Lisätiedot